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Base changes in tumour DNA have the power to reveal
the causes and evolution of cancer
M Hollstein1,2, LB Alexandrov3,4, CP Wild5, M Ardin1 and J Zavadil1

Next-generation sequencing (NGS) technology has demonstrated that the cancer genomes are peppered with mutations. Although
most somatic tumour mutations are unlikely to have any role in the cancer process per se, the spectra of DNA sequence changes in
tumour mutation catalogues have the potential to identify the mutagens, and to reveal the mutagenic processes responsible
for human cancer. Very recently, a novel approach for data mining of the vast compilations of tumour NGS data succeeded in
separating and precisely defining at least 30 distinct patterns of sequence change hidden in mutation databases. At least half of these
mutational signatures can be readily assigned to known human carcinogenic exposures or endogenous mechanisms of mutagenesis.
A quantum leap in our knowledge of mutagenesis in human cancers has resulted, stimulating a flurry of research activity. We trace
here the major findings leading first to the hypothesis that carcinogenic insults leave characteristic imprints on the DNA sequence of
tumours, and culminating in empirical evidence from NGS data that well-defined carcinogen mutational signatures are indeed
present in tumour genomic DNA from a variety of cancer types. The notion that tumour DNAs can divulge environmental sources of
mutation is now a well-accepted fact. This approach to cancer aetiology has also incriminated various endogenous, enzyme-driven
processes that increase the somatic mutation load in sporadic cancers. The tasks now confronting the field of molecular
epidemiology are to assign mutagenic processes to orphan and newly discovered tumour mutation patterns, and to determine
whether avoidable cancer risk factors influence signatures produced by endogenous enzymatic mechanisms. Innovative research
with experimental models and exploitation of the geographical heterogeneity in cancer incidence can address these challenges.
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INTRODUCTION
Cancer is a genetic disease, and mutations in genes that drive
cancer constitute the overriding molecular events leading to
malignant growth. During the first decade of the next-generation
sequencing (NGS) revolution, the focus of whole-genome and
whole-exome cancer sequencing projects was to describe the
genome landscape of major human cancers, that is, to identify
groups of genes (driver genes) that contribute to the growth of
different types of tumours when mutated.1,2 This massive effort
has made it clear that the set of mutated driver genes in cancer
genomes typically consists of fewer than 10 in any given tumour.
Driver genes provide a blueprint of the malignant process, and
offer targets for specific therapies.3–5 In less than a decade, NGS
identified most genes in the genome that can provide a growth
advantage to a cell if mutated. Fewer than 1% of all human genes
appear to have this potential to drive neoplastic development.
A characteristic subset of driver genes harbouring deleterious
mutations has been identified for each major cancer type,
corroborating the notion that cancer is many diseases, each type
following an underlying developmental path. Although there is
considerable heterogeneity in the genome landscapes of different
cancers, it appears that all driver gene products affect a common
set of biological pathways.5,6

Although the first goal of tumour NGS data analysis was to
identify driver gene mutations buried amongst a plethora of

accumulated sequence changes, it became apparent that the
frequency and types of common base substitutions differed
substantially across cancer types. Furthermore, mutation pattern
heterogeneity could arise in distinct sets of tumours of the
same type.3,7 Although it is generally accepted that some of this
diversity stems from differences in patient exposure history,
cursory perusal of mutation profiles did not lead significantly
further in identifying the sources of mutations beyond what had
been achieved previously through mutation spectra analysis of
single cancer genes. Once methods were applied to parse
enigmatic mutation catalogues into specific mutational signatures,
however, the picture changed entirely. Computational mining of
information previously locked in mutation databases allowed tight
associations to be made between specific cancer risk factors and
unique patterns of sequence changes in tumours.

ESSENTIAL OBSERVATIONS FROM SEQUENCING SINGLE
CANCER GENES IN TUMOURS: IMPLICATIONS FOR
CANCER AETIOLOGY
Mutation patterns amongst different cancer types are different
Mutation analysis of individual cancer genes, which preceded
scrutiny of NGS mutational catalogues, provided the first evidence
that carcinogenic insults leave mutational ‘fingerprints’ on tumour
DNA. In the decades leading up to tumour NGS studies, catalogues
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of DNA sequence changes in frequently mutated genes such as
the TP53 tumour suppressor gene or the K-ras, and B-raf
oncogenes offered a first glimpse of the mutational pathways
operating in human cancers. Analysis of skin and lung tumours
provided convincing demonstration of an environmental impact
on tumour mutation patterns.8–10 Numerous reports contributed
to the understanding that exposure to ultraviolet (UV) light, the
primary cause of skin cancer, is responsible for the uniquely
characteristic C to T transitions at dipyrimidines in skin tumours,
and that tobacco smoking causes G to T transversions, the
predominant sequence changes present in lung tumours.11 (Note:
When possible, we describe a mutation by naming the base
proposed to carry the pre-mutagenic lesion rather than by using
the COSMIC system (Catalogue of Somatic Mutations in Cancer;
cancer.sanger.ac.uk), which uniformly names the pyrimidine of
the Watson-Crick base pair. When the pre-mutagenic lesion is
currently unknown, we employ the COSMIC system.) Despite the
limited scope of single-gene sequencing, these and other valuable
insights from such projects continue to emerge, particularly from
the analysis of TP53. One reason why sequencing TP53 is
particularly informative in revealing sources of mutagenic insult
is that any one of numerous single base changes along the coding
sequence is sufficient to disrupt its proper function.12,13 Such
diversity of potential mutations and sequence contexts can reveal
discrete mutation profiles. Each TP53 mutation in a set of tumours
of a specific type is classified according to the type of
base change, strand orientation, and sequence location, and the
frequencies of specific alterations are then analysed. The tumour-
specific patterns that emerge (such as the TP53 G to T
transversions on the non-transcribed strand in smokers’ lung
tumours clustering at hotspots in codons 157, 158 and 273)
represent rudimentary ‘signatures’ produced by the action of
mutagenic processes.11,14 As fundamental DNA-damaging proper-
ties of human carcinogenic agents such as UV light and tobacco
carcinogens had been well-characterized in the laboratory,15–17

the effects of these agents on DNA were promptly recognized in
skin and lung tumour TP53 mutation spectra, a major step forward
at the time.
Within this single-gene framework, however, the mutation

spectrum is small in scale and the approach is fraught with
limitations. First, as each patient analysis typically contributes just
one mutation, fingerprints only begin to emerge as data from
many individuals are pooled. Second, as driver gene mutations
are selected during cancer development, the types of tumour
mutations likely to be detected are generally limited to the
specific changes and gene locations capable of unleashing
oncogenic potential are not necessarily characteristic of the
genome’s mutation load as a whole. The B-raf mutation spectrum
in melanomas illustrates the limitations in single-gene analysis in
revealing sources of a somatic mutation burden. In the B-raf driver
gene, the mutagenic risk factor fails to leave its identifying
fingerprint.8 Almost all B-raf mutations in melanoma are T to A
transversions, yet the primary risk factor is UV light, powerful
mutagen that produces C to T and CC to TT base changes at
pyrimidine dinucleotides. An explanation for this anomaly is that
most oncogenic B-raf mutations occur at a hotspot, the second
nucleotide of B-raf codon 600. The sequence context (ACA GTG
AAA) cannot capture the hallmark dinucleotide target of UV
radiation. In contrast, melanoma mutations in TP53 are dispersed
across the locus and do indeed display the UV-characteristic C to T
transitions at dipyrimidines and CC to TT tandem mutations.
(Of general note, not all mutations that a carcinogen induces
will be typical of its action on DNA. Thus, T to A mutations in the
B-raf gene of melanoma, although uncharacteristic of UV
exposure, may well have arisen from exposure to UV, even
though a T to A substitution is not the most likely molecular
change that sunlight generates.)

Within a cancer type, mutation patterns in a single gene can
diverge widely when groups of patients with different exposure
histories are examined
Whilst it was highly plausible that risk factors are responsible for
some of the mutation pattern diversity amongst different
types of cancer, demonstration of a specific risk factor mutation
pattern present in tumours from exposed patients, but absent in
non-exposed patients with the same type of cancer, strengthens
the argument considerably. Extensive supporting evidence has
come from TP53 analysis of lung, urothelial and liver cancers.
The G to T mutation fingerprint discovered in lung cancers and
linked to tobacco smoking is not evident in lung cancer patients
who are never-smokers, and the greater the tobacco smoke
exposure, the more pronounced is the G to T mutation load in
sentinel driver genes such as TP53.10 In urothelial cancers from
patients exposed to the plant carcinogen aristolochic acid (AA),
there is a striking preponderance of TP53 A to T mutations on the
non-transcribed strand of DNA, the primary type of mutation
induced in laboratory mutagenesis experiments with AA.18,19

The signature does not appear in patients with no history of AA
exposure. Finally, a unique liver cancer TP53 mutation pattern,
characterized by strand-biased G to T substitutions predominantly
at codon 249, is present in hepatocellular carcinomas (HCC) from
geographical regions (for example, parts of China and sub-Saharan
Africa) where there is chronic, high-level exposure to aflatoxin
B1 (AFB1), and hepatitis B virus infection is prevalent.17,20,21 In
populations where other risk factors prevail and exposure to AFB1
is minimal or absent, TP53 mutations in HCC are diverse in type
and location.22 A variety of laboratory test systems demonstrated
that AFB1 induces primarily G to T mutations. The codon 249 G to
T hotspot mutation has shown its use as a powerful molecular
biomarker of HCC risk and disease burden in regions where
exposure to AFB1 is high, but it would be of little value as a
biomarker in cohorts with no exposure to this carcinogen.
Overall, DNA sequencing of TP53 continues to generate

evidence supporting the prediction that two cohorts with the
same cancer type but exposed to different environmental risk
factors can have different characteristic mutations in their
tumours. Mutation spectra in oncogenes and tumour suppressor
genes have also indicated that the multiplicity of distinct risk-
associated TP53 mutation patterns in human tumours presaged
the diversity in mutation patterns now emerging from tumour
NGS data.

THE GAME CHANGER: GENOME-WIDE SEQUENCING DATA
AND COMPUTATIONAL ANALYSIS
Mutation research has been witness to three seminal advances,
each of which prompted a flurry of activity in laboratories
around the world. First, in the 1970s, development of the rapid
Salmonella/microsome assay for testing mutagenicity of chemi-
cals, and subsequently the report on test results with 300
chemicals, established the fact that the majority of known and
suspected human carcinogens are mutagenic.23 More than a
decade later, Vogelstein and colleagues discovered that colorectal
cancers harbour a variety of inactivating point mutations in
TP53.24 This finding prompted a deluge of reports describing TP53
mutations in a variety of human tumours. The fact that the
mutations were found in target sequences large and complex
enough to reveal different mutation patterns in various tumour
types was a turning point because tumour TP53 mutations
provided the first comprehensive evidence in clinical samples
that exposure to mutagenic carcinogens leave fingerprints on
tumour DNA.25 With the advent of NGS technologies, the third
quantum leap in mutation research on cancer aetiology is now
upon us. NGS-derived mutation data constitutes a blurred mixture
of fingerprints from different mutagenic processes, however,

Mutation spectra in cancer etiology
M Hollstein et al

159

© 2017 Macmillan Publishers Limited, part of Springer Nature. Oncogene (2017) 158 – 167



necessitating de-confounding computational procedures to iden-
tify discrete mutational signatures in simple mathematical terms.26

The somatic mutations found in cancer genomes are approxi-
mated as a linear mixture of multiple mutational signatures, each
contributing a different number of mutations to different
genomes:

Mutations ¼ Signatures ´ Exposures

In principle, the known set of mutations in cancer genomes is
used to find the optimal set of signatures and respective
exposures that best describe the original catalogues of somatic
mutations. This problem can be considered as a specific case of a
blind source separation problem, and the challenge is to
unscramble not-observed latent variables (that is, mutational
signatures and their exposures) from a set of mixtures (that is,
somatic mutations in cancer genomes). To ‘unmix’ and reconstruct
the original sources from the records, a blind source separation
algorithm is needed for best possible extraction of original signals
from mixtures. The unmixing and reconstruction of the original
signals is based on constrained and/or regularized optimization
procedure minimizing an objective cost function together with a
few imposed constraints, such as maximum variability, statistical
independence, non-negativity, smoothness, sparsity, simplicity,
and so on. The choice of optimization constraints is based on prior
knowledge about the processed data, and hence the constraints
could be different for every particular case. The non-negative
nature of somatic mutations requires at the very least applying a
non-negative constraint for solving the cancer genomics blind
source separation problem. Alexandrov et al.26 used a widely
applied approach designated non-negative matrix factorization
(NMF; Figure 1) to provide an effective solution.27 NMF does not
seek statistical independence or constrain any other statistical

property of the mixed signals, and thus allows the estimated
sources to be partially or entirely correlated. When tumour
mutational catalogues are analysed with mathematical procedures
such as NMF, numerous carcinogenic fingerprints hidden in a
vast set of human NGS-analysed tumours can be separated and
identified with unprecedented clarity, fast-forwarding our under-
standing of mutation origins during the evolution of cancer.26,28

Despite the apparent neutrality of bystander mutations in the
cancer process, their sheer numbers promise to provide a far more
powerful way than individual onco-mutation analysis to observe
signatures of mutagenic activity. Understanding the mutagenic
processes corresponding to NGS mutational signatures, however,
continues to rely on finding matches with experimentally induced
signatures or other laboratory data.

Diverse mutational processes are responsible for the
heterogeneity in tumour NGS mutation spectra amongst
different cancer types
The first NMF-based pan-analysis of NGS data from a broad
assortment of different cancers demonstrated unequivocally that
tumour types differ in their genome-wide mutation profiles,
and presented compelling argument that distinct risk factors
associated with each cancer type are likely to explain much
of the heterogeneity in mutation spectra across tumour types.28

Twenty-one distinct mutational signatures were extracted from
mutation data on 30 types of cancer from 7042 patients in this
unprecedented study, and a known cancer risk factor or
endogenous molecular process was putatively assigned to many
of the signatures. The number of distinct mutational signatures is
now at 30 (source: COSMIC) and may soon approach 50 as the
results of pan-cancer analyses become validated, and as patients

Case 2, high exposure riskCase 1, low exposure risk

Case 1 Case 2

3 signatures found by NMF 

Figure 1. When patients with the same cancer type have different exposure histories, the mutation patterns in their tumours can be strikingly
different. Two representative cases of upper urinary tract urothelial tumours from regions of either low or high risk of exposure to the
carcinogen aristolochic acid97 were analysed using whole-exome sequencing. The single-base substitution distribution spectra are shown on
top. Performing NMF on the studied case series identified three distinct mutational signatures (A, B and C; middle panel). The pie charts show
the proportionate contribution of individual signatures to the mutational load in each tumour. The absence of signature A in case 1 argues
that the two tumours have distinct aetiologies.
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from geographic areas not previously tested become examined.
Table 1 describes five signatures assigned to specific human
carcinogenic exposures. (Note: In the following discussion,
different signatures are referred to according to their unique
identifying number. See http://cancer.sanger.ac.uk/cosmic/
signatures)
The diversity in mutation patterns amongst cancer types can be

illustrated by a comparison of signatures in small cell lung cancer,
acute myeloid leukaemia and cutaneous melanoma.28 In each of
these cancer types one signature (but not the same one)
contributed 485% of the total mutational burden. The tobacco
smoking-associated signature 4, characterized by G to T transver-
sions with transcriptional strand bias, dominated in small
cell lung cancers, whereas acute myeloid leukaemia mutations
were overwhelmingly C to T transitions at CpG dinucleotides
(signature 1), presumably attributable to spontaneous deamina-
tion of 5-methylcytosine, and clearly distinguishable from the
UV signature C to T transitions at dipyrimidines (signature 7) in
melanoma.

The mutation spectrum derived from NGS of a tumour is
composed of superimposed signatures left by various mutagenic
insults
In most cancer types, parsing of NGS mutational catalogues
demonstrated the presence of several distinct mutational
signatures, in keeping with cancer aetiologies where multiple
exposures are thought to significantly contribute to risk. The fact
that in NGS analysis, each tumour provides an entire spectrum of
mutations (rather than a set of tumours required for single gene-
based analysis) has offered unprecedented opportunity to explore
the multi-factor aspect of human cancer. Despite caveats
mentioned below regarding signatures in branch mutations
accumulating during clonal evolution, genome-wide mutations
in a tumour can be displayed as a weighted composite of distinct
mutational signatures, allowing a first approximation of the
relative contribution of each risk-associated signature to the total
mutation burden in the tumour. With NMF or similar mathematical
approaches,27–30 a rough estimate of the relative impact of

multiple risk factors on the total mutation load can be obtained, a
goal that was out of reach in the single-gene mutational analysis
era. In the initial study applying NMF to NGS data from 30
different tumour types, liver cancer displayed the greatest number
of distinct mutational signatures, presumably reflecting the multi-
factorial aetiology of cancer at this site discernible from the data
archives used. Seven signatures were identified, amongst them
signature 16, apparently unique to liver cancers, which was
detected in 90% of the tumours sequenced, and contributed
anywhere from a few percentages to over half of all the somatic
mutations recorded in a given sample. The cause of signature
16 mutations, characterized by strand-biased A to G transitions at
NpApT sites, is unclear. This observation is intriguing because HCC
is one of the few cancers with several known major risk factors,
notably infection by hepatitis B or C viruses, alcohol consumption
and exposure to AFB1. A recent study uncovered signature 24, one
of the signatures characterized by frequent strand-biased G to
T transversions, in six hepatitis B virus-infected HCC patients
originating from subtropical Africa.31 Extended cohort-specific as
well as experimental studies are warranted to strengthen the
proposed link between this signature and aflatoxin B1 exposure.
At present, of the first 30 distinct signatures defined, 60% have

been provisionally assigned to known carcinogens or mutational
processes. The remaining orphan signatures highlight the dearth
of experimental mutation research, sending out a priority
research call.

Specific endogenous mutational processes have a major impact
on the mutation burden in human populations
The risk of sporadic adult cancer increases exponentially
with age.32 Deamination of 5-methylcytosine, a well-studied
endogenous spontaneous mutagenic process known to erode
DNA sequence integrity, presents as C to T transitions at CpG
dinucleotides, the ubiquitous age-associated signature labelled
signature 1.33 Tumour mutation catalogues from almost all 30
types of cancers in the seminal study of Alexandrov et al.28 had at
least some trace of this signature, and in some cancers signature 1
predominated.

Table 1. Mutational signatures assigned to IARC Group 1 carcinogen exposures

Name Exposure Group 1
carcinogen

Chemical class Characteristic pre-mutagenic
DNA lesion

Signature
hallmarks

Prominent
trinucleotide
target in the
signature

Signature 4 Tobacco smoke Benzo[a]pyrene PAH (+)benzo[a]pyrene-7,8-dihydrodiol-9,
10-epoxide-dG adduct

G to T
GG to TT tandem mutations
Transcriptional strand bias

GGG
GGA

Signature 7 Sunlight Ultraviolet light NA Py-Py photodimers C to T at dipyrimidines
CC to TT tandem mutations
Transcriptional strand bias

TCC

Signature 11 Chemotherapy Temozolomide Alkylating agent O6-methylguanine G to A
Transcriptional strand bias

GGG
GGA

Signature 22 Dietary contaminant (grain);
herbal medicine

Aristolochic acid Plant alkaloid 7-(deoxyadenosin-N(6)-yl)
aristolactam I adduct

A to T
Transcriptional strand bias

CAG

Signature 24 Dietary contaminant
(groundnuts)

Aflatoxins Fungal toxin 8,9-dihydro-8-(N7-guanyl)-9-
hydroxyaflatoxin B1 adduct

G to T
Transcriptional strand bias

GGC

Signature 29 Tobacco chewing Unspecified Unspecified Unspecified G to T
Transcriptional strand bias

TGC
GGC
TGT

Abbreviations: IARC, International Agency for Research on Cancer; NA, not applicable; PAH, polycyclic aromatic hydrocarbon; Py, pyrimidine. Group 1 refers to
the IARC classification of substances for which there is sufficient evidence of carcinogenicity to humans. The third column lists sources of exposure with
documented links to cancer risk. Bases and context sequence are shown to reflect the base targeted by the mutagen (for example, as 5′-GGA-3′ for B[a]P, but
as 5′-TCC-3′ for UV). The targeted base in its preferred sequence context is underlined in the last column. The targeted trinucleotides in the last column are
extracted from signature analysis of human tumours; analysis of experimental models with single, controlled exposures recapitulates major features from the
human data (Figure 2).
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The accumulation of this and other classes of mutational events,
such as those stemming from spontaneous base hydrolysis or the
inherent infidelity of DNA replication and repair,34 is to a certain
extent essentially inevitable, as are some cancers. A recent study
suggested that 10–30% of cancers can be primarily attributed to
intrinsic factors,35 although some argument persists regarding the
proportion of human cancers that presumably cannot be avoided
by changes in lifestyle or environment.36 However, much remains
to be understood with regard to the effect of external exposures
on endogenous pro-mutagenic processes mentioned. On the
basis of geographical disparities in cancer incidence within cancer
types,37,38 current estimates suggest ~ 90% of the global cancer
burden could in principle be avoided, a large fraction of which
may harbour mutational signatures that could be linked to patient
exposure history. In contrast, two signatures of endogenous
mutational processes discernible in practically all cancer types,
signature 1 (C to T at CpG) mentioned above, and signature 5 (a
diffuse pattern produced by unknown underlying molecular
mechanism(s)), have been linked to age, the most inevitable and
ubiquitous cancer risk factor. These two mutation patterns,
attributed to ‘clock-like’ cellular processes, are the only signatures
described thus far for which a correlation was found between the
number of such mutations and the chronological age of patients
at diagnosis.33 Although it is unclear to what extent genetic
background or external factors can accelerate this internal clock in
normal cells, the tumours in which these signatures predominate
are more likely to be those that contribute to the baseline
incidence of cancer in humans.35

Surprisingly, of the first 30 signatures revealed by NMF, almost
half correspond to patterns generated by enzymatic processes
affecting DNA homoeostasis.39 For example, signatures 9 and 10
are similar to mutation patterns left in the wake of DNA repair
polymerases eta and epsilon, respectively, and signatures 6, 15 and
20 imply defective DNA mismatch repair. Further, signature 3 has
been found in the majority of samples harbouring pathogenic
BRCA1/2 mutations indicating that this signature reflects failure of
DNA double strand repair by homologous recombination.40 It has
been long recognized that cancer patients with inherited
deleterious mutations in DNA repair enzymes have tumours with
a hypermutator phenotype.41 However, inherited cancer syn-
dromes of this class are relatively rare, so the demonstration that
enzymatic DNA maintenance mechanisms appear to contribute to
diverse types of sporadic cancers raises the question as to whether
avoidable, known cancer risk factors can influence the impact
from these pathways on the human mutation burden. In
particular, the extent to which cancer risk factors that do not act
through a direct mutational mechanism exert an influence on
genome-altering cellular processes is one of the most enticing
areas of cancer research, offering rich opportunities for laboratory
science and epidemiology.
It is worth remembering that the human tumours subjected to

NGS in the first phase of studies were not selected to address
hypotheses about aetiology. Patients were not necessarily
representative of the patient population for a given type of
cancer, being typically recruited from a small number of high-
income countries, and little epidemiological data were available or
collected on the exposure history of the subjects. It is thus
premature to draw conclusions about the number or prevalence
of distinct mutational signatures occurring for a given cancer
worldwide.

Modulation of the activity of the APOBEC (apolipoprotein B mRNA
editing enzyme, catalytic polypeptide-like) family of deaminases
Remarkably, the first signature analysis of NGS data28 revealed
that 16 of the 30 cancer types displayed signatures that matched
the mutator activities of APOBEC deaminases (signatures 2 and
13). In connection with its eponymous function, this large family of

enzymes has several biological tasks, including viral restriction and
suppression of retrotransposition.42 The collateral damage these
enzymes inflict on single-stranded genomic DNA has been
characterized extensively in experimental model systems, facil-
itating recognition of their mutational impact on human tumour
DNA.43–46 On the basis of this characterization, a role for
APOBEC3A and/or APOBEC3B in human cancer is more likely
than for other members of the family. The putative contribution of
the APOBEC3 enzyme activity to the total tumour mutation load
reported in several independent NGS studies of breast
tumours47,48 is an important clue in elucidating the incompletely
understood aetiology of sporadic breast cancer. With respect to
APOBEC3 dysregulation in this cancer type, alterations at the gene
locus itself (coding sequence or promoter mutation, gene copy-
number polymorphism) and induction of enzymatic activity by
factors in the cellular environment may be responsible. 49–51

In-depth exploration of APOBEC expression modulation by
cancer risk factors is needed in the wake of these recent surprising
discoveries on the putative impact of APOBEC on the human
mutation burden. Interestingly, significant numbers of signature 2
mutations are present in cervical cancer and in head and neck
tumours,52 two types of cancer with human papillomavirus (HPV)
involvement.53 Elevated APOBEC3 activity in HPV-infected cells
would be a further manifestation of the APOBEC gene family
responses to viral infection.54,55 In a recent study, mutations
related to the APOBEC signatures 2 and 13 found in HPV-positive
head and neck cancers were reported enriched relative to the
HPV-negative counterparts.56 In most cancer types exhibiting
APOBEC dysregulation, however, the underlying causes remain
enigmatic, with the exception of the small numbers of tumours
found to harbour gene copy polymorphisms or deleterious
mutations involving the APOBEC locus.

Physicochemical mutational processes, ‘amorphous’ risk factors
and co-mutagenic agents: SEVERAL elephants in the room?
In general, the mutagenic impact of reactive chemicals in the
internal environment of the cell, and external influences on the
mutagenic potential of endogenous enzymes are difficult to
assess. Furthermore, it is not known how or to what extent
established but ‘amorphous’ risk factors with no assigned
genome-wide mutational signature, such as obesity, chronic
inflammation, physical inactivity, and reproductive history, mod-
ulate mutation patterns. The chemical properties of reactive
oxygen species, nitrogen radicals and lipid peroxidation products
associated with oxidative stress and chronic inflammation link
them directly to DNA damage and these molecules are considered
an important source of tumour mutations.57,58 Nevertheless,
information on the relative contribution from such sources to
tumour mutation load is imprecise, and the specific patterns in
base substitution distribution they might produce are ill-defined.
Attack on DNA by endogenous cellular chemicals has been shown
in numerous studies to elicit specific classes of base substitution,
however. A recent study reported that DNA exposed to
hydrochlorous acid, a chemical secreted by neutrophils in
inflamed tissues, acquired 5-chlorocytosine residues, a modifica-
tion that caused transitions to T, a common mutation type overall
in human cancers even when the particular subclass CpG to TpG,
attributable to deamination of 5-methylcytosine (signature 1), is
not considered.59

Mathematical analysis of data from fit-for-purpose NGS studies,
for example by comparing mutations in distinct risk cohorts,
should bring more clarity to this prickly topic.60 ‘Amorphous’ risk
factors present no small challenge; whereas many chemical
carcinogens produce unique DNA adducts that serve as traces
of exposure, episodic exposures from endogenous chemical flux,
or exposure to a non-mutagenic agent acting on endogenous
mutational processes from a distance, are difficult to pinpoint.
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Finally, some risk factors may impact risk primarily by modulating
a different trajectory of cancer development such as immune
surveillance of cancerous cells, and not by increasing the
mutation load.

Episodic exposures in cancer evolution
Two recent reports on the multi-clonal evolution of lung cancer
and the role of APOBEC3B activity, in which truncal (early)
mutations were compared against branch (more recent) muta-
tions illustrate how temporal shifts in mutation patterns feed into
the mutational landscape of a full-blown cancer.61,62 The two
studies, which traced lung cancer development by sampling
tumours at multiple locations, concluded that APOBEC3B dysfunc-
tion typically exerts effects later in the evolution of the primary
clone. The enzyme’s signature was evident amongst branch
mutations but not in truncal mutations. Thus, whilst parsing of a
mutational catalogue can estimate the relative importance of
multiple signatures, and hence exposures in the natural history of
the cancer, the percentage of the total mutation burden in the late
stages of cancer that are attributable to a given signature/
exposure may not necessarily indicate the relative importance of
multiple environmental exposures in initiating a cancer. Obtaining
multiple biopsies of an exposed organ or cancer to assess tissue
burden of mutant cells, or to retrace the evolution of the
mutational load and the timing of distinct mutational insults, is a
strategy that gains power from NGS and mutational signature
analysis.61,63–68 In principle, one could revisit the migrant studies
or time-trend studies of descriptive epidemiology but with
genome-wide mutational analysis. For example, changes in
mutation pattern following changes in risk factor exposure over
a lifetime could be tracked in cancers from migrant populations,
particularly when the difference in exposure patterns and cancer
incidence between the patients’ country of origin and the
subsequent place of residence is extreme. An example would be
migrants from Africa to Europe where exposure to the dietary
carcinogen AFB1 is markedly different. The International Agency
for Research on Cancer World Cancer Report 2014 contains
numerous examples of widely differing exposure patterns and
more than 10-fold geographical discrepancy in incidence for a
number of common cancers.38 Alternatively, one could examine
cancer types that have seen rapid changes in incidence over time,
an example being the increases in countries undergoing rapid
development, offering opportunities to compare spectra for the
same tumour in the same population but in the face of different
environmental and lifestyle exposures.

EXAMPLES OF MUTATION SPECTRA HETEROGENEITY WITHIN
A CANCER TYPE, ATTRIBUTABLE TO DIFFERENCES IN RISK
FACTOR EXPOSURES
Evidence for a direct role of external risk factors in shaping human
tumour mutation spectra is now accumulating from NGS projects
specifically designed to capture this information by comparison of
groups of patients with the same type of cancer, but differing in
exposure to a known cancer-causing agent. Investigations along
these lines show that mutation patterns can indeed be hetero-
geneous within a cancer type and that differences in risk factor
exposures explain this variation. Three prominent examples are
discussed here that parallel observations from earlier single-gene
studies.

Mutation patterns attributable to tobacco smoking
The great majority of lung cancers worldwide arise in patients who
smoke or have smoked tobacco. The outstanding features of the
lung cancer NGS mutation spectrum, corroborated by several
projects involving hundreds of lung cancer patients, are (i) the
presence of a distinct strand-biased G to T transversion signature

in smokers but, crucially, absent in never-smokers, and (ii) the high
numbers of somatic mutations per tumour.7,28,69,70 Computational
methods have defined signatures provisionally attributable to
tobacco smoke exposure although preferred sequence contexts
where presumptive tobacco-associated transversions accumulate
in respiratory tract cancers are not fully established, perhaps
reflecting the chemical complexity of tobacco smoke. It is unlikely
that NMF of mutational catalogues will differentiate between
fingerprints of two distinct carcinogens that both induce strand-
biased G to T substitutions should the preferred sequence
contexts of the two chemicals overlap significantly. Tobacco
smoke (along with alcohol consumption and HPV infection) is a
principal risk factor for head and neck cancers as well as lung
cancer. As expected, NGS analysis of 74 head and neck cancers,
89% of which were from patients with a history of tobacco use,
identified a prominent strand-biased G to T mutation pattern
similar to findings in smokers’ lung tumours.71 The highest
prevalence of the transversions occurred in tumours with the
highest mutation burden overall, suggesting that G to T mutations
could serve as a readout of tobacco smoke exposure. The
mutagenic impact of tobacco carcinogens across various tissues
is not uniform, however; bladder cancers of smokers do not have
the same mutation profile as smokers’ lung tumours.72 Differences
in tissue distribution and metabolism of carcinogens in tobacco
smoke are two of the many factors potentially responsible for
multiple tumour type-specific mutation patterns produced by a
given exposure. With respect to head and neck cancers, the tissue-
specific effect of tobacco smoke is a particularly complex issue
when tumours of many different cell types and subsites are
grouped together for analysis. A recent NGS study that addressed
this problem revealed that mutations in tongue squamous cell
carcinomas do not exhibit a pattern corresponding to the
spectrum found in smokers’ lung cancers, whereas mutations in
tumours of the larynx do.73

The AA fingerprint
Epidemiological and experimental evidence have long conspired
to incriminate AA in the aetiology of upper urinary tract urothelial
carcinoma (UTUC).74 AA is a potent plant mutagen that
contaminates grain in some regions, such as rural areas along
the lower Danube River, and is present in Aristolochia-containing
herbal medicines popular in a number of countries. In two recent
groundbreaking NGS studies in which the specified objective was
to examine genome-wide mutation patterns in AA-associated
UTUC,75,76 the causal link between AA exposure and cancer could
be established beyond reasonable doubt because of the
convergence of several findings. First, the AA mutational signature
was confined primarily to patients with documented exposure to
AA (measurements of AA-derived adducts on adenine and/or
patient exposure history). Second, the AA signature was repro-
duced in cells experimentally, and third, AA signature mutations
(A to T transversions on the non-transcribed DNA strand at CpApG
trinucleotides) were detected in somatically mutated driver genes.
Clear cell and chromophobe renal cancers of patients from some
regions of Eastern Europe also display this remarkably distinctive
mutation pattern.77,78 From mutational signature analysis it is now
suspected that AA exposure may also be a contributing factor in
causing hepatobiliary and bladder cancers.76,79,80

The mutational signature of a chemotherapeutic alkylating agent
Temozolomide (TMZ) is a human carcinogen, and a strong DNA
alkylating agent used in the treatment of brain cancer and
melanoma. Given its mutagenic properties, it came as no surprise
to find that recurrent tumours of glioma patients treated with the
compound displayed a heavy burden of G to A transitions, a base
substitution induced by this class of chemicals when the alkylated
deoxyguanine (O6-methyldeoxyguanine) mispairs with thymine.
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The naturally occurring ‘control group’, patients not offered TMZ
therapy, also have C:G to T:A transitions in their recurrent tumours,
but these occur primarily at the CpG sequence contexts
(attributable to spontaneous deamination of methylated cytosine),
unlike the TMZ-associated transitions clustering at CpC and CpT
dinucleotides.28 In a study of 23 patients, the mutation burden in
recurrent tumours of patients treated with TMZ was up to 10-fold
higher than in cancers of individuals not exposed to TMZ, and
98% of this mutation load were ‘TMZ-type’ transitions.81 The study
also revealed that TMZ exposure influenced not only the type of
mutation but also the identity of the driver genes mutated in the
tumours. In other words, this study suggests that a risk factor can
participate in determining not only which types of mutations

appear in the tumour, but also which genes become dysfunctional
and drive the cancer process.

ORPHAN SIGNATURES AND THE CALL FOR MORE
MUTAGENESIS STUDIES IN EXPERIMENTAL MODELS
Genome-wide mutation data have unveiled ‘orphan’ signatures
undecipherable with the experimental and epidemiological data
currently at hand, providing a major incentive for further targeted
experimental work to decode enigmatic patterns and link them to
causes of cancer. The oesophageal adenocarcinoma-linked muta-
tion profile characterized by T to G substitutions at NpTpT is an
example of a profile not readily linked to the major risk factors for

UTUC Taiwan n=26

UTUC BEN n=11

Hupki MEF (AA) n=4

Smokers lung ADCA n=10

Hupki MEF B[a]P n=3

HMEC B[a]P n=5

TMZ GBM n=8

Hupki MEF (MNNG) n=4

Mouse lung CA (MNU) n=26

Figure 2. A carcinogen’s fingerprint in human tumour DNA can be reproduced in experimental systems. Mutation distribution spectra (showing
frequency of base substitution type and context) from exome sequencing of primary human tumours, cells exposed in culture, or tumours of
exposed mice. (a) Upper panels: spectra in upper urinary tract urothelial carcinomas (UTUC) of patients from Taiwan, China and from Balkan
Endemic nephropathy (BEN) regions of Europe, two populations known to be exposed to AA.75,76,97 The lower panel shows that exposure of
Hupki MEF to AA92 induces a similar mutational profile. Pooled data from multiple samples are shown for each data set. (b) Mutational spectra
observed in lung adenocarcinomas (ADCA) of heavy smokers (upper panel) have features in common with spectra in Hupki MEF92 (middle panel)
and human mammary epithelial cells (HMEC, lower panel) exposed to B[a]P,83 a tobacco carcinogen. (c) Spectra attributable to alkylation agents;
upper panel: temozolomide treatment-related glioblastoma (TMZ GBM);81 middle panel: lung carcinoma of mice treated with methylnitrosourea
(MNU);90 lower panel: Hupki MEF cells treated with methylnitrosoguanidine (MNNG).92 The bar graphs to the right show strand bias ratios. Strand
bias reflects transcription-coupled repair of chemically damaged DNA bases (NT, non-transcribed strand; T, transcribed strand). Asterisks indicate
Χ2 test P-values for strand bias significance (*Po10E− 5; **Po10E− 20; ***Po10E− 320; P= 0 for UTUC Taiwan, in top panel of (a)). Note the less
pronounced transcriptional strand bias ratios associated with the effects of alkylating agents.
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the cohort in which the signature was observed, namely physical
inactivity, obesity and gastro-intestinal reflux.82 This illustrates
how a mutational signature per se reveals little about its author.
Without hypotheses on the nature of the cancer risk factor from
epidemiological and patient exposure data, and without experi-
mental information on the mutagenic and chemical properties
of carcinogens or endogenous mutational processes, a signature is
undecipherable. A key demonstration of the convergence of
multiple lines of information to establish cause was provided by
the example cited above linking AA exposure to the unusual
tumour A to T mutational signature. The only clues the signature
could have provided entirely on its own were that: (a) the
transversions were probably induced by an external agent, as this
base substitution is a universally rare type of sequence change,
and (b) the inducing agent probably generated bulky adducts on
DNA bases, because these lead to transcription-coupled repair and
thus a strand bias in the mutations that persist unrepaired. It was
the confluence of experimental studies, epidemiology and patient
exposure information that provided the necessary basis upon
which a plausible cause of this signature was derived. Information
on pro-mutagenic DNA adducts and other DNA lesions as well as
the mutation spectra they generate in experimental systems
have been essential factors in the assignment of signatures to risk
factors.
The genome-wide impact of carcinogens and endogenous

enzymes on DNA sequences can be efficiently captured in animal
models, lower organisms and in cell-based in vitro assays.76,83–90 For
example, exposure of normal murine embryonic fibroblasts (MEF) to
known human carcinogens and sequencing of clones following
immortalization is a rapid procedure that can generate mutational
signatures corresponding to signatures in human tumours from
patients exposed to the same agents (Figure 2).91,92 This simple
experimental procedure93,94 is also suited to investigation of
signatures linked to endogenous mutational processes. As proof of
principle, we compared mutational signatures in immortalized MEF
clones derived from MEFs isolated from mice harbouring an
activation-induced cytidine deaminase (AID) transgene against
signatures in non-transgenic mice, and demonstrated the expected
excess of AID signature mutations in the clones derived from AID-
expressing mice.92 AID, a hypermutator enzyme that promotes
antibody diversity, causes off-target mutations in B-cell lymphomas
and possibly other cancer types when inappropriately expressed.95,96

Another source of experimentally induced genome-wide mutation
patterns is potentially available from past in vivo toxicology projects.
There is an untapped reservoir of archived tumour samples from
animal carcinogen tests that can be mined using robust protocols for
extraction and NGS of DNA derived from formalin-fixed, paraffin-
embedded tumours already developed for human studies,77,97,98

allowing immediate access to information from this valuable source.

CONCLUDING REMARKS
Mutational signature analysis clearly incriminates environmental
factors in shaping tumour mutation spectra. Risk factor-linked
diversity in mutational signatures provides a framework for
establishing which and to what extent certain factors do indeed
contribute to the mutation burden of a tumour. The diversity is
likely to be even more evident when well-designed international
comparisons of mutation profiles are conducted, for example, with
studies that take advantage of unusually high rates of incidence of
specific tumour types in relatively restricted geographic areas
(for example, gallbladder cancer in Chile). New tools for de-
convoluting inherent genetic components and external factors in
migrant studies are now at hand.31,99 Heterogeneity of mutation
signatures in a single cancer type implies that a one-size-fits-all
approach to early detection biomarkers and molecular therapies
requires refinement.

The resounding discovery from NMF-based analysis of NGS data
that specific endogenous enzymatic processes appear responsible
for prominent mutational signatures in a broad variety of cancers
sends out a research call to identify environmental or lifestyle
factors that could act by proxy, stimulating the endogenous
mutators. It is important to know whether and which avoidable
factors regulate these endogenous mutational processes in the
natural history of cancer. An interdisciplinary approach that
harnesses epidemiology, experimental models, NGS and mathe-
matical analysis of mutations should meet these challenges.
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