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Abstract

Objectives The aim of this study was to assess the potential of machine learning based on B-mode, shear-wave elastography

(SWE), and dynamic contrast-enhanced ultrasound (DCE-US) radiomics for the localization of prostate cancer (PCa) lesions

using transrectal ultrasound.

Methods This study was approved by the institutional review board and comprised 50 men with biopsy-confirmed PCa that were

referred for radical prostatectomy. Prior to surgery, patients received transrectal ultrasound (TRUS), SWE, and DCE-US for three

imaging planes. The images were automatically segmented and registered. First, model-based features related to contrast perfu-

sion and dispersion were extracted from the DCE-US videos. Subsequently, radiomics were retrieved from all modalities.

Machine learning was applied through a random forest classification algorithm, using the co-registered histopathology from

the radical prostatectomy specimens as a reference to draw benign and malignant regions of interest. To avoid overfitting, the

performance of the multiparametric classifier was assessed through leave-one-patient-out cross-validation.

Results The multiparametric classifier reached a region-wise area under the receiver operating characteristics curve (ROC-AUC)

of 0.75 and 0.90 for PCa and Gleason > 3 + 4 significant PCa, respectively, thereby outperforming the best-performing single

parameter (i.e., contrast velocity) yielding ROC-AUCs of 0.69 and 0.76, respectively. Machine learning revealed that combina-

tions between perfusion-, dispersion-, and elasticity-related features were favored.

Conclusions In this paper, technical feasibility of multiparametric machine learning to improve upon single US modalities for the

localization of PCa has been demonstrated. Extended datasets for training and testing may establish the clinical value of

automatic multiparametric US classification in the early diagnosis of PCa.

Key Points

» Combination of B-mode ultrasound, shear-wave elastography, and contrast ultrasound radiomics through machine learning is
technically feasible.

* Multiparametric ultrasound demonstrated a higher prostate cancer localization ability than single ultrasound modalities.

» Computer-aided multiparametric ultrasound could help clinicians in biopsy targeting.
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Abbreviations

CUDI Contrast ultrasound dispersion imaging
DCE-US Dynamic contrast-enhanced ultrasound
MRI Magnetic resonance imaging

PCa Prostate cancer

PI-RADS  Prostate imaging reporting and data system
PSA Prostate-specific antigen

PZ Peripheral zone
ROC-AUC  Area under the receiver operating
characteristics curve

ROI Region of interest

RP Radical prostatectomy
SWE Shear-wave elastography
TZ Transition zone

uUsS Ultrasound
Introduction

With more than an estimated 164,000 new diagnoses in the
USA [1] and almost 450,000 in Europe [2], prostate cancer
(PCa) remains the most frequently occurring non-skin malig-
nancy in Western men in 2018. Unfortunately, after prostate-
specific antigen (PSA) serum level testing and/or digital rectal
examination, the standard diagnostic approach strongly relies
on a 10- to 12-core systematic biopsy [3]. Aside from compli-
cations associated with this procedure [4], high levels of
underdiagnoses and overtreatment have been reported [5].
Given the strong clinical demand for reliable imaging that
enables targeted biopsy, recent years have shown promising
advances in multiparametric magnetic resonance imaging
(mpMRI). Whereas individual modalities of MRI are not con-
sidered sufficiently accurate in PCa diagnosis, mpMRI lever-
ages the combination of these modalities through scoring ac-
cording to the Prostate Imaging Reporting and Data System
(PI-RADS) [6]. The 2019 guidelines of the European
Association of Urology recommend the use of a pre-biopsy
mpMRI in the diagnostic pathway. However, aside from some
inherent limitations of MRI (e.g., its high cost, limited avail-
ability, and impracticality for bedside use), such scoring sys-
tems are known to exhibit a slow learning curve and are at risk
of high operator disagreement [7].

Another potential candidate for PCa imaging is ultrasound
(US), which is cost-effective, widely available, and practical.
Even though US modalities such as shear-wave elastography
(SWE) and dynamic contrast-enhanced ultrasound (DCE-US)
have shown promising results, targeted biopsy with US tech-
niques still is not superior over systematic biopsy [8].
However, to date, a multiparametric US approach has been
scarcely investigated [9]. The rationale for a multiparametric
approach (i.e., combining information from complementary
biomarkers such as tissue texture, elasticity or perfusion to
image a notoriously multifocal and heterogeneous disease like

PCa [10]) applies to both MRI and US. On top of that, the use
of quantitative features known as radiomics is gaining atten-
tion [11]. Radiomics quantifies the spatial representation of
tissue in an image such as heterogeneity or asymmetric en-
hancement by locally extracting textural and statistical fea-
tures from the (parametric) images. In this work, we strived
to combine the information from different modalities as well
as their radiomics for image-based diagnosis of PCa. To ex-
amine the potential of such an approach, we employed ma-
chine learning technology by means of a random forest to
optimally combine the underlying parameters. A random for-
est forms the core of a computer-aided diagnosis algorithm
that combines all information into a single multiparametric
image for the clinician to review [12].

In the classifier, inputs from B-mode US, SWE, and DCE-
US are considered [13]. Although B-mode US by itselfis not a
suitable option for PCa imaging, biopsy guidelines highly
recommend targeting of suspicious hypoechoic lesions [5].
As for SWE, tissue stiffness is regarded as a strong indicator
of malignancy [14]. Recent studies have demonstrated its use-
fulness for the detection of PCa [15-17]. DCE-US, in which
contrast agents are employed to visualize the vascularity, al-
lows the assessment of tissue perfusion and contrast disper-
sion [18]. In fact, it was shown that quantification of the con-
trast agent kinetics by contrast ultrasound dispersion imaging
(CUDI) allows the estimation of parameters reflecting the
characteristics of angiogenic (micro)vasculature [19-21].
Whereas DCE-US images primarily represent vascular tissue
characteristics, SWE images are related to the cell density and
collagen deposition in the tissue [22, 23]. Therefore, being
complementary in nature, it can be hypothesized that their
combination leads to an increased diagnostic potential. In a
recently published study, perfusion- and dispersion-related
DCE-US parameters were already successfully combined in
a machine learning approach [24].

This work validates a proposed random forest-based clas-
sifier in a leave-one-patient-out fashion, both pixel-wise and
region-wise. Furthermore, the correlations among different
features were investigated and their individual and combined
importance for the localization of (clinically significant) PCa
was evaluated.

Materials and methods
Data acquisition

At the Martini Clinic Prostate Cancer Centre (University
Hospital Hamburg Eppendorf, Germany), 50 men with
biopsy-confirmed PCa referred for radical prostatectomy
(RP) underwent a multiparametric US procedure. Only pa-
tients with a PSA level below 20 ng/mL, a prostate volume
of <80 mL, and no indication of extracapsular invasion were
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included in the study; patients with contra-indication for DCE-
US or previous PCa therapy were excluded. Institutional re-
view board approval was acquired and all participants signed
an informed consent. Of them, 48 men underwent RP and
were included in the study. The patient characteristics are
listed in Table 1. Each patient received a B-mode, SWE, and
2-min DCE-US recording of the apex, mid, and base section
of the gland. The examinations were performed manually,
with an Aixplorer® ultrasound scanner (SuperSonic
Imagine) equipped with a SE12-3 endocavity probe. For the
DCE-US recordings, a 2.4-mL bolus of SonoVue® (Bracco)
was intravenously administered. DCE-US was performed in
“Gen” contrast-specific, low-mechanical-index mode; SWE
images were obtained with minimal pre-compression and after
a few-second stabilization period. This work is related to a
clinical trial on multiparametric ultrasound (i.e., under regis-
tration number NCT03091231) and more information on the
clinical workflow can be found in a previously published pro-
tocol paper [25].

Histopathological examination

After resection, the RP specimens were histopathologically
examined. The annotated PCa regions were used to recon-
struct a 3D model of the prostate and its lesions [26]. This
model was subsequently digitally cross-sectioned at the apex,
mid gland, and base to be matched to the imaging planes,
allowing for direct US histopathology comparison [27].
Taking into account registration inaccuracy, a maximum of
one unambiguously malignant and one unambiguously be-
nign region of interest (ROI) were delineated in the B-mode
image to serve as labeled ground truth for training and valida-
tion. The ROIs were drawn such that the number of malignant
and the number of benign pixels, as well as those originating
in the peripheral zone (PZ) and transition zone (TZ), were in
balance.

Table 1 Characteristics of the patient group
Parameter Value
Number of patients, n 48

Age, median (IQR)
TRUS volume, median (IQR)
PSA, median (IQR)

Radical prostatectomy index
Lesion Gleason score, n

65 (58-70) years
40 (34-49) mL
7.7 (5.3-10.4) ng/mL

3+3=6 1(2.1%)
3+4=7 30 (62.5%)
4+3=7 6 (12.5%)
>4+3=7 11 (22.9%)

IOR, interquartile range
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Algorithm structure

An overview of the proposed method is shown in Fig. 1 and
comprises (A) prostate segmentation, (B) data registration, (C)
feature extraction, and (D) multiparametric classification.
Testing and validation of the model is discussed in the last
section of this “Materials and methods™ section.

Prostate segmentation

Firstly, the prostate is located and delineated in each modality.
To this end, we employed an automated deep learning—based
TRUS segmentation algorithm on the side-view fundamental
B-mode images of both the SWE and DCE-US acquisition
[28, 29]. For DCE-US, the prostate position during wash-in
(i.e., at 30 s) was used as a reference. Automatically, the pros-
tate images were also zonally segmented, labeling pixels be-
longing to either the PZ or TZ for further use in the classifi-
cation algorithm. The deep learning—based segmentations
were checked by both an engineer and a urologist with 4 years
of experience in TRUS imaging. Aside from prostate segmen-
tation, a detection algorithm was designed to outline calcifi-
cations in the B-mode images. Calcifications were identified
by high-valued regions in the fundamental-mode image after
convolution with 2D Gaussian kernels having an empirically
chosen standard deviation of ~0.6 mm and ~ 1.8 mm, thus
detecting hyperechoic spots with diameters of approximately
1.2 and 3.6 mm. The purpose of calcification detection was to
prevent false-positive readings due to elevated stiffness of
calcified regions.

Data registration

As the proposed method aims at pixel-specific classification, a
pixel-to-pixel match between the different US modalities is
required. Again, the 30-s fundamental view image of the
DCE-US recording was chosen as a reference. The SWE data
were elastically registered to this image based on the segment-
ed contours. Moreover, motion compensation was applied to
the DCE-US video by rigid registration of every 5th frame to
the reference position; the registration of the intermediate
frames was performed by interpolating the translation-
rotation matrix.

Imaging feature extraction

The proposed classifier includes a two-step feature extraction.
First, model-based blood flow features are retrieved from the
DCE-US imaging. The model-based feature extraction serves
two purposes: on the one hand, physically meaningful param-
eters with known correlation to PCa are estimated and, on the
other hand, the dimensionality of the DCE-US is reduced to
2D, matching the SWE and grayscale image prior to texture
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Fig. 1 Schematic overview of the proposed classification framework, with information from shear-wave elastography and contrast-enhanced ultrasound

recording shown in blue and red, respectively

analysis. Secondly, radiomic features are extracted from the
resulting model-based feature maps as well as the SWE and
grayscale image.

The model-based feature extraction was based on CUDI, a
family of quantification methods that estimate underlying
physical quantities of a DCE-US recording related to perfu-
sion and dispersion [19-21, 30, 31]. A total of 12 DCE-US
features were extracted for every pixel, which are listed in
Table 2. In CUDI, the spreading of contrast through the pros-
tate is regarded as a convective-dispersive process, which can
be quantified by assessing the evolution of contrast over time.
The contrast velocity (v), dispersion (D), and Péclet (Pe) num-
ber were estimated through local system identification [21].
Alternatively, the local degree of dispersion can also be

quantified by the similarity in contrast behavior among pixels.
This was quantified either by spatiotemporal correlation (7)
[30, 31] or spectral coherence (p) [20]. In addition, we fitted
the contrast curves in a single pixel by a modified local density
random walk model, enabling us to estimate the mean transit
time (), the dispersion-related parameter (x), and the area
under the contrast curve («) [19]. Finally, also heuristic pa-
rameters such as the wash-in time (WIT), appearance time
(AT), peak intensity (PI), and peak time (PT) were extracted.

The rationale for the use of radiomic features is that not
only pixel values but also local spiculation, heterogeneity, and
granularity are widely considered as important biomarkers of
cancer. Moreover, asymmetric patterns in perfusion or elastic-
ity regardless of the pixel values are also seen as indicative of

Table 2 Diagnostic performance

of parameters Modality ~ Parameter Pixel-wise Region-wise
> Gleason > Gleason > Gleason > Gleason
3+3=6 3+4=7 3+3=06 3+4=7
DCE-US  Pe, Péclet number (—) 0.63 0.63 0.67 0.69
v, velocity (mm/s) 0.66 0.70 0.69 0.76
D, dispersion (mm?/s) 0.52 0.52 0.56 0.57
7, spatiotemporal 0.66 0.70 0.69 0.76
correlation (—)
p, spectral coherence (—)  0.64 0.65 0.66 0.68
K, disPersion parameter 0.59 0.62 0.62 0.67
s
1t (rne;n transit time (s) 0.61 0.69 0.64 0.71
a, area under TIC (a.u.) 0.56 0.58 0.50 0.53
WIT, wash-in time (s) 0.61 0.69 0.64 0.72
PT, peak time (s) 0.64 0.71 0.63 0.68
AT, arrival time (s) 0.57 0.60 0.57 0.56
PI, peak intensity (a.u.) 0.61 0.65 0.57 0.65
SWE E, Young’s modulus 0.62 0.67 0.62 0.73
B-mode G, gray level 0.54 0.58 0.53 0.58
Classifier ~ Multiparametric score 0.70 0.78 0.75 0.90
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malignancy. To take into account intra-prostate asymmetry, as
well as relatively high parameter values, we introduced the
parameter value relative to the median parameter value per
image as a feature. Likewise, to quantify parameter heteroge-
neity, we extracted the entropy of the parameter distribution in
a circular kernel around the pixel of interest. A multiscale
approach was adopted, using heuristic kernel radii of
~1 mm, ~2 mm, and ~3 mm. In addition, the parameter
variance was calculated in a ~2-mm kernel.

Automated multiparametric combination

Multiparametric combination of the features was achieved
through machine learning based on a random forest algorithm.
A random forest is an ensemble of independently trained de-
cision trees, which vote together on the final classification
score [32]. Having a branch-like structure of decision nodes,
single-classification trees classify a sample by a series of de-
cisions based on the input variables. Node by node, the tree
structure is grown by evaluating for which feature (a subset of)
the labeled training instances can be most effectively separat-
ed in terms of their class. Subsequently, the robustness of a
random forest is established by growing each tree using an-
other random subset of the training samples [33].

In this work, we enforced the first split to be based on the
zonal location (either PZ or TZ), as it is established that tissue
stiffness [34] and the influx of contrast agents [35] differ sub-
stantially between zones. Then, a random forest was grown
consisting of 1000 trees using 1/1000th of the training set with
replacement. To promote generalizability, six random training
patients were completely discarded prior to growing each tree.
The cross-entropy of labels within the nodes was adopted as
the splitting criterion and the tree depth was at most 50 nodes.
Pixels containing calcifications were omitted in the training
phase as they might obscure the underlying tissue type. The
final multiparametric score, ranging from — 1 to 1, was defined
by the ratio between the number of malignant and benign
classifications among the trees in the random forest. After
classification, outliers were removed from the multiparametric
images by assigning the median multiparametric score ina 15-
pixel region (~2.5 mm), corresponding to approximately half
the radius of clinically significant PCa [36].

Validation and statistical analysis

The classifier was validated in a leave-one-patient-out cross-
validation procedure, in which each patient is tested using 1
classifier that is trained on the data of the remaining patients.
The performance was assessed by computing the area under
the receiver operating characteristics curve (ROC-AUC) of
the parameter values or the multiparametric score, both in a
pixel-wise and a region-wise fashion. In the latter approach, a
ROI was characterized by its mean parameter value or
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multiparametric score. Differences between distributions were
statistically assessed with a Wilcoxon rank sum test [37].
Throughout this work, p values of <0.05 and <0.005 are
defined to describe significant and highly significant differ-
ences among groups, respectively.

Results
Correlation among radiomics

Figure 2 depicts the correlations between radiomics in a cor-
relation matrix. Strong positive and negative correlations are
color-coded in red and blue, respectively. Features from the
same analysis typically exhibit high correlation. In addition,
especially ¢ and WIT as well as a and PI seem related. The
low correlation between Young’s modulus (E), gray levels
(G), and DCE-US features is an indication that B-mode,
SWE, and DCE-US are indeed complementary.

Classification performance

Figure 3 illustrates the power of the proposed multiparametric
analysis, showing a number of single-parametric maps along-
side the multiparametric image obtained in a patient with a
left-apical 4 + 5 = 9 tumor. The segmentation, zonal boundary,
detected calcifications, and annotated ROI locations are indi-
cated as well. The single- and multiparametric results across
the entire dataset are presented in Table 2. Multiparametric
radiomic-based classification yields a region-wise ROC-
AUC of 0.75 and 0.90 for PCa and significant PCa versus
benign regions, respectively. In our dataset, binary ROI clas-
sification (i.e., with a positive multiparametric score referring
to malignancy and a negative to benign tissue) would lead to
32 (27%) benign regions erroneously classified as sPCa and 1
(3.3%) sPCa lesion as benign.

In comparison, applying the classifier on only the radiomic
features for the best-performing DCE-US parameter (i.e., con-
trast velocity, v) resulted in a region-wise ROC-AUC of 0.71
and 0.84 for PCa and sPCa, respectively. The classification
performance can thus be partly attributed to the use of
radiomics and partly to multiparametric combination. With
the use of non-contrast features, only region-wise ROC-
AUC:s of 0.58 for PCa and 0.65 for sPCa were achieved.

Feature relevance

The relative relevance of different parameters is assessed by
examining which parameters are selected for the first, second,
etc. decision nodes in the trees of the random forest. Figure 4
presents the most prominent parameters. Based on this data, it
seems that in particular the combination between v, 7, and E is
favored. In the TZ, also p and PT are relevant parameters. In
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Fig. 2 Correlation matrix of the
derived radiomics in terms of the
linear Pearson correlation
coefficient; correlations that are
not significantly (p > 0.05)
reflected by a linear correlation
are indicated by a black square
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terms of radiomics, mostly the parametric value itself and the
large-kernel entropy are selected.

Relation to cancer grade

To assess the degree to which parameters and the
multiparametric score correspond to cancer aggressiveness,
Fig. 5 shows how the mean values per ROI are distributed for

B-mode (G)

Young's Modulus (E)
50

[kPa]

Fig. 3 Image plane example, showing the B-mode (a), Young’s modulus
(SWE) (b), Péclet number (c), spatiotemporal correlation (d), dispersion-
related parameter (e), wash-in time (f), velocity (g), velocity relative to
image median (h), 2-mm entropy of velocity (i), and resulting

different Gleason groups and prostate zones (i.e., PZ and TZ).
Both SWE-derived Young’s modulus and the best-performing
DCE-US parameter (i.e., v) are depicted alongside the final
multiparametric score. Significant and highly significant differ-
ences are indicated with a single asterisk and double asterisks,
respectively. It should be emphasized that healthy TZ tissue is
generally stiffer than PZ tissue [34], as evidenced in Fig. 5,
hampering the analysis of TZ and PZ regions as a single group.

Péclet Number (Pe)

Random Forest

[s]

[bit]

multiparametric map (j). In each map, the prostate and zonal segmenta-
tions are depicted in white, the calcifications are encircled in blue, and
histopathologically confirmed malignant and benign ROIs are indicated
in red and green, respectively

@ Springer



812

Eur Radiol (2020) 30:806-815

o

Fig.4 Overview of the frequency , .

. .. _ Pz
at which radiomics are selected g ol | =
for the highest-order branches 9 [
. 5
among all trees in the forest. z [ P
Radiomics are grouped according < 20f i 3
to the model-based parameters 2 4th
E |||1L_..u._
v 0 I L T} I ik " i I |8} ailladi bl
Pe v D r P K u a WIT PT AT P E G
(b) T T T T T T T T T T TZ
& 5ol i
g B
: B
% 10 B 3™
S 4th
3
o
20
Pe v D r p K u a WIT PT AT P E G

Discussion

In this work, we report on the development of a random forest—
based classifier for multiparametric classification of PCa based
on co-registered B-mode, shear-wave elastography, and
contrast-enhanced ultrasound. Aside from model-based param-
eters, radiomics are introduced in the classifier framework to
extract additional information from the parametric maps. The
ROC-AUC, validated in a leave-one-patient-out cross-
validation fashion, shows a region-wise improvement from
0.76 of the best-performing individual parameter, v, to a
multiparametric 0.90 for significant Gleason >3 +4 PCa. A
similar improvement is achieved using a pixel-wise approach.
The improvement is partly the result of the radiomic extraction
and partly of the multiparametric combination.

The random forest classifier is a powerful tool for classifi-
cation that allows for the integration of a large range of

(radiomic) features and generates an intuitive multiparametric
score. The frequency at which parameters are being selected
for classification (see Fig. 4) substantiates the multiparametric
hypothesis, favoring a combination of a perfusion-related (i.e.,
v, PT), dispersion-related (i.e., 7, p), and elastographic (i.c., E)
parameters. This is in line with earlier work that only in-
cluded DCE-US parameters, reporting that model-based
parameters that are related to different underlying bio-
markers combine most effectively [24]. In addition, the
selected parameters differ substantially between the PZ
and TZ. This might be due to the anatomic or physiolog-
ical differences between zones; however, it could also be
a result of less robust parameter estimation farther away
from the probe (i.e., in the TZ), due to the increasing
impact of attenuation and shadowing. This stresses the
need for adequate zonal segmentation in the proposed
framework, here obtained through deep learning [28, 29].
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Fig. 5 Overview of the parameter values and classifier score for the
velocity (a), Young’s modulus (£) (b), and the multiparametric
classifier score (¢). Individual regions are represented by a bullet. The
violin plots represent the group distribution in the PZ (left, blue) and TZ
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(right, red). Significant and highly significant differences according to a
Wilcoxon rank sum test are indicated with a single asterisk and double
asterisks
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The multiparametric score is shown to scale with tumor
Gleason grade, with significant differences between benign,
insignificant, and significant disease. Several definitions of
clinically significant prostate cancer are used in the literature;
due to the limited amount of 3 + 3 disease in this RP-validated
study and the distinction between Gleason 3 +4 =7 and 4 +
3 =7 being strongly associated with PCa prognosis [38], we
report on both the identification of >3 +3 and >3 +4 PCa.
Our results (Fig. 5) show no significant difference between
3 +4 PCa and the small group of 3 +3 PCa. This might be
partly explained due to a bias in the 3 + 3 group, with tumors
being disproportionately large for clinicians to decide upon
RP as a treatment instead of active surveillance and, thus,
for inclusion in the presented study.

Furthermore, only a few radiomic features were introduced
in this research. Many more have been proposed in the litera-
ture, including morphological, intensity-based, texture-based,
and statistics-based features [39—43]. Alternatively, novel
model-based features could be considered. For example, veloc-
ity vector field entropy [44] and viscoelasticity [23, 45] have
shown promise as markers for PCa in DCE-US and SWE. Even
though the quality of the input images remains dependent on
the operator recording the SWE and CEUS acquisitions [46,
47], the use of automatically generated single multiparametric
images might reduce interobserver variability compared with
cognitive reading of a large ensemble of parametric maps.

Compared with other research, a meta-analysis of SWE
and DCE-US has reported ROC-AUCs of 0.90 [15] to 0.91
[16] and 0.83 [48], respectively. It should be emphasized that
these results are based on systematic biopsy, known for its
systematic and random errors [49], as a reference standard.
Furthermore, these scores were obtained by cognitive reading
of images and videos rather than an automatic pixel value—
based approach like in this study, which might hamper com-
parison. The value of multiparametric images for cognitive
reading, either as stand-alone tool or combined with the source
images, remains to be investigated.

Despite the performance gains obtained using the proposed
method, some malignant ROIs were still missed and some be-
nign ROIs were wrongly classified as malignant by the algo-
rithm. In the future, immunohistochemical techniques [50, 51]
might elucidate more on the nature of the false readings. There
are indications that (co-occurring) prostatitis or BPH might be
responsible for false positives, as these diseases are known to
also promote angiogenesis [52, 53]. Qualitative inspection of
the false negatives revealed that these were indeed invisible to
the naked eye on all US modalities. Future analysis of tumors
that are missed on all US imaging modalities might potentially
direct us towards new parameters or radiomic features contrib-
uting to the multiparametric classification.

Furthermore, this study was conducted in a single center,
where a dataset of 50 patients presenting biopsy-proven PCa
was collected in order to have RP specimens as

histopathological ground truth for PCa localization. As a result,
ROC-AUCs were calculated for the separation of benign and
malignant ROIs. Prospective, multicenter, targeted biopsy-based
studies might eventually confirm the diagnostic value of the
machine learning classification presented in this work in a more
varied patient group [54]. Another limitation is the 2D nature of
this approach, requiring the acquisition of three planes per pa-
tient for every modality. In a clinical setting, the use of more
planes per patient would reduce the risk of missing out-of-plane
tumors at the cost of an increased procedure time. However, as
3D SWE and DCE-US have recently been introduced [55, 56],
expansion to three dimensions can be envisaged.

In conclusion, we demonstrated the feasibility of a
multiparametric classifier to improve upon single US modal-
ities for the localization of PCa. This is in line with recently
published work on multiparametric US for the identification
of malignant and benign breast lesions [57]. We aim to further
extend the dataset, so that the classification approach can be
expanded to more radiomics and features. Once the perfor-
mance is consolidated, we believe that a three-dimensional
approach might bring clinical adoption closer within reach.
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