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Abstract: Traumatic brain injury (TBI) poses a major health challenge, with tens of millions of new
cases reported globally every year. Brain damage resulting from TBI can vary significantly due to
factors including injury severity, injury mechanism and exposure to repeated injury events. Therefore,
there is need for robust blood biomarkers. Serum from Sprague Dawley rats was collected at several
timepoints within 24 h of mild single or repeat closed head impacts. Serum samples were analyzed
via ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) in positive and
negative ion modes. Known lipid species were identified through matching to in-house tandem MS
databases. Lipid biomarkers have a unique potential to serve as objective molecular measures of
injury response as they may be liberated to circulation more readily than larger protein markers.
Machine learning and feature selection approaches were used to construct lipid panels capable of
distinguishing serum from injured and uninjured rats. The best multivariate lipid panels had over
90% cross-validated sensitivity, selectivity, and accuracy. These mapped onto sphingolipid signaling,
autophagy, necroptosis and glycerophospholipid metabolism pathways, with Benjamini adjusted
p-values less than 0.05. The novel lipid biomarker candidates identified provide insight into the
metabolic pathways altered within 24 h of mild TBI.

Keywords: mild traumatic brain injury; closed head injury; lipidomics; animal model; ultra-performance
liquid chromatography-mass spectrometry

1. Introduction

Traumatic brain injury (TBI) is caused by single or repeated exposure to external forces
impacting the skull that result in impaired brain function. The Centers for Disease Control
and Prevention’s 2014 surveillance report estimated a total of 2.87 million TBI-related
hospitalizations, deaths and emergency department visits in the United States. These
estimates represent a 53% increase from studies conducted in 2006, with both studies
reporting significant prevalence among children and the elderly [1,2]. When left untreated,
TBI events may lead to related neurodegenerative disorders and health consequences,
including behavioral impairment [3,4], Alzheimer’s disease [5,6], acquired epilepsy [7,8],
and PTSD [9,10]. Currently, methods for diagnosing TBI are crude and do not readily
inform about underlying pathological pathways. Diagnosis relies heavily on self-reported
symptoms, consciousness assessment through the Glasgow coma scale [11] and brain
imaging techniques [12]. These approaches are often not sufficient to capture the diverse
physiological and neurochemical processes involved in TBI [13]. The complexity of TBI is
highlighted by its vast spectrum of injury severities, modalities, and response mechanisms
that make targeted treatment particularly challenging.
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The reflection of TBI pathology in biofluids has been shown to depend on severity and
injury progression, making the information held within biofluids invaluable [14]. Mild TBI
(mTBI) is perhaps the most difficult to correctly diagnose. mTBI is often called “a silent
epidemic” as reported incidence rates are likely much lower than the true ones, with many
cases misdiagnosed, unreported, or undetected [15]. Approximately 80% of all documented
TBI cases are classified as mild and do not present specific, objective clinical symptoms,
therefore requiring more advanced diagnostic methods [16]. Biomarkers play a unique role
as objective biological signatures capable of accurately differentiating subtle injury states,
ultimately contributing more sensitive and specific diagnostic tools for TBI.

Proteins have received considerable attention as potential TBI biomarkers. For exam-
ple, the calcium binding protein S100β has been shown to change significantly in serum
across a variety of both clinical and pre-clinical TBI studies [17,18]. Recently, the glial and
neuronal proteins GFAP and UCH-L1 received FDA approval as part of a blood-based
biomarker assay for predicting intracranial hemorrhaging and assessing the need for com-
puted tomography scans in patients with mTBI [19]. While these protein markers have
shown promise for mTBI diagnosis, none currently performs well-enough to reliably detect
mTBI as a single biomarker [20]. These and other proteins are thought to more readily enter
biofluids after severe injury, when the integrity of the blood–brain barrier (BBB) has been
compromised [21]. In the event of lower severity injury where the BBB remains largely
intact, protein molecules are less likely to enter peripheral biofluid compartments, mak-
ing them less amenable to non-invasive detection methods. Lipid biomarkers, while less
studied than protein counterparts as TBI biomarkers, are attractive candidates for clinical
translations given their higher abundance in the brain and ability to more readily penetrate
endothelial cells comprising the BBB [22,23]. Current studies into this biomarker class
often take a targeted or semi-targeted approach examining a specific group or class of lipid
molecules. For example, targeted analysis of sphingomyelins revealed significant increases
within 24–48 h of CCI and showed a direct correlation with lesion volume [24,25]. While
these lipids are highly specific to the brain and may reveal potential lipid biomarker candi-
dates, untargeted approaches have the potential to reveal a greater breadth of biomarkers
that could be even more specific. A recent study by Fiandaca et al. involved an untargeted
metabolomics assessment of college athletes and identified a six-lipid biomarker panel
capable of accurately classifying mTBI in athletes as early as 6 h post-injury [26].

Previous work by our group utilized a non-targeted approach to identify a panel of
26 lipids capable of differentiating serum of moderate CCI TBI and control Sprague Dawley
rat serum samples [27]. High lipidome coverage led to the identification of lipid species
optimal for discriminating serum from rodent models at 3- and 7 days post-injury. The
objective of the study presented here was to use a similar approach to identify lipid classes
and unique lipid features in serum that undergo significant alterations within 24 h of closed
head mTBI (Figure 1). A large breadth of lipid metabolites is identified using UHPLC-MS
and in-house databases to capture whole class and individual lipid alterations. While the
study is limited to lipids contained within databases, the trends identified could serve
to guide future avenues of mTBI research toward specific lipid classes, metabolites, and
known biological pathways. To our knowledge, this is the first high resolution lipidomics
study examining alterations in mTBI across sexes and repeated injury events at multiple
timepoints within 24 h of injury.
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Figure 1. Overview of study design, data processing, feature selection and identification. (A) Exper-
imental groups included both male (n = 14) and female (n = 18) sexes and were assigned to sham 
controls that received no injuries (n = 11), single impact that received one closed head impact (n = 
10), or repeat impact that received three separate closed head impacts (n = 11). (B) Injury groups and 
whole blood collection. (C) Workflow illustrating LC-MS data collection in both positive and nega-
tive ion modes (D) Peak alignment, picking and integration were accomplished using Compound 
Discoverer v.3.0, a Thermo Scientific software. (E) Identification of known lipid species using MSMS 
spectra collected with data-dependent acquisition (DDA) and in-house databases. (F) Multivariate 
model development and feature selection using machine learning methods to identify features most 
relevant to differentiating control and TBI classes. (G) Features identified by two or more machine 
learning approaches were combined to create the final oPLS-DA models. (H) Features selected in 
the final panels were imported into LIPEA to determine alignment of lipids with biological path-
ways altered following TBI. 

2. Results 
Sera from 32 Sprague Dawley rats were analyzed in positive and negative ion modes 

to examine lipidome changes resulting from closed-head injury prior to impact (baseline), 
and at 30 min, 4 h, and 24 h post-injury (Figure 1A,B). All above-background features that 
met filter criteria (see Section 4) were used to perform unsupervised principal component 
analysis (PCA) (Figure S1). PCA revealed clear, tight clusters for Sprague Dawley rat ref-
erence serum samples and for a pooled quality control (QC), the latter positioned at the 
center of all study samples. These results indicated that LC-MS experiments were stable 
and that pooled samples were an accurate representation of the average study sample. 
Based on initial PCA results, serum from one female rat (ID. No 15) was discarded due to 
errors during sample preparation, and three additional samples were removed as outliers 
detected during T2 vs. Q residual analysis, reducing the number of serum samples from 
114 to 108. Raw data were imported into the XCMS web-based application to visualize 
metabolites with abundance levels that varied significantly between all injured and unin-
jured serum samples in positive (Figure 2) and negative (Figure S2) ion modes. Approxi-
mately 1500 unique lipids had significantly different abundances between injured and 
control samples (p < 0.05), with fold changes above 1.5. These were projected onto cloud 
plots as bubbles based on retention time and m/z [28]. Significantly altered lipids belonged 
to a wide variety of lipid classes, with approximately 60% of significant features not 
matched to known compounds in the Metlin database. The diversity of metabolite signa-
tures and the variety of lipid classes with significantly altered species highlight the poten-
tial and complexity of the lipidome as a tool for detecting mTBI phenotypes. 

Figure 1. Overview of study design, data processing, feature selection and identification.
(A) Experimental groups included both male (n = 14) and female (n = 18) sexes and were assigned to
sham controls that received no injuries (n = 11), single impact that received one closed head impact
(n = 10), or repeat impact that received three separate closed head impacts (n = 11). (B) Injury groups
and whole blood collection. (C) Workflow illustrating LC-MS data collection in both positive and neg-
ative ion modes (D) Peak alignment, picking and integration were accomplished using Compound
Discoverer v.3.0, a Thermo Scientific software. (E) Identification of known lipid species using MSMS
spectra collected with data-dependent acquisition (DDA) and in-house databases. (F) Multivariate
model development and feature selection using machine learning methods to identify features most
relevant to differentiating control and TBI classes. (G) Features identified by two or more machine
learning approaches were combined to create the final oPLS-DA models. (H) Features selected in the
final panels were imported into LIPEA to determine alignment of lipids with biological pathways
altered following TBI.

2. Results

Sera from 32 Sprague Dawley rats were analyzed in positive and negative ion modes
to examine lipidome changes resulting from closed-head injury prior to impact (baseline),
and at 30 min, 4 h, and 24 h post-injury (Figure 1A,B). All above-background features that
met filter criteria (see Section 4) were used to perform unsupervised principal component
analysis (PCA) (Figure S1). PCA revealed clear, tight clusters for Sprague Dawley rat
reference serum samples and for a pooled quality control (QC), the latter positioned at
the center of all study samples. These results indicated that LC-MS experiments were
stable and that pooled samples were an accurate representation of the average study
sample. Based on initial PCA results, serum from one female rat (ID. No 15) was discarded
due to errors during sample preparation, and three additional samples were removed
as outliers detected during T2 vs. Q residual analysis, reducing the number of serum
samples from 114 to 108. Raw data were imported into the XCMS web-based application to
visualize metabolites with abundance levels that varied significantly between all injured
and uninjured serum samples in positive (Figure 2) and negative (Figure S2) ion modes.
Approximately 1500 unique lipids had significantly different abundances between injured
and control samples (p < 0.05), with fold changes above 1.5. These were projected onto
cloud plots as bubbles based on retention time and m/z [28]. Significantly altered lipids
belonged to a wide variety of lipid classes, with approximately 60% of significant features
not matched to known compounds in the Metlin database. The diversity of metabolite
signatures and the variety of lipid classes with significantly altered species highlight the
potential and complexity of the lipidome as a tool for detecting mTBI phenotypes.
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Figure 2. Cloud plot generated in the XCMS web-based application showing positive ion mode re-
tention time versus m/z of features with high fold change and statistical significance between injured 
(green) and uninjured (red) models. The black traces outline chromatographic retention time on the 
x-axis and m/z values on the y-axis for each sample. Each bubble in the plot corresponds to one 
metabolite feature with fold change at or above 1.5 and a p-value at or below 0.05 using a Welch’s t-
test. The color and size of each bubble denote the directionality and magnitude of fold change, re-
spectively, with larger bubbles representing larger fold changes. Darker bubbles correspond to fea-
tures with greater statistical significance. Features with m/z values above 2100 are truncated for ease 
of visibility. 

In the interest of obtaining a more comprehensive understanding of lipid pathways 
being altered in TBI and how these alterations were reflected in the serum lipidome, data 
dependent acquisition (DDA) LC-MS/MS experiments were performed on both QC and 
reference serum samples. This led to the tentative identification of 851 species in positive 
ion mode and 275 species in negative ion mode. Changes in lipid metabolites belonging 
to the fatty acyl, glycerolipid, glycerophospholipid, and sphingolipid classes were as-
sessed by comparing normalized areas at baseline to each of the post-injury blood collec-
tion timepoints (Figure 3).  

  

Figure 3. Spider plots of all identified lipids, grouped by lipid classes, shown over the time course 
of injury progression. Each main lipid class segment contains all three post-injury timepoints, with 
red, green, and blue bars corresponding to 30 min, 4 and 24 h post-injury timepoints, respectively. 
Circles within the spider plot correspond to 100 total identified lipids, with the central bold circle 
corresponding to the zero line. Each post-injury timepoint bar shows the total number of lipids that 
exhibited either increased median fold change in TBI samples from baseline and fell above the zero 
line or decreased in TBI samples and fell below the zero line. Darker colors indicate the total number 
of features with statistically significant changes from baseline after Benjamini–Hochberg correction, 
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Figure 2. Cloud plot generated in the XCMS web-based application showing positive ion mode
retention time versus m/z of features with high fold change and statistical significance between
injured (green) and uninjured (red) models. The black traces outline chromatographic retention time
on the x-axis and m/z values on the y-axis for each sample. Each bubble in the plot corresponds to
one metabolite feature with fold change at or above 1.5 and a p-value at or below 0.05 using a Welch’s
t-test. The color and size of each bubble denote the directionality and magnitude of fold change,
respectively, with larger bubbles representing larger fold changes. Darker bubbles correspond to
features with greater statistical significance. Features with m/z values above 2100 are truncated for
ease of visibility.

In the interest of obtaining a more comprehensive understanding of lipid pathways
being altered in TBI and how these alterations were reflected in the serum lipidome, data
dependent acquisition (DDA) LC-MS/MS experiments were performed on both QC and
reference serum samples. This led to the tentative identification of 851 species in positive
ion mode and 275 species in negative ion mode. Changes in lipid metabolites belonging to
the fatty acyl, glycerolipid, glycerophospholipid, and sphingolipid classes were assessed
by comparing normalized areas at baseline to each of the post-injury blood collection
timepoints (Figure 3).

The investigation of alterations in lipid classes revealed prominent increases in sphin-
golipids with upregulation of sphingomyelins (SMs) being the most pronounced. Upregu-
lation of the SM class was observed for both single and repeat injury groups beginning as
early as 4 h post-injury. A drastic increase in the number of significantly upregulated SM
lipids (q < 0.05) in repeat impact samples over single impact samples was also observed,
suggesting that SM abundance increases with repeated injury events. Previous serum
studies of single CCI in rodent models support the trend observed in the SM class at both 4-
and 24 h post-injury in both serum and plasma [25,29]. Interestingly, Sheth et al. reported
that SM concentrations in plasma showed a direct correlation with lesion volume [25]. Glyc-
erophospholipid abundances were largely dependent on the identity of individual lipids,
although the general trend in the phosphatidylcholine (PC), phosphatidylethanolamine
(PE), and phosphatidylserine (PS) classes showed a decrease over time. This trend appears
to be consistent across rodent serum [27,29], brain imaging [24,30], and human plasma
studies [31,32] with individual glycerophospholipids varying based on injury severity and
time. Glycerolipids, including triacylglycerols (TGs) and diacylglycerols (DGs), showed
decreasing trends across acute post-injury timepoints for both repeat and single impacts.
However, these trends also appeared to be somewhat specific to individual lipid species.
Glycerolipids have received little attention as potential TBI biomarker candidates. Studies
using a CCI TBI model showed significant increases in specific DGs in the brain immediately
post-injury [33] and in serum at later post-injury timepoints [27].
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Figure 3. Spider plots of all identified lipids, grouped by lipid classes, shown over the time
course of injury progression. Each main lipid class segment contains all three post-injury time-
points, with red, green, and blue bars corresponding to 30 min, 4 and 24 h post-injury time-
points, respectively. Circles within the spider plot correspond to 100 total identified lipids, with
the central bold circle corresponding to the zero line. Each post-injury timepoint bar shows
the total number of lipids that exhibited either increased median fold change in TBI samples
from baseline and fell above the zero line or decreased in TBI samples and fell below the zero
line. Darker colors indicate the total number of features with statistically significant changes
from baseline after Benjamini–Hochberg correction, and are shown at the tip of each segment.
(A) Analysis of identified lipids in the repeat (3×) impact injury model and (B) analysis of
identified lipids in the single (1×) impact injury model. Car—acyl carnitines, CE—cholesteryl
esters, Cer—ceramides, DG—diacylglycerols, FA—fatty acids, LPC—lysophosphatidylcholine,
LPE—lysophosphatidylethanolamine, LPS—lysophosphatidylserine, PC—phosphatidylcholine, PE—
phosphatidylethanolamine, PI—phosphatidylinositol, PS—phosphatidylserine, SM—sphingomyelin,
TG—triacylglycerol.

Alterations in abundance of all annotated lipids was further studied with PCA
(Figure 4). Separation of samples from injured and uninjured animals was visible across
PC1 and PC2 with significant sexual dimorphism. A similar PCA analysis was carried out
only for features with p-values at or below 0.05 and having a median fold change at or
above 1.5 (Figure S3). In both cases, the separation between injured and uninjured animals
was less pronounced than the clustering by sexes. The overlap between uninjured and
injured clusters was smaller for the dataset containing only the statistically significant fea-
tures, as expected. The overlap between injured and uninjured classes and sex differences
highlighted the need for supervised analysis for each individual sex to identify groups of
lipids most relevant to mTBI.
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Figure 4. PCA score plots for all identified lipid species. The distribution of samples in principal
component space shows separation between male and female animals along the diagonal of PC1 and
PC2 with some overlap between injured and uninjured samples.

Recursive feature selection methods were used to reduce the lipid list to those most
capable of distinguishing injured and uninjured serum samples, and nested cross-validation
was used to optimize parameters and assess initial models for overfitting. Models were
generated using support vector machines (SVM), logistic regression, and orthogonalized
partial least squares discriminant analysis (oPLS-DA). Supervised classification methods
were paired with recursive feature elimination (RFE), genetic algorithms (GA), and inverse
partial least squares (iPLS) feature selection methods, independently for male and female
animals. The performance of these various classification models and the individual sets of
features selected for each model are given in Table 1. Detailed parameters for each of the
feature selection methods can be found in the supplementary information (Table S1). The
various multivariate models performed with sensitivities between 68.9–94.1%, specificities
between 66.4–100% and AUC between 0.75 and 0.94 using between 19 and 32 lipids.

Features selected by two or more feature selection methods were used to create a set of
final oPLS-DA models containing 20 and 19 features for male and female animals, respec-
tively (Figure 5). These models were built with 2 orthogonal components and performed
with over 90% specificity, sensitivity, and accuracy using 10 iterations of Venetian blinds
cross-validation. oPLS-DA results showed that injured and uninjured animals were clearly
split into two classes along the first latent variable (LV) with injured samples correspond-
ing to positive scores and uninjured samples corresponding to negative scores. Testing
for overfitting for these models was performed using PCA analysis and 200 iterations of
permutation testing (Figures S4 and S5). PCA analysis also revealed clustering of samples
based on blood collection time post-injury. Cross-validation, permutation testing, and PCA
all supported a lack of evidence for overfitting.
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Table 1. Classifier performance and selected features used to build models for distinguishing serum-
derived lipids from injured and uninjured animals. Classifier and feature selection pairs were run
independently for male and female animals. Cross-validation estimates were calculated using the
average area under the curve (AUC) of five random subsets and served to evaluate performance of
each model on previously unseen data. When models were trained on the full dataset (all samples),
AUC estimates approached unity. Features selected by two or more feature selection methods are
shown in bold and were used to create the final classification models.

Classifier
Feature
Selection
Method

Sex Number of
Features

Cross-Validation
Estimate, AUC (SD)

All
Samples,
AUC

Selected Features

Linear SVM RFE M 27 0.875 (0.133) 0.980

63, 89, 244, 258, 365, 378, 417,
453, 457, 459, 476, 497, 527,
541, 543, 551, 570, 635, 651,
788, 792, 798, 808, 857, 967,
1095, 1114,

Logistic
Regression RFE M 24 0.840 (0.174) 0.992

88, 89, 183, 279, 365, 453, 457,
459, 473, 476, 486, 502, 527,
543, 551, 570, 601, 651, 652,
788, 792, 808, 1104, 1114

oPLS-DA GA M 31 0.941 (0.062) 1.000

17, 63, 161, 171, 174, 209, 278,
316, 365, 407, 494, 497, 513,
527, 531, 543, 550, 551, 567,
589, 601, 616, 621, 626, 627,
652, 745, 774, 788, 1080, 1114

oPLS-DA iPLS M 20 0.891 (0.090) 0.992

61, 101, 258, 273, 321, 346,
365, 473, 527, 543, 570, 617,
652, 851, 876, 951, 994, 998,
1008, 1095

Linear SVM RFE F 28 0.766 (0.140) 0.953

8, 10, 35, 103, 104, 282, 328,
346, 348, 349, 388, 437, 457,
460, 490, 615, 757, 780, 784,
813, 825, 874, 875, 920, 989,
1026, 1044, 1110

Logistic
Regression RFE F 29 0.752 (0.120) 0.976

8, 35, 73, 81, 86, 103, 263, 282,
328, 346, 348, 388, 417, 437,
443, 455, 532, 620, 745, 757,
813, 825, 874, 875, 972, 988,
989, 1055, 1110

oPLS-DA GA F 29 0.949 (0.156) 0.993

8, 27, 103, 154, 270, 378, 387,
408, 416, 455, 477, 531, 538,
550, 620, 647, 648, 652, 669,
712, 717, 719, 774, 825, 854,
869, 1082, 1095, 1110

oPLS-DA iPLS F 24 0.880 (0.110) 0.943

27, 34, 141, 146, 149, 153, 299,
328, 381, 410, 425, 529, 590,
620, 621, 634, 675, 714, 751,
773, 842, 903, 936, 989
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Figure 5. (A) PCA and (B) oPLS-DA score plot of the 20-lipid panel differentiating sera from injured
and uninjured male animals with 2 orthogonal components. (C) PCA and (D) oPLS-DA score plot of
the 19-lipid panel differentiating sera from injured and uninjured female animals with 2 orthogonal
components. Both panels were created with 10 iterations of Venetian blinds cross-validation and
200 iterations of permutation testing. Both procedures supported a lack of evidence for overfitting.

With an average mass error of <1 ppm for the precursor ions, the elemental for-
mulas and head groups were determined for all lipids, with fatty acyl chain lengths
identified whenever possible for all the features in the final marker panels (Table 2a,b).
Supplementary Information Table S2 shows the annotation confidence for each of these
species and the fragment ion assignments used to determine acyl chain lengths. One of
the lipid species (#348) in the final panel for female animals likely corresponded to two
possible phosphatidyl choline species that were isobaric and coeluted, making isolation
of these species for MS/MS experiments impossible. Distinction of these species would
require an additional element of separation such as ion mobility but was beyond the
scope of this study. Significance values for each lipid in the panel were calculated using
Welch’s t-test between baseline measurements and all post-injury timepoints. For brevity,
only statistically significant values after Benjamini–Hochberg correction are reported in
Table 2, with corresponding blood collection timepoints annotated. For those lipids without
any univariately significant timepoints, the lowest p-value of the three blood collections
timepoints is reported. Features with two or more significant values are denoted with
an asterisk.
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Table 2. a: Annotation of the final 20-lipid panel in male rats. b: Annotation of final 19-lipid panel in female rats. Retention time, observed exact mass with
instrumental error, observed electrospray adduct, predicted elemental formula, significant p-values for timepoints between repeat TBI and baseline, and fold change
(FC) are reported. Positive FC values correspond to increased abundance in serum from injured animals vs. baseline samples, and negative FC values correspond to
decreased abundance in injured animals. Fatty acid chain information is provided based on MS/MS information. Detailed MS/MS fragmentation information is
provided in the supporting information (Table S2a,b).

Feature
Number

Retention Time
(min)

m/z Mass
Error (ppm) Detected Ion Elemental

Formula Annotation p-Value (TBI vs. Baseline) Fold Change Time

a

63 8.893 716.6343
−0.253 [M+NH4]+ C49H78O2 CE(22:5) 0.0655 1.340 4 h

89 7.303 652.6605
−0.329 [M+H]+ C42H85NO3 Cer(d18:0/24:0) 0.0292 −1.553 4 h

258 2.186 601.3349
−0.518 [M+H]+ C27H53O12P LysoPI(18:0) 0.0147 1.190 24 h

365 5.442 800.6168
−0.096 [M+H]+ C45H86NO8P PC(18:2_19:0) 0.245 −1.042 30 min

453 4.982 880.6071
0.446 [M+HCO2]− C48H86NO8P PC(18:0_22:5) 0.0483 1.207 4 h *

459 4.742 878.5919
0.958 [M+HCO2]− C48H84NO8P PC(18:0_22:6) 0.0198 1.192 4 h

476 4.337 846.6008
−0.494 [M+H]+ C49H84NO8P PC(41:7) 0.0323 1.425 4 h

497 4.127 858.6014
0.153 [M+H]+ C50H84NO8P PC(42:8) 0.249 1.070 4 h

527 4.773 718.5752
0.230 [M+H]+ C40H80NO7P PC(O-16:1/16:0) 0.146 −1.603 4 h

543 4.326 816.5910
0.387 [M+H]+ C48H82NO7P PC(O-18:2_22:6) 0.0375 1.493 30 min *
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Table 2. Cont.

Feature
Number

Retention Time
(min)

m/z Mass
Error (ppm) Detected Ion Elemental

Formula Annotation p-Value (TBI vs. Baseline) Fold Change Time

a

551 5.557 772.6218
−0.197 [M+H]+ C44H86NO7P PC(O-18:1/18:1) 0.277 1.035 30 min

570 5.768 798.6379
0.386 [M+H]+ C46H88NO7P PC(O-38:3) 0.221 1.054 24 h

601 4.317 818.6062
−0.162 [M+H]+ C48H84NO7P PC(O-18:1/22:6) 0.00800 1.607 4 h **

651 5.588 704.5591
−0.433 [M+H]+ C39H78NO7P PE(O-34:1) 0.0156 −1.605 4 h *

652 6.297 704.5590
−0.504 [M+H]+ C39H78NO7P PE(O-18:1/16:0) 0.0144 −1.656 4 h *

788 3.676 689.5595
−0.217 [M+H]+ C38H77N2O6P SM(d33:1) 0.0953 1.153 24 h

792 3.978 703.5759
0.797 [M+H]+ C39H79N2O6P SM(d34:1) 0.0335 1.296 24 h

808 3.613 727.5758
0.606 [M+H]+ C41H79N2O6P SM(d36:3) 0.000266 1.632 4 h *

1095 8.758 984.8954
−0.423 [M+NH4]+ C63H114O6 TG(60:4) 0.221 −1.648 24 h

1114 9.754 1014.9420
−0.782 [M+NH4]+ C65H120O6 TG(18:1_20:1_24:1) 0.0275 −1.446 4 h

b

8 0.811 246.1701
0.284 [M+H]+ C12H23NO4 Car(5:0) 0.0137 −1.374 30 min

27 1.325 414.3215
0.313 [M+H]+ C23H43NO5 Car(16:1-OH) 0.0932 1.660 4 h
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Table 2. Cont.

Feature
Number

Retention Time
(min)

m/z Mass
Error (ppm) Detected Ion Elemental

Formula Annotation p-Value (TBI vs. Baseline) Fold Change Time

b

35 1.701 442.3528
0.316 [M+H]+ C25H47NO5 Car(18:1-OH) 0.00239 2.019 4 h

103 7.349 708.6512
0.868 [M+HCO2]− C43H85NO3 Cer(d18:1/25:0) 0.182 1.260 4 h

282 3.997 718.5386
0.654 [M+H]+ C39H76NO8P PE(16:0_18:1) 0.00113 −2.354 4 h **

328 4.598 772.5858
0.286 [M+H]+ C43H82NO8P PC(17:0_18:2) 0.156 −1.407 24 h

346 4.434 784.5856
−0.036 [M+H]+ C44H82NO8P PC(18:1_18:2) 0.0471 −1.381 24 h

348 4.471 828.5764
−1.111 [M+HCO2]− C44H82NO8P PC(16:0_20:3) 0.215 1.183 24 h

388 5.752 814.6323
−0.277 [M+H]+ C46H88NO8P PC(18:0_20:2) 0.113 1.077 24 h

437 4.243 864.5763
0.996 [M+HCO2]− C47H82NO8P PC(17:0_22:6) 0.0510 1.112 24 h

455 4.646 880.6078
1.206 [M+HCO2]− C48H86NO8P PC(18:0_22:5) 0.125 1.382 30 min

620 4.510 742.5392
0.712 [M+H]+ C41H76NO8P PE(18:1_18:2) 0.00600 −2.169 24 h **

757 1.899 838.5572
−0.148 [M+Na]+ C44H82NO10P PS(38:2) 0.150 −1.357 24 h

813 5.578 759.6379
−0.112 [M+H]+ C43H87N2O6P SM(d16:0_ 22:1) 0.00597 1.456 4 h *
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Table 2. Cont.

Feature
Number

Retention Time
(min)

m/z Mass
Error (ppm) Detected Ion Elemental

Formula Annotation p-Value (TBI vs. Baseline) Fold Change Time

b

825 5.316 771.6381
−0.113 [M+H]+ C44H87N2O6P SM(d39:2) 0.0143 1.619 24 h

874 1.840 302.3054
−1.448 [M+H]+ C18H39NO2 Sphinganine (C18) 0.131 −1.281 4 h

875 1.699 300.2898
0.299 [M+H]+ C18H37NO2 Sphingosine (C18) 0.205 −1.508 24 h

989 8.176 898.7861
−0.280 [M+NH4]+ C57H100O6 TG(18:1_18:2_18:2) 0.0128 −2.530 4 h

1110 8.837 998.9114
−0.076 [M+NH4]+ C64H116O6 TG(61:4) 0.000911 −2.341 4 h *

* Feature held statistical significance at one other timepoint under repeat TBI vs. baseline comparison; ** Feature held statistical significance at all timepoints under repeat TBI vs.
baseline comparison.
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3. Discussion

Lipid biomarkers of acute mTBI were identified using an untargeted approach for the
optimal selection of features able to differentiate injured and uninjured serum samples
across time and injury severity. The early injury timepoints selected in this study correspond
to the acute, clinically relevant time periods following single or repeat impacts and may be
indicative of early secondary injury cascades. Using high resolution mass spectrometric
methods and machine learning approaches coupled with feature selection algorithms, we
identified two panels of lipids that consistently separated injured samples from uninjured
controls across all measured timepoints of injury progression. Identified features belonged
to a variety of classes and showed the myriad of changes that occur in the lipidome
following mTBI. Identified features contained within the final feature models were imported
into LIPEA using nomenclatures containing the maximum amount of information on acyl
chain lengths as possible to link lipids to known biological pathways (Figure 6) [34].
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Figure 6. LIPEA pathway analysis for lipids contained within the final feature selection panels. The
percentage of all KEGG pathway lipids discovered, shown along the x-axis, represents the number of
final panel lipids belonging to a specific pathway out of the total number of known pathway lipids.
Each of the identified pathways held statistical significance after Benjamini–Hochberg correction
(q < 0.10). Colored pathway bubbles denote the total number of lipids in both final panels that
can be linked to each pathway. ECS—endocannabinoid signaling, GPL—glycerophospholipid,
SL—sphingolipid.

The presence of nine sphingolipid species across both final injury models led to the
identification of sphingolipid metabolism and signaling pathways as being significantly
altered in our mTBI model. All SM lipids contained in the final panels showed increases
in median FC following single and repeat TBI in excess of sham controls beginning at
4 h post-injury with the largest increases consistently exhibited at 24 h in repeat injury
models. SM(d16:0/d18:1), a very similar feature to the identified SM(d34:1) contained in
the final male panel, and Cer(d18:1) species have been shown to significantly increase at
the site of CCI injury as early as 3 and 1 days post-injury, respectively [24]. The changes
observed for these lipids in the brain may have been the result of blood located at the
site of injury. Follow up work by the same investigators demonstrated the potential of
ceramides as biomarkers in regions of the brain separate from the injury site [35]. The
primary ceramide synthesis pathways involve acetylation and subsequent reduction in
sphinganine or hydrolysis of SMs via acid sphingomyelinases (ASM). Once synthesized,
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ceramide can be further hydrolyzed by acid ceramidases (AC) to form sphingosine [36]. The
alterations in the Cer lipid class followed a similar trend to that of SM, but the percent of
statistically significant increased features was lower than for SM. Conversely, the abundance
of sphinganine and sphingosine were lower relative to baseline at all post-injury timepoints
beginning at 4 h for both single and repeat impacts. Changes in relative abundance of the
SM class and sphingosine suggest inhibition of ASM and AC, respectively. The natural
inhibition of ASM and AC serves as a defense mechanism for regulating pathways of cell
death. Notably, inhibitors of ASM and AC have been suggested as clinical therapies for
other brain disorders such as Alzheimer’s disease and major depressive disorder [37,38].
Inhibition of ASM has also been shown to reduce the impairment of neurogenesis and
improve behavioral deficits following repetitive mTBI in mice [39]. The findings in this
study are perhaps even more promising when considering that that the lipid mass of
the human brain is comprised of approximately 15% SM compared to 5% in rats [40],
suggesting that the sphingolipids in the panels may be ideal biomarkers for monitoring the
rates ASM and AC activity in serum following mTBI.

Autophagy is the process of lysosomal degradation of macromolecular substances
that is invariably linked to lipid metabolism through the synthesis and degradation of
lipids such as TG and PL [41,42]. Autophagy has been reported in rodent models of fluid
percussion and weight drop injury and in humans, primarily through the study of Beclin-1
and LC3-II proteins [43–45]. These studies have shown peak expression of Beclin-1 as
early as 6 h and increased expression of both Beclin-1 and LC3-II as early as 1-hour post-
injury. While the activation of autophagy following TBI is relatively undisputed, whether
it is protective or detrimental has yet to be determined [46]. Regulation of autophagy
has been proposed as a therapeutic target for TBI as it can provide protection for the
compromised BBB and suppress apoptosis, inflammation and oxidative stress [47–49].
During autophagy, lipids such as TG, PI and PE are broken down to form free fatty acids
and glycerol. Activation of autophagy may therefore partially explain the decreasing trend
observed in all identified TG and PE species in the final feature panels as well as the
increase in lysoPI(18:0) formed from the breakdown of PI species. Further research on
the temporal appearance of these lipids may reveal new findings useful for monitoring
autophagy progression following TBI, identifying novel lipid biomarkers to complement
protein biomarker candidates.

Most species in the final lipid panels were phospholipid species, leading to LIPEA
identification of the glycerophospholipid metabolism pathway. The role of phospholipids
in TBI response is widely regarded as complex; numerous studies of the TBI lipidome have
revealed lipid fluctuations based on full class and specific lipid molecules [50–52]. In both
our single and repeat injury models, PC, PE, and PS decreased in abundance over the first
24 h post-injury. Several species-specific trends unique to the injury model were observed
for glycerophospholipids, with human studies supporting these trends [53]. Decreases
in phospholipid species via the activation of phospholipases likely contributed to the
increased formation of free fatty acids such as arachidonic acid and stearic acid, which
increased at all post-injury timepoints in our repeat injury model. We previously reported
arachidonic acid as a potential biomarker of moderate TBI and differences in abundance
in our repeat mTBI model appear to follow a similar increasing trend at acute post-injury
timepoints [27]. Interestingly arachidonic acid was selected by the GA feature selection
model (feature #161) for our male models but was not selected for the final panel as it was
only discovered by a single feature selection method. Biomarker candidates proposed in
the Fiandaca et al. study for differentiating injured and uninjured athletes at 6 h post-injury
included stearic acid and PE(38:6) and showed trends similar to those in our single and
repeat injury models at the nearest timepoint of 4 h [26]. LysoPC(20:4) was also identified
in our study, but showed minimal deviation from baseline at 4 h post-injury.

Necroptosis, or programmed necrosis, is a more recently identified form of cellular
death occurring in response to stress or glucose/oxygen deprivation that is distinct from
apoptotic cell death [54]. Untargeted lipidomic analysis of induced cellular necroptosis
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has shown significant accumulation of Cer, suggesting that accumulation increases with
the progression of necroptosis [55,56]. Interestingly, a similar trend was observed in our
study, where the number of ceramides significantly increased from baseline (q < 0.05) grew
over the progression of injury (Figure 3A). Of the 40 unique ceramide species identified,
10 showed significant increases 24 h after repeat injury, whereas 2 and 0 ceramide species
showed significant increase at 4 h and 30 min post-injury, respectively. The same increase
for Cer was not observed in the single impact injury models. While the number of Cer
with higher abundance increased over the course of injury progression, no individual
species showed statistically significant changes from baseline at any post-injury timepoint.
Cer and TG present in the final panels also led to the identification of insulin resistance
as a significantly altered pathway following TBI. Studies of single and repetitive TBI
have identified brain insulin resistance as a potential therapeutic target and indicator for
mortality [57,58]. TG(18:1_18:2_18:2) specifically has been identified as being negatively
correlated with homeostatic maintenance for insulin resistance in a variety of lipoproteins
and deceases in abundance correspond to increases in brain insulin resistance [59].

There are important limitations to the work presented that should be recognized.
First, the markers identified in this study were selected as the optimum panel across all
measured acute post-injury timepoints in both single and repeat injury models. Additional
markers may present as better candidates at individual timepoints across this study or as
markers better suited for either single or repeat impact events. Correlation of these features
to histopathological, behavioral, and brain abundance were not measured in this study.
Further studies will be needed to link our findings in serum to the broader picture of TBI.
Repeated studies using these and other injury models are necessary to verify the accuracy
of these markers in serum across independent pre-clinical studies. While these markers
were extensively tested for overfitting, further testing in pre-clinical and clinical studies is
needed prior to extending these findings to the clinic.

4. Materials and Methods
4.1. Chemicals

Chemicals used to prepare mobile phases and solutions included LC-MS grade wa-
ter and acetonitrile (ACN) (Fisher Scientific International, Inc., Pittsburg, PA, USA), iso-
propyl alcohol (IPA) (Honeywell International, Inc., Charlotte, NC, USA), formic acid
(purity > 99.5%) (CovaChem, LLC., Loves Park, IL, USA), and ammonium formate
(purity > 99.995%) (Sigma-Aldrich, Inc., St. Louis, MO, USA). Uninjured Sprague Daw-
ley rat serum (ab7488, Abcam, PLC., Cambridge, UK) was used as a reference during
LC-MS data collection and to supplement MS/MS data collection. SPLASH II Lipidomix
(Sigma-Aldrich, Inc., St. Louis, MO, USA) was used as an analytical internal standard for
MS experiments.

4.2. Injury Protocol and Blood Collection

All procedures involving Sprague Dawley rat models were performed in accordance
with guidelines set forth in the Guide for the Care and Use of Laboratory Animals (U.S.
Department of Health and Human Services, Washington, DC, USA, Pub no. 85-23, 1985)
and were approved by the Georgia Institute of Technology Institutional Animal Care and
Use Committee (protocol #A100188). Female (n = 18) and male (n = 14) Sprague Dawley
rats (8 weeks old; Charles River, Wilmington, MA, USA) weighing between 250–300 g were
kept on 12 h reverse light-dark cycles, with food and water available ad libitum. Animals
were randomly assigned to sham procedure (n = 11), single impact (n = 10), and three
impacts (n = 11) groups (Figure 1A). Sham procedure animals received no injuries and were
used to ensure that any lipids altered by the administration of anesthesia and handling did
not play a role in classification based on injury state.

A CCI pneumatic injury device (Pittsburgh Precision Instruments, Pittsburgh, PA,
USA) was modified for use in closed head single and repetitive impacts by adhering
a 1 cm silicone stopper (Renovators Supply Manufacturing, Erving, MA, USA) to the
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standard CCI piston. Prior to injuries, all rat groups were anesthetized with isoflurane
(induction: 5% isoflurane; maintenance: 2–3% isoflurane), and the head was placed on a
1-inch thick ethylene-vinyl acetate foam (#86095K46, McMaster-Carr, Elmhurst, IL, USA).
Thirty seconds after removal of the isoflurane supply injury was induced to the dorsal
surface of the head, centered above the midpoint between bregma and lambda skull suture
landmarks at a velocity of 5 m/s. The single impact injury group received one impact with
a 5 mm head displacement. The repeat injury group received a total of 3 impacts at 2 min
intervals, with head displacements of 5 mm, 2 mm, and 2 mm, respectively. Sham procedure
animals were subjected to all procedures as injured animals excluding impact(s) (Figure 1B).
Following the final impact, righting time was recorded, and animals were monitored until
mobile and exhibiting normal behaviors. Righting time was observed to be significantly
different between sham and repeat impact animals but not significantly different between
sham and single impacts (Table S3, Figure S6). Animals were returned to home cages and
singly housed with soft bedding during recovery. Animals were monitored after injury
and returned to home cages with respective cage mates until sacrifice. At each collection
time (baseline/pre-injury, 30 min, 4 h, 24 h), rats were anesthetized with isoflurane (5%
induction, 2–3% maintenance) and approximately 200 µL of whole blood was collected
from a tail artery punctured by 20-gauge Precision Glide needles and stored on ice. Blood
was collected from the gingival vein (n = 5) when the tail artery was not assessable. Whole
blood samples were allowed to coagulate at room temperature for 45 min. Samples were
then centrifuged at 4 ◦C for 15 min at 2500× g, and serum was separated into 50 µL aliquots
and stored at −80 ◦C. The blood collection protocol was conducted in accordance with
previously published methods [27]. Timepoints for blood collection were determined based
on BBB permeability studies that demonstrate BBB permeability as early as 30 min and
peaking between 4–6 h post-injury [60,61].

4.3. Sample Preparation and Ultrahigh Performance Liquid Chromatography-Mass Spectrometry
(UHPLC-MS) Analysis

A standard spiked IPA solution was prepared with 250 µL of SPLASH II Lipidomix
and 14.750 mL of IPA. Serum samples were thawed on ice for 1 h prior to the addition of
the IPA solution in a 1:3 v/v ratio to separate lipids and small non-polar metabolites from
proteins. Mixtures of serum and IPA solution were vortexed for 10 s and centrifuged at
16,000× g for 7 min. The supernatant was then collected for LC-MS analysis. Sample blanks
were prepared with 50 µL of LC-MS grade water, and pooled QC samples were prepared
from 5 µL aliquots of all study subject serum samples. Serum reference samples from
uninjured Sprague Dawley rat serum were processed in the same manner as study subject
serum samples. All samples were run in a randomized order over 2.5 days of consecutive
instrument time. QC samples were interleaved every 24 runs to evaluate LC-MS system
stability and to account for time-dependent batch effects.

Reverse phase (RP) chromatography was preformed using a Vanquish Horizon UH-
PLC (Thermo Fisher Scientific, Inc., Waltham, MA, USA) instrument. Mobile phase A was
a (40:60 v/v) water/ACN mixture and mobile phase B was a (90:10 v/v) IPA/ACN mixture.
Both mobile phases contained 0.1% formic acid and 10 mM ammonium formate solution
(Table S4). The stationary phase used was a 2.1 × 50 mm Accucore C30 column with 2.1 µm
particle size. Analysis with an ID-X Orbitrap Tribrid mass spectrometer (Thermo Fisher
Scientific, Inc., Waltham, MA, USA) in both positive and negative ion modes was used fol-
lowing LC separation for all samples. The scan range was 150–2000 m/z (Figure 1C). Data
dependent acquisition (DDA) experiments were performed in positive and negative modes
on QC and reference serum samples. In total four DDA experiments were performed. All
experiments included the use of an exclusion list and two, one in each ionization mode,
employed an inclusion list [62]. Details for LC-MS and DDA-MS/MS methods are given in
Table S4.
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4.4. Data Processing

Raw spectral data from LC-MS experiments were processed using Compound Discov-
erer v3.0.0 software (Thermo Fischer Scientific, Inc., Waltham, MA, USA) and the XCMS
web-based application (xcmsonline.scripps.edu (accessed on 25 October 2020)). Initial steps
involved retention time alignment between samples, peak area integration, peak picking,
and QC area normalization (Figure 1D). Features eluting with the solvent front or having
retention times below 0.75 min were removed to account for potential ion suppression
effects in that retention time region [63]. Further filtering was applied to remove features
not present in at least 75% of all samples at concentrations 5 times above the baseline abun-
dance, and features with coefficients of variation (CVm) greater than 20% in QC samples. A
combined set of 14,119 spectral features, 3646 and 10,473 from the negative and positive
ion modes, respectively, was obtained.

ChemSpider and in-house mzVault database searches were used to obtain a list of
tentative IDs based on accurate mass, isotope pattern, and MS/MS data whenever possible
(Figure 1E). Each lipid feature was identified according to the following confidence levels:
(1) compounds matched to existing in house database standards by accurate mass (<2 ppm),
isotopic abundance, fragmentation spectrum, and retention time; (2) compounds annotated
according to accurate mass, isotopic abundance, and fragmentation consistent with Lipid
Maps and Human Metabolome Database (HMDB) entries; (3) accurate mass match matched
to Lipid Maps and HMDB entries and fragmentation showing a few matching characteristic
fragment ions [64–66]. Feature identification led to a panel of 1126 annotated lipid species
(Table S5). These features were imported as a single matrix into MATLAB (MATLAB
R2019a, The Mathworks, Natick, MA, USA, with PLS Toolbox v8.1.1, Eigenvector Research
Inc., Wenatchee, WA, USA) and Python (Python Software Foundation, Beaverton, OR, USA,
with Scikit-learn v0.24.2) [67] for further uni- and multi-variate analysis.

4.5. Feature Selection and Pathway Mapping

Features were preprocessed using autoscaling prior to binary classification. Serum
samples were separated based on sex to avoid confounding effects. Sham and samples
collected prior to injury (baseline samples) were collectively grouped in a single non-injured
class while all serum samples collected post-injury from single and repeat impact animals
were grouped into a single injured class. This was done to increase the total number of sam-
ples in each class, prevent overfitting of the data, and increase statistical significance of the
models. Predictive models were created using four different combinations of classifiers and
feature selection methods. Models were optimized using 10-fold nested cross-validation.
Analysis was performed separately on both male and female animals. Prediction models
included SVM, logistic regression, and oPLS-DA. Lipids that distinguished uninjured from
injured animals were selected using RFE, GA and iPLS [68–70]. Cost function optimization
for SVM and logistic regression models was preformed using a grid search and nested
cross-validation within Python prior to RFE feature selection. Detailed settings for pre-
diction models and feature selection methods can be found in the supporting information
(Table S1). Lipid features selected by two or more feature selection methods were used
to create final oPLS-DA models for classifying injured and uninjured serum samples. Re-
ported p-values are from Welch’s t-test following Benjamini–Hochberg adjustment [71].
Median fold changes were calculated comparing injured serum to corresponding baseline
measurements. Further evaluation to support a lack of evidence for overfitting included
200 iterations of permutation testing for both final optimized panels (Figure S5) and PCA
comparison of clusters produced by the 1116-feature set and the final models [72].

Known feature ID of the optimized lipid panels were imported into the lipid pathway
enrichment analysis (LIPEA) web tool using an abbreviated lipid format and the Rattus
Norvegicus organism background [34]. Pathways identified as possessing significant
association with the potential biomarker panels discovered were those with Benjamini–
Hochberg corrected q-values < 0.05. Data and code for SVM and LR models generated
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through this work are available through the NIH Metabolomics Workbench under the
study ID ST001950 (http://dx.doi.org/10.21228/M8TB0S (accessed on 24 October 2021)).

5. Conclusions

The results described in this manuscript illustrate the potential of lipids as serum
biomarkers for TBI across a range of variables, including acute post-injury timepoints, sex,
and injury severity. Despite the demonstrated success in predicting the presence of TBI in
animals, additional work is required to test the robustness of the proposed biomarker candi-
dates, as well as to evaluate whether these markers are specific to brain injury or if they are
reflective of systemic inflammation processes or other changes in generic damage-associated
molecular pathways. Lipid species not covered in this study, such as glycosphingolipids
and oxidized lipids, may also be useful lipid biomarker candidates in addition to those
presented here. Additional post-injury subacute and chronic timepoints would help deter-
mine the optimal biomarker sampling time and to gauge injury progression and recovery
trajectories. While it is proposed that small non-polar lipid molecules can permeate the
BBB, this has only been definitively shown in higher severity injury models. While this is
likely true to a similar or lesser extent for lower severity injuries, further research is still
required to validate this claim. Measuring alterations of the proposed serum biomarkers
in brain tissue directly would also be important to further understand the mechanisms
involved in TBI pathophysiology. Additionally, investigation of the spatial distribution
of the lipid features identified in this work and others using mass spectrometry imaging
techniques would enhance the qualitative and quantitative understanding of lipid-related
TBI pathogenesis directly at the site of injury and in surrounding brain regions.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12020150/s1, Figure S1: PCA scores plot for the complete
LC-MS dataset, Figure S2: Negative ion mode XCMS cloud plot, Figure S3: PCA of statistically
significant features, Figure S4: PCA using reduced lipid panels for samples as a function of time,
Figure S5: Permutation testing for PLS-DA models with selected features, Figure S6: Acute neurologi-
cal assessment of righting reflex time, Table S1: Parameters used for model generation and feature
selection, Table S2: MS/MS of selected lipids, Table S3: Summary of characteristics of animal cohort
and experimental design, Table S4: LC-MS method parameters, Table S5: Table of identified lipids.
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