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A B S T R A C T   

Background: Accurately differentiating between pulmonary large cell neuroendocrine carcinomas (LCNEC) and 
small cell lung cancer (SCLC) is crucial to make appropriate therapeutic decisions. Here, a classifier was con
structed based on transcriptome data to improve the diagnostic accuracy for LCNEC and SCLC. 
Methods: 13,959 genes mapped to 186 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were 
included. Gene Set Variation Analysis (GSVA) algorithm was used to enrich and score each KEGG pathway from 
RNA-sequencing data of each sample. A prediction model based on GSVA score was constructed and trained via 
ridge regression based on RNA-sequencing datasets from 3 published studies. It was validated by another in
dependent RNA-sequencing dataset. Clinical feasibility was tested by comparing model predicated result using 
RNA-sequencing data derived from hard-to-diagnose samples of lung neuroendocrine cancer to conventional 
histology-based diagnosis. 
Results: This model achieved a ROC-AUC of 0.949 and a concordance rate of 0.75 for the entire prediction ef
ficiency. Of the 27 borderline samples, 17/27 (63.0%) were predicted as LCNEC, 7/27 were predicted as SCLC, 
and the remainder was NSCLC. Only 8 cases (29.6%) with LCNEC were diagnosed by pathologists, which was 
significantly lower than the results predicted by the model. Furthermore, cases with predicted LCNEC by the 
model had a significant longer disease-free survival than those where the model predicted SCLC (P = 0.0043). 
Conclusion: This model was able to give an accurate prediction of LCNEC and SCLC. It may assist clinicians to 
make the optimal decision for patients with pulmonary neuroendocrine tumors in choosing appropriate 
treatment.   

Introduction 

Pulmonary large cell neuroendocrine carcinoma (LCNEC) is a rare 
type of tumor, with poorly differentiated or undifferentiated neuroen
docrine morphology, accounting for approximately 3% of all lung can
cers [1]. In 2004, LCNEC was classified as a subtype of large cell lung 
cancer by the World Health Organization (WHO). In 2015, it was clas
sified as a neuroendocrine tumor of the lung along with small cell lung 
cancer (SCLC), atypical carcinoids and typical carcinoids [2]. Local and 
systemic metastases are common in LCNEC, and the cure rate and 
overall prognosis of LCNEC are poor, with 5-year survival rates of 
13–57% for all patients, 27–62% for early stage, and < 5% for advanced 

stage patients [3]. For advanced LCNEC, there is an increasing evidence 
suggesting LCNEC should be treated with a platinum/etoposide–based 
regimen in clinical practice due to similar neuroendocrine lineage origin 
[4,5]. 

Radical surgical resection is recommended to localized LCNEC [3]. 
Further, Raman V and colleagues, in a study of 6092 LCNEC patients, 
suggested a survival benefit of surgery in patients with both early and 
locally advanced (stage IIIA) LCNEC [6]. However, unlike LCNEC, sur
gical treatment is recommended only for stage I/II N0 SCLC [7]. 
Therefore, more in-depth exploration is needed to find effective differ
ential/correct diagnosis methods to screen LCNEC patients so as to 
obtain effective treatment strategies. 
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Conventional diagnosis of LCNEC is mainly based on histopathology 
and immunohistochemistry. Usually, an accurate diagnosis can be made 
on a surgically resected tumor specimen; however, it is difficult to 
perform morphological and immunohistochemical examination for 
small or crushed biopsy specimens or cytological samples, which often 
lack a well-preserved morphology. Thus it is difficult to obtain the ac
curate diagnosis for patients who can only provide these types of spec
imens [8]. Furthermore, some subsets of SCLC and LCNEC (borderline 
samples) have similar characteristics, make it difficult to establish ac
curate pathologic diagnosis [9,10]. The other issue with LCNEC patho
logical diagnosis is that it has only a moderate reproducibility. Travis 
et al. reported that 3 out of 5 pathologists agreed on SCLC in 90% of the 
cases, but only in 50% of the LCNEC cases [11]. Two other previous 
studies have data in the same range: consensus (5/9 pathologists) for 
SCLC / LCNEC /NSCLC in 69% of the cases [12] and consensus for SCLC 
in 83%, for LCNEC in 78% of the cases [13]. Therefore, developing an 
objective method based on tumor molecular markers to accurately di
agnose LCNEC will have important clinical value. 

Recently, the molecular characteristics of LCNEC have been reported 
[14] through next-generation sequencing (NGS). George et al. per
formed whole-genome sequencing on 60 LCNEC tissues and tran
scriptome sequencing on 69 LCNEC tissues [15]. Compared with normal 
tissue, significant mutations were found in TP53, RB1, STK11, KEAP1 
and RAS (KRAS/NRAS/HRAS) pathway. Other studies have found that 
the mutation rate of the NOTCH family genes in LCNEC was relatively 
high, which causes a change of the NOTCH pathway and ultimately 
affects the differentiation of neuroendocrine tissue [16,17]. In a small 
study (n = 45), it was found that 18 LCNEC samples had genetic char
acteristics of SCLC (with co-mutation/loss of TP53 and RB1, MYCL 
amplification, and other SCLC-type alterations), 25 samples had genetic 
characteristics of NSCLC (lack of co-altered TP53 and RB1, but with 
STK11, KRAS, and KEAP1 mutations), and 2 samples had carcinoid-like 
genetic characteristics (with MEN1 mutations and low mutation burden) 
[16]. However, the molecular typing studies are all carried out in pa
tients who had been clearly diagnosed as LCNEC. No study has been 
conducted to distinguish LCNEC patients from SCLC and other lung 
neuroendocrine carcinomas based on the molecular characteristics. 

Therefore, this study is first to construct and validate a prediction 
model, that can distinguish LCNEC from SCLC, through comprehensive 
transcriptomic profiling and machine learning approach. 

Methods 

Data collection 

In order to build a classifier that predicts the patients’ tumor subtype, 

highly selected groups of patients were included in the study. To achieve 
sample balance, 60 NSCLC cases, 66 LCNEC cases and 52 SCLC cases 
were selected as training set, the RNA-Seq data of these cases were 
retrieved from TCGA (Firehose Legacy, https://tcga-data.nci.nih.gov/t 
cga/), and public data from Julie George et al., Nature Communica
tions 2018 [15], and Julie George et al., Nature 2015 [18], respectively. 
Another 82 NSCLC and 30 LCNEC cases tested by Amoy Diagnostics Co. 
Ltd. (Xiamen, China) and 15 SCLC cases published by Martin Peifer 
et al., Nature Genetics 2012 [19] were included in the validation set. 
Only coding genes, a total of 13,959, were selected for further study. The 
expression level of each gene was log (TPM+1) transformed for the 
downstream analyses. The characteristics of the patient in these cohorts 
are provided in Table 1. 

Additionally, RNA sequencing data of 27 samples that could not be 
clearly diagnosed as NSCLC or LCNEC or SCLC by histological charac
teristics and immunohistochemistry (named borderline samples) was 
performed at Amoy Diagnostics Co Ltd. (Xiamen, China), and the 
sequencing data were used to further validate the accuracy of the pre
diction model in differentiating LCNEC or SCLC. The characteristics of 
these patients are provided in Table 2 and Supplementary Table 1. The 
study protocol was approved by the Ethics Committee of the Shanghai 
Pulmonary Hospital. Patient consent was not required because of the 
retrospective nature of the study. Patient data were anonymized. 

Candidate genes model 

By consulting the literature [15,18,20–23], a batch of prior candi
date genes that differ in these three lung cancer subtypes at the muta
tion, CNV and transcriptome levels were collected. In order to evaluate 
the difference among the data, the parallel coordinates for candidate 
genes were examined in the training set and the validation set. Principal 
component analysis (PCA) was used to infer the distribution of the 
training set and the validation set, expecting that the training set and the 
validation set had the same distribution, and the generalization ability of 
the model could be better reflected in the validation set. 

Considering that the differentiation of lung cancer subtypes is a 
classification issue, the Logistic Regression model is mainly used for 
classification and prediction of the data. In order to prevent over-fitting 
of the model, Lasso (L1) regularization was applied to generate a sparse 
matrix for feature selection due to the large number of candidate genes. 
The data of the training set were divided into 10 parts in proportion, K- 
fold cross-validation was used to estimate the most appropriate regu
larization coefficient. The threshold value of the regularization coeffi
cient was a logarithmic geometric sequence of (− 2, 2). At the same time, 
the coordinate descent method (’liblinear’) was used to optimize the 
parameter iteration, and the highest number of iterations was set as 

Table 1 
Demographics of study subjects in training and validation cohort.  

Characteristics Training Cohort  Validation Cohort   

LCNEC SCLC NSCLC P value LCNEC SCLC NSCLC P value 

Number 66 52 60  30 15 82  
Median age (years, range) 63 (45–90) 64 (51–83) 66.5 (38–82) 0.263 65 (42–78) 65 (47–78) 62 (31.7–80) 0.147 
Gender    0.017    0.003 
Male 52 (78.8%) 39 (75.0%) 34 (56.7%)  29 (96.7%) 8 (53.3%) 60 (73.2%)  
Female 14 (21.2%) 13 (25.0%) 26 (43.3%)  1 (3.3%) 7 (46.7%) 22 (26.8%)  
Smoking history    0.001    <0.001 
Never 1 (1.5%) 1 (1.9%) 9 (15.0%)  21 (70.0%) – 31 (37.8%)  
Current/ Former 61 (92.4%) 50 (96.2%) 51 (85.0%)  9 (30.0%) – 51 (62.2%)  
NA 4 (6.1%) 1 (1.9%) 0  0 15 (100%) 0  
Stage    0.492    <0.001 
I 26 (39.4%) 22 (42.3%) 30 (50.0%)  15 (50.0%) – 45 (54.9%)  
II 16 (24.2%) 8 (15.4%) 12 (20.0%)  6 (20.0%) – 17 (20.7%)  
III 17 (25.8%) 15 (28.8%) 12 (20.0%)  8 (26.7%) – 15 (18.3%)  
IV 4 (6.1%) 7 (13.5%) 5 (8.3%)  1 (3.3%) – 5 (6.1%)  
NA 3 (4.5%) 0 1 (1.7%)  0 15 (100%) 0  

LCNEC: large-cell neuroendocrine carcinomas; NSCLC: non-small cell lung cancer; SCLC: small cell lung cancer; NA: not available. 
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5000. Then, the optimized parameters were brought into the model to 
predict the validation set. The performance of the model was evaluated 
by calculating the receiver operating characteristic (ROC) curve, the 
value of the area under the curve (AUC), the multi-class confusion ma
trix and the Kappa coefficient. 

GSVA score model of KEGG pathway 

The expression value of a single gene fluctuates greatly among 
different samples. Thus, as a feature tag, the generalization ability of a 
single gene is not very good. Therefore, to enhance the robustness of the 
model, we considered looking for a comprehensive index to replace the 
single gene as an expression signature. Considering that the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) forms a biologically sig
nificant gene set based on metabolic pathways and other cellular pro
cesses, Gene Set Variation Analysis (GSVA) algorithm was used to enrich 

and score each KEGG pathway, and then using the score to perform 
feature engineering replacement. The GSVA R package (version 1.34.0) 
[24] was used to calculate normalized enrichment scores (ES). GSVA 
assumes that the data obey a normal distribution. By fitting the 
normalized expression value with a Gaussian distribution function, the 
score was transformed into a probability distribution instead of the 
original expression value. 

In this study, a total of 13,959 genes, mapped to 186 KEGG path
ways, were included in the analysis, and the distribution of these 
pathways in the training and validation set was also examined through 
the PCA method. Compared with the Candidate Genes Model, the dis
tribution of these pathways in the two data sets was more similar in the 
GSVA Score Model (Supplementary Fig. 1). Considering that all KEGG 
pathways have their own biological significance, the pathway heat map 
was drawn based on the hierarchical clustering method to find the dif
ferences in the up-regulated or down-regulated pathways between 

Table 2 
Demographics of 27 subjects with borderline samples.   

Total Model prediction Pathologist judgement   

LCNEC SCLC NSCLC LCNEC SCLC NSCLC Not determined 

Number 27 17 7 3 8 12 6 1 
Median age (years, range) 64 (44–80) 69 (53–80) 62 (44–72) 59 (53–64) 59 (53–79) 70 (64–74) 53 (59–79) 71 
Gender         
Male 23 (85.2%) 15 (88.2%) 5 (71.4%) 3 (100%) 7 (87.5%) 10 (83.3%) 5 (83.3%) 1 (100%) 
Female 4 (14.8%) 2 (11.8%) 2 (28.6%) 0 1 (12.5%) 2 (16.7%) 1 (16.7%) 0 
Smoking history         
Never 2 (7.4%) 1 (5.9%) 1 (14.3%) 0 0 2 (16.7%) 0 0 
Current/ Former 25 (92.6%) 16 (94.1%) 6 (85.7%) 3 (100%) 8 (100%) 10 (83.3%) 6 (100%) 1 (100%) 
Stage         
I 11 (40.8%) 7 (41.2%) 1 (14.3%) 1 (33.3%) 3 (27.3%) 5 (50%) 2 (40%) 1 (100%) 
II 8 (29.6%) 6 (35.3%) 2 (28.6%) 1 (33.3%) 5 (45.4%) 0 3 (60%) 0 
III 8 (29.6%) 4 (23.5%) 4 (57.1%) 1 (33.3%) 3 (27.3%) 5 (50%) 0 0 

LCNEC: large-cell neuroendocrine carcinomas; NSCLC: non-small cell lung cancer; SCLC: small cell lung cancer. 

Fig. 1. Flow-chart showing steps for designing the GSVA score prediction model. The development of the classifier was divided into 2 phases. Phase 1 involved 
selecting the training cohort, charactering tumor-specific features by the GSVA, and the model training based on KEGG pathway characters. Phase 2 involved 
selecting the validation cohort, the GSVA profiling, and the probability distribution of each patient in LCNEC, SCLC and NSCLC as calculated by the classifier. 
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LCENC and SCLC in the training set, so as to further clarify the differ
ences in molecular characteristics between the two lung cancer sub
types, and verified in the validation set (Fig. 1). 

The logistic regression model was also used to process data, but this 
time the L2 regularization was adopted. Since each KEGG pathway has 
its own biological significance and classification effect, the character
istics of all pathways were retained as much as possible, and made the 
coefficients of pathways with small contributions as small as possible. 
The subsequent calculation and evaluation process of the GSVA Score 
Model was the same as of the Candidate Genes Model. The Sklearn Py
thon package was mainly used in the process of model establishment, 
the Logistic Regression L2 regularization loss function was as follows, 
minw,c

1
2w

Tw+ C
∑n

i=1log(exp( − yi(XT
i w + c))+ 1), where “w” is the 

regression coefficient of the variable, “Xi” is the score, “yi” is the clas
sification tag, and “C” is the coefficient that controls the balance be
tween regularization term and empirical risk function. 

Predictions of borderline samples 

After the optimized classification model was obtained, the GSVA 
score of 27 borderline samples was substituted into the prediction 
classification. The Kaplan-Meier survival curves for different lung cancer 
subtypes were determined by pathologists or the model was compared to 
evaluate the classification effectiveness of the GSVA Score Model. 

Immunohistochemistry 

Formalin-fixed, paraffin-embedded tumor samples were analyzed by 
immunohistochemistry (IHC) using antibodies to CD56 (Dako, clone 
123C3, 1:100), Syn (Dako, clone DAK-SYNAP, 1:50), INSM1 (Santa Cruz 
Biotechnology, clone A-8, 1:400), and CgA (Dako, clone DAK-A3, 
1:100). The experimental procedure was performed by following the 
manufacturer’s instructions, and IHC stains were evaluated by two pa
thologists. Expression of each neuroendocrine marker was semi- 
quantified using H-scores (range 0–300), which incorporate the stain
ing intensity (range 0–3+) and the percentage of positively-stained 
tumor cells (range 0–100%). 

Statistical analysis 

Statistical calculations were performed with R (version 4.0.4; 
https://www.r-project.org/). Disease Free Survival (DFS) curves were 
described by Kaplan-Meier method and compared by Log-rank test. 
Receiver operating curve (ROC) analyses were performed to assess the 
classification prediction effectiveness of the model. P values < 0.05 were 
considered significant. 

Results 

GSVA score model building and validation 

Both LCNEC and SCLC belong to pulmonary neuroendocrine tumors. 
Due to their similarities in pathological phenotypes and molecular 
characteristics it may be difficult to differentiate between both tumor 
types and make an appropriate treatment decision for the patients. 
Therefore, this study was planned to find the different genes between 
LCNEC and SCLC and to construct a classifier to assist clinical diagnosis. 
First, a Candidate Genes Model was designed based on the different 
genes collected from published literature. Although the AUC of the 
Candidate Genes Model was high, the results of the confusion matrix 
analysis showed that its classification effect was not ideal (the accuracy 
of judging SCLC in the validation set was only 2/15, internal data). In 
addition, PCA showed that there was a batch effect in the Candidate 
Genes Model, so it was not the optimal choice to construct a model with 
gene tags. 

Considering that GSVA is an intermediate universal tool, it provides 
summaries of pathway activities for a more open-ended biological 
analysis. In this study, the GSVA method was further used to construct 
the classifier. After screening, a total of 13,959 genes, mapped to 186 
KEGG pathways, were included in the analysis, the pathway was scored 
by GSVA, then the score was used as the feature tag for classification 
selection. Both in training and validation set, the GSVA confirmed the 
KEGG terms, including non-homologous end-joining, one carbon pool by 
folate, notch signaling pathway, taste transduction, and so on were most 
enriched in LCNEC. Long term potentiation, oocyte meiosis, neuro
trophin signaling pathway, mTOR signaling pathway, RNA polymerase, 
and so on were most enriched in SCLC. Allograft rejection, asthma, 
apoptosis, autoimmune thyroid disease, antigen processing, presenta
tion, and so on were most enriched in NSCLC (Supplementary Fig. 3). 
From the heatmap, there are obvious differences in the enrichment of 
up-regulated and down-regulated expression pathways among LCNEC, 
SCLC, and NSCLC patients in the training set (Supplementary Fig. 2) and 
the validation set (Fig. 2a, b). The pattern of up-regulated and down- 
regulated expression pathways between the two data sets were 
similar. The prediction power of the model was examined using the 
confusion matrix (Fig. 2c) and the ROC curve (Fig. 2d). The confusion 
matrix algorithm has a Kappa coefficient of 0.75, indicating a high de
gree of consistency between the model prediction and clinical diagnosis, 
particularly in SCLC prediction, which was completely consistent with 
the clinical diagnosis. In addition, the ROC curve was used to evaluate 
the specificity and sensitivity of the model prediction results. The area 
under the ROC curve calculated on the independent validation cohort 
data was 0.94, indicating that the GSVA Score Model was reliable for 
classifying LCNEC and SCLC. 

GSVA score model performance 

To validate the constructed GSVA Score Model, 27 borderline sam
ples were classified using the model. The Sankey diagram showed the 
difference of pathological subtypes of the 27 borderline samples deter
mined by clinical diagnosis and model prediction (Fig. 3a). 7 samples 
who were pathologically judged to be SCLC and 5 samples who were 
pathologically judged to be NSCLC with neuroendocrine characteristics 
were predicted as LCNEC by the model, and 5 samples were judged to be 
LCNEC by both pathologists and the model. 1 sample without a definite 
diagnosis by a pathologist was predicted as SCLC by the model, 1 NSCLC 
sample with neuroendocrine characteristics judged by a pathologist was 
predicted as SCLC by the model, and another 5 samples were judged to 
be SCLC by both a pathologist and the model. 2 samples with patho
logically judged LCNEC and 1 sample with pathologically judged SCLC 
were predicted as NSCLC by the model. 

Detailed clinical characteristics, the clinical diagnosis, the model 
prediction results, and the IHC scores for each neuroendocrine as well as 
shared genetic markers between LCNECs and SCLC of the 27 borderline 
samples are shown in Fig. 3b. The difference of expression of neuroen
docrine markers in borderline samples was not obvious. Both LCNEC 
and SCLC as predicted by the model detect neuroendocrine markers, 
among which, the number of LCNEC and SCLC samples positive for 
neural cell adhesion molecule (NCAM-1/CD56) was 12/17 and 7/7 
respectively, the number of LCNEC and SCLC samples positive for syn
aptophysin (Syn) was 11/17 and 4/7 respectively, the number of LCNEC 
and SCLC samples positive for chromogranin A (CgA) was 9/17 and 5/7 
respectively, the number of LCNEC and SCLC samples positive for 
insulinoma-associated protein 1 (INSM1) was 13/17 and 5/7 respec
tively, and the number of LCNEC and SCLC samples positive for thyroid 
transcription factor-1 (TTF-1) was 7/17 and 4/7, respectively. However, 
these markers were negative in all three of the predicted NSCLC patients, 
except for one patient who had a positive CD56 test. For genetic 
markers, the number of samples with positive detection of P53 in 
LCNEC, SCLC and NSCLC samples predicted by the model was 12/17, 5/ 
7, and 1/3 respectively; most of the LCNEC (13/17) and SCLC (5/7) 
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samples were negative for retinoblastoma protein (RB1) staining; posi
tive staining of neurogenic locus notch homolog (NOTCH) was detected 
in 3/17 of LCNEC, 2/3 of NSCLC and 4/7 of SCLC samples and occurred 
in a mutually exclusive fashion with DLL3 (10/17 in LCNEC, 0/3 in 
NSCLC and 3/7 in SCLC); p40 was identified only in one NSCLC sample. 

Three representative examples of H&E staining and IHC results from 
borderline samples are illustrated in Fig. 4. In sample 1, the diagnostic 
results were consistent with the pathologists’ judgments and model 
prediction: it showed the classic LCNEC morphology, including a nested 
growth pattern with peripheral palisading, abundant eosinophilic 
cytoplasm, coarsely granular chromatin, presented with necrosis, and 
strong/diffuse staining for four neuroendocrine markers (Fig. 4a). In 
sample 2, the pathologists diagnosed SCLC, but the model predicted 
LCNEC, it had the morphological characteristics of SCLC, including 
tumor cells with scant cytoplasm and round or oval nuclei, and trabec
ular arrangement. IHC illustrated intense/diffuse staining for CD56, Syn, 
and INSM1, but weak/focal CgA staining (Fig. 4b). In sample 3, the 
pathologists diagnosed LCNEC, but the model predicted SCLC, it had 
untypical morphological characteristics of neuroendocrine carcinoma, 
but tumor cells with a moderate amount of cytoplasm, with weak CD56 

expression, and complete loss of Syn, INSM1, and CgA expression 
(Fig. 4c). 

Clinical outcome of the GSVA score model predicted classification 

27 patients with borderline samples that within the model were 
predicted to have LCNEC had a significant longer DFS than those with 
the model predicting SCLC (59.0 vs. 6.0 months, P = 0.0043, Fig. 5a). No 
statistically significant difference in DFS was observed between patients 
with pathologists judging LCNEC or SCLC (20.0 vs. 14.0 months, P =
0.69, Fig. 5b), The DFS was significantly longer for LCNEC predicted by 
the model and treated with a SCLC-regimen than for SCLC predicted by 
the model and treated with a SCLC-regimen (20.0 vs. 7.0 months, P =
0.012, Fig. 5c). However, no difference of DFS was observed between 
LCNEC treated with SCLC-regimen judged by pathologists and SCLC 
treated with SCLC-regimen judged by pathologists (20.0 vs. 12.0 
months, P = 0.064, Fig. 5d) (the treatment regimens are listed in sup
plementary Table 1). Thus, the results suggested that patients with 
LCNEC predicted by the model may benefit more from SCLC-regimen. 
Additionally, limited by the small sample size, no significant 

Fig. 2. The GSVA score prediction model construction and evaluation. (a) A total of 13,959 genes were mapped to 186 pathways, heatmap of the enrichment scores 
(ES) of these pathways in LCNEC, SCLC and NSCLC from validation cohort. (b) Heatmap of the ES for top 28 differentially expressed pathways between LCNEC and 
SCLC from validation cohort. (c) Confusion matrix showing the model prediction results of validation cohort. (d) ROC curve evaluating the classification performance 
of the model for LCNEC and SCLC patients. 

J. Guo et al.                                                                                                                                                                                                                                      



Translational Oncology 14 (2021) 101222

6

difference in DFS was observed between model-predicted LCNEC with 
pStage III and model-predicted SCLC with pStage III (10.5 vs. 50.0 
months, P = 0.17, Fig. 5e). No difference of DFS was observed between 
LCNEC with pStage III and SCLC with pStage III as judged by 

pathologists (5.0 vs. 14.0 months, P = 0.24, Fig. 5f). 

Fig. 3. The Model performance evaluated by borderline samples. (a) The Sankey plot showing the subtype reclassification of 27 pulmonary neuroendocrine tumors 
between clinicopathological assessment and model prediction. (b) Overview of clinical characteristics, clinical diagnosis and model prediction results, and IHC scores 
for each neuroendocrine as well as shared genetic marker between LCNEC and SCLC of the 27 borderline samples. 

Fig. 4. Morphologic and immunohistochemical features of tree representative examples. (a) sample 1, LCNEC was determined by both pathologist and the model: 
CD56, Syn, INSM1 and CgA were positive. (b) sample 2, pathological diagnosis was SCLC while the model prediction was LCNEC: CD56, Syn, and INSM1 were 
positive, CgA was weakly positive. (c) sample 3, pathological diagnosis was LCNEC while the model prediction was SCLC: CD56 was positive, Syn, INSM1 and CgA 
were negative. 
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Discussion 

LCNEC is a type of high-grade neuroendocrine carcinomas (HGNEC) 
with is highly heterogeneous both histologically and biologically. The 
differential diagnosis of LCNEC with classical pathological methods can 
be challenging in some borderline cases as well as in some small biopsy 
or cytology specimens. Recently, molecular profiling with NGS has 
revealed a few biologically distinct subsets of LCNEC, and confirmed 
that chemotherapy regimens have different efficacy in different molec
ular subtypes of LCNEC. In this study, a transcriptome sequencing data- 
based classifier was developed to predict the tumor subtype, which 
enabled prediction of LCNEC from borderline samples efficiently. 

There are multiple studies that have shown similarities and differ
ences in molecular alterations between LCNEC and other lung neuro
endocrine carcinomas. Researchers hope to find the molecular markers 
with high specificity and sensitivity to assist the pathological diagnosis 
of LCNEC. At an individual gene level, inactivation of p16 has been 
reported in LCNEC and borderline HGNEC, but it is rare in SCLC [25,26]. 
SKT11, KRAS, KEAP1, LAMA1, PCLO, and MEGF8 mutations are more 
frequent in LCNEC than in SCLC [16,27]. Conversely, the prevalence of 
RB1 mutations is lower in LCNEC than in SCLC [27]. As for the 
expression of biomarkers, Bari et al. performed a gene expression profile 
using frozen tissues of 8 SCLC and 8 LCNEC samples, and found that the 
expression of caudal type homeobox 2 (CDX2), Villin 1 (VIL1), and 
brain-specific angiogenesis inhibitor 3 (BAI3) were significantly 
different in the two different tumors [28]. Morise et al. analyzed the 
expression of tumor stem cell-related markers in 60 cases of SCLC and 45 
cases of LCNEC. He and his team found that the expression of SOX2 and 

CD166 in SCLC and LCNEC was significantly different, and SCLC and 
LCNEC could be distinguished by the expression of these two molecules 
[29]. It is now known that DLL3 is a downstream target gene of the 
achaete-scute complex homologue 1 (ASCL1), and is involved in the 
neuroendocrine differentiation of lung neuroendocrine tumors [30, 31]. 
Hermans et al. found that the expression of DLL3 was related to ASLC1 
with a high rate of 74% (70/94), and the expression of DLL3 in TP53 
wild-type and TP53 mutant LCNEC was different [32]. These previous 
studies showed that a lot of molecular markers were related to the 
molecular subtype and neuroendocrine spectrum of LCNEC, and may 
have the potential to differentiate LCNEC from other lung neuroendo
crine carcinomas. Therefore, in this study, a batch of prior candidate 
genes with differences in LCNEC, SCLC and NSCLC at the level of mu
tation, CNV and transcriptome were selected after literature review to 
construct the Candidate Genes Model in order to distinguish these three 
types of tumors. However, the classification effect of this model was not 
ideal, for instance, the prediction accuracy rate of SCLC for the valida
tion cohort was only 13.3% (2/15). This may be related to the spatio
temporal specificity and random fluctuation of gene expression. In 
addition, PCA showed that the prediction effect of this model had a 
batch effect. Therefore, it is not the most ideal choice to construct the 
prediction model with gene tags. 

To further develop an efficiency model to differentiate LCNEC with 
SCLC, the GSVA algorithm was considered. The GSVA method replaces 
the original expression value of each gene with the rank order of gene 
expression, which reduces the error caused by random fluctuation of 
gene expression. It considers the up-regulation and down-regulation of a 
pathway as a whole; it is theoretically more robust than that of a single 

Fig. 5. Disease free survival (DFS) for LCNEC and SCLC in 27 borderline samples subtypes determined by model prediction or pathologists’ judgment. (a) DFS for 
model predicted LCNEC and SCLC. (b) DFS for pathologists judged LCNEC and SCLC. (c) DFS for model predicted LCNEC and SCLC treated with SCLC-regimen. (d) 
DFS for pathologists judged LCNEC and SCLC treated with SCLC-regimen. (e) DFS for model predicted LCNEC and SCLC with pStage III. (f) DFS for pathologists 
judged LCNEC and SCLC with pStage III. 
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gene as the classification feature tag [24]. Here, a total of 13,959 genes 
included in the construction of the Candidate Genes Model were mapped 
to 186 KEGG pathways. These pathways were scored using the GSVA 
algorithm to construct the GSVA Score Model. Compared with the 
Candidate Genes Model, the GSVA Score Model had a higher reliability 
(AUC: 0.949). 

According to the comprehensive integrative genomic and tran
scriptomic profiling of 75 LCNECs, George et al. has revealed two mo
lecular subgroups: type I LCNECs (37%), characterized by biallelic TP53 
and STK11 and/or KEAP1 alterations, and a neuroendocrine differen
tiation phenotype (ASLC1high/DLL3high/NOTCHlow). type II LCNECs 
(42%), which have biallelic inactivation of TP53 but also RB1, are 
ASLC1low/DLL3low/NOTCHhigh, and have upregulation of immune- 
related pathways [15]. In a retrospective study, LCNEC patients with 
co-mutant TP53 and RB1 were defined as SCLC-like LCNEC, and those 
without co-mutant TP53 and RB1 were defined as NSCLC-like LCNEC. 
The prognosis of SCLC-like patients was worse than of NSCLC-like pa
tients, but the difference was not significant. For SCLC-like patients, 
compared to gemcitabine/taxane-platinum regimen, 
etoposide-platinum regimen was associated with longer OS but without 
statistical significance. Treatment with a gemcitabine/taxane-platinum 
regimen caused a shorter survival compared to etoposide-platinum or 
pemetrexed-platinum regimen in NSCLC-like patients [33]. Another 
study showed that in LCNEC patients with wild-type RB1 gene the 
gemcitabine/paclitaxel-platinum regimen can significantly prolong the 
OS of patients compared with an etoposide-platinum based regimen; 
however, in patients with RB1 mutant LCNEC, no difference in efficacy 
between the two regimens was observed [34]. Thus, from the afore
mentioned studies it can be concluded that predicting the prognosis of 
patients based on molecular typing is still somewhat controversial. 

Neuroendocrine morphology and positive staining of neuroendo
crine markers are two criteria for LCNEC diagnosis. In cases where the 
morphology is equivocal, a useful consideration in differential diagnosis 
is the extent and number of positive neuroendocrine markers. It has been 
reported that about 20% of LCNECs only show one neuroendocrine 
marker, and in some cases only show local immunoreactivity of a single 
marker [35,36]. In contrast, the expression of neuroendocrine markers 
in adenocarcinoma/large cell carcinoma is usually focal and usually 
limited to only one marker [8]. However, 1–4% of adenocarcinomas 
have been reported to express two neuroendocrine markers [37,38]. 
Here, among the 27 borderline samples, pathological results of 18 
samples were inconsistent with the model prediction results, including 
some samples showing only one neuroendocrine marker, and some cases 
expressed three to four standard neuroendocrine markers but lack of 
typical morphological features of LCNEC. In contrast, using the GSVA 
Score Model, 17 LCNEC, 7 SCLC and 3 NSCLC were predicted from 27 
borderline samples. Patients with model-predicted LCNEC had a sig
nificant longer DFS those with model-predicted SCLC, and DFS was also 
significantly longer for model-predicted LCNEC treated with 
NSCLC-regimen than model-predicted SCLC treated with 
NSCLC-regimen. Additionally, independent of a treatment with a 
NSCLC-regimen or a SCLC-regimen, when LCNEC predicted by the 
model was consistent with the pathologists’ judgment, the prognosis of 
these patients was better. However, when the model prediction was 
inconsistent with the pathologists’ judgment, the prognosis of these 
patients was worse. Therefore, the prediction results of the GSVA Score 
Model could be a good supplement to the pathological diagnosis for 
LCNEC. Further large-scale investigations are warranted to confirm the 
accuracy of the GSVA Score Model. 

Furthermore, to this date, the optimal chemotherapeutic regimen for 
LCNEC remains unclear (NSCLC vs SCLC regimens). A randomized phase 
III study on adjuvant chemotherapy in HGNEC using either cisplatin- 
etoposide or cisplatin-irinotecan was reported recently [39]. The sub
jects in this study were patients with SCLC including combined SCLC or 
LCNEC including combined LCNEC. The adjusted primary endpoint 
relapse-free survival did not show superiority for the irinotecan-based 

regimen. Although it has not been proven in a specific study that the 
use of molecular characteristics to distinguishing LCNEC from SCLC can 
achieve better efficacy, from our analysis and previous studies, 
molecular-based LCNEC subtypes may have different response to 
chemotherapy regimens, with the SCLC subtype being more responsive 
to an etoposide-based and the NSCLC subtype to a 
gemcitabine/taxanes-based regimen. 

Conclusion 

In conclusion, this study showed the possibility of predicting LCNEC 
from borderline samples based on a model constructed by KEGG path
ways and a GVSA algorithm. This classification model should be vali
dated and optimized in larger cohorts in order to improve the accuracy 
of the clinical diagnosis of LCNEC and select patients better to benefit 
from different treatment regimens. 
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