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Abstract
The detection of  H+ concentration variations in the extracellular milieu is accomplished by a series of specialized and non-
specialized pH-sensing mechanisms. The proton-activated G protein–coupled receptors (GPCRs) GPR4 (Gpr4), TDAG8 
(Gpr65), and OGR1 (Gpr68) form a subfamily of proteins capable of triggering intracellular signaling in response to 
alterations in extracellular pH around physiological values, i.e., in the range between pH 7.5 and 6.5. Expression of these 
receptors is widespread for GPR4 and OGR1 with particularly high levels in endothelial cells and vascular smooth muscle 
cells, respectively, while expression of TDAG8 appears to be more restricted to the immune compartment. These receptors 
have been linked to several well-studied pH-dependent physiological activities including central control of respiration, renal 
adaption to changes in acid–base status, secretion of insulin and peripheral responsiveness to insulin, mechanosensation, 
and cellular chemotaxis. Their role in pathological processes such as the genesis and progression of several inflammatory 
diseases (asthma, inflammatory bowel disease), and tumor cell metabolism and invasiveness, is increasingly receiving more 
attention and makes these receptors novel and interesting targets for therapy. In this review, we cover the role of these recep-
tors in physiological processes and will briefly discuss some implications for disease processes.
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Introduction

Acid–base balance is mainly maintained by the action of 
the kidneys and lungs that respond to changes in acid–base 
conditions by controlling the levels of buffers in the blood 
and by pacing the elimination of acids and bases. Moreover, 
the control of breathing pattern is performed by the central 
nervous system, which in turn is highly acid–base sensi-
tive. Organs like the kidneys and brain require mechanisms 
that constantly detect systemic pH levels to support the con-
trol of acid–base balance. Therefore, dedicated pH-sensing 
mechanisms are present in these organs and play a crucial 
role protecting the organism from acid–base disorders. The 
importance of maintaining acid–base balance is illustrated 

by the multitude of functional alterations observed under 
conditions of acidemia or alkalemia. During acute acidemia, 
increased vasodilatation in brain and other organs along with 
hypotension is observed, cardiac output and contractility is 
reduced, resistance to catecholamines and insulin occurs, 
leucocyte and lymphocyte function is suppressed while 
the secretion of various interleukins is stimulated. Cellu-
lar energy production is decreased despite reduced affinity 
of oxygen to hemoglobin. Cellular apoptosis is stimulated. 
Severe acidemia may lead to deterioration of the mental sta-
tus suggesting impaired neuronal functions. In more chronic 
states of acidemia, bone disease may occur, skeletal muscle 
is wasted, hepatic albumin production is reduced, glucose 
metabolism is impaired, and electrolyte balance disturbed. 
In children, growth retardation may occur, while in patients 
with kidney disease, loss of renal function may be acceler-
ated [57, 102]. Likewise, alkalemia has many often oppos-
ing effects including arterial vasoconstriction, reduced blood 
flow, and hypertension; increased neuromuscular excitability 
(only in part due to reductions in ionized calcium); arrhyth-
mias; changes in electrolytes with secondary effects on the 
brain, muscle, kidneys, and cardiovascular system, and 
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neurological signs including dizziness, nausea, stupor, and 
coma [19, 54, 63].

As discussed below, some of these functional distur-
bances can be directly linked to pH-sensing proteins includ-
ing also the G protein–coupled receptors OGR1, GPR4, 
and TDAG8. Although multiple molecules of biological 
relevance can have their function modified by alterations in 
 H+ concentration, some groups of proteins can detect altera-
tions in extracellular pH in the physiological range and trig-
ger intracellular responses. Therefore, pH influences cell 
activity not only by directly changing structure of proteins, 
protein–protein interactions, biochemical reactions, and bio-
availability of molecules and metabolites, but also by inter-
acting with membrane proteins controlling in a regulated 
manner intracellular activities. The identification of proton 
sensors and proton-modulated mechanisms changed the view 
of how cells locally detect acid–base status. These recep-
tors belong to different types of proteins, in which the most 
well-studied are as follows: (1) ion channels, such as acid-
sensing ion channels (ASIC) [8], the renal outer medullary 
 K+ channel (ROMK) [101], TWIK-related acid-sensitive  K+ 
channel (TASK) [6], and transient receptor potential chan-
nels (TRP) [87]; (2) tyrosine kinases, such as insulin recep-
tor–related receptor (IRRR) [14]; and (3) G protein–coupled 
receptors (GPCRs), the topic of this review. There are also 
additional types of acid–base sensing molecules, such as the 
bicarbonate/CO2-sensing protein receptor protein tyrosine 
phosphatase (RPTPgamma) [4], the soluble adenylyl cyclase 
(sAC) [106], or the pH-sensitive Pyk2 kinase [69].

Of note, the range of pH to be considered physiological 
can vary substantially between different organs and com-
partment. While the pH of most extracellular fluids is in the 
range between pH 7.3 and 7.5, it can be substantially more 
acidic or alkaline in specific compartments such as the syn-
aptic cleft, the epididymal lumen, along the renal tubule, in 
bone, or along the axis of the gastrointestinal tract to name a 
few examples. This alone may suggest that multiple mecha-
nisms must exist that can sense pH in specific ranges.

A protein subfamily belonging to the class A (or rhodop-
sin-like family) of G protein–coupled receptors (GPCRs) 
detects changes in extracellular pH in the range of pH 6.5 to 
7.5. This subfamily of proteins is composed of four mem-
bers: G protein-coupled receptor 4 (GPR4 or Gpr4), T-cell 
death–associated gene 8 (TDAG8 or Gpr65), ovarian can-
cer G protein–coupled receptor 1 (OGR1 or Gpr68), and 
G protein–coupled receptor 132 (G2A or Gpr132). How-
ever, the role of G2A in pH sensing is unclear as it mostly 
lacks sensitivity to protons [100]. G2A when cotransfected 
with OGR1 in HEK293T cells forms a heteromer with high 
sensitivity to extracellular pH alterations [39]. However, a 
biological relevance of this heteromer has not been demon-
strated. Moreover, it appears that GPR132 diverged early in 
the evolution of this subfamily, followed by Gpr65, and then 

Gpr4 and Gpr68 [107]. Since G2A probably lacks sensitiv-
ity to protons and its role in pH-dependent physiological 
responses is not clear yet, this review is focusing only on 
the role of GPR4, TDAG8, and OGR1. It should be also 
noted that multiple other GPCRs may be modulated posi-
tively or negatively by protons and GPCRs other than those 
covered in this review may also function as protons sensors. 
For example, Kopolka et al. demonstrated that the adenosine 
A2a receptor can be activated solely by  H+ [52]. Also, the 
affinity of the calcium-sensing receptor (CaSR) to calcium 
is modulated by extracellular protons [17]. Therefore, some 
GPCRs are activated by  H+ alone (no matter whether  H+ is 
the only (known) ligand or one of several possible ligands), 
while in other GPCR families,  H+ is a (strong) modulator of 
receptor function [43]. For this reason, we use in this review 
the term “proton-activated GPCR” instead of “proton sens-
ing GPCR” to distinguish between these different modes of 
action. The current understanding of these receptors is that 
they require protonation to function while they are modu-
lated or co-activated by other stimuli, at least in the case 
of OGR1. Therefore, they function as dedicated membrane 
receptors for protons.

In this review, we are summarizing current knowledge 
and concepts about the role of the proton-activated GPCRs 
OGR1, GPR4, and TDAG8 focusing on normal physiology 
as this aspect has not received much attention. The pharma-
cology of these receptors and their implication into patho-
physiological states has been recently reviewed elsewhere 
[47, 114].

Proton‑activated receptors

The genes encoding human GPR4, OGR1, and TDAG8 were 
first identified in the 1990s [62, 78, 148], although murine 
Gpr65 had already been identified when the human sequence 
was cloned [13]. However, their function(s) and ligand(s) 
had remained elusive. At the beginning of the 2000s, lipids, 
such as sphingosylphosphorylcholine, lysophosphatidylcho-
line, and psychosine, were proposed as OGR1 and GPR4 
ligands. However, these papers were all retracted because 
of concerns about the validity of data [51, 150, 161]. A few 
years later, the activation of OGR1, GPR4, and TDAG8 by 
extracellular  H+ was demonstrated [75, 134]. Proton sensi-
tivity is achieved by proteins via changes in the charge of 
amino acids by protonation or deprotonation. Only a few 
amino acids are protonated at pH values ranging from 5 to 
7.4, such as histidine, aspartic acid, arginine, lysine, and 
glutamic acid [107]. Research on proton sensing by GPCRs 
has mostly focused on the role of histidine residues [38, 
75, 100, 107]. Several histidine residues are present in the 
extracellular loops of TDAG8, GPR4, and OGR1, but only 
few in G2A, which could explain the low pH sensitivity of 

488 Pflügers Archiv - European Journal of Physiology (2022) 474:487–504



1 3

this receptor [100]. Mutation of single or multiple histidine 
residues in OGR1 reduces or abolishes pH sensitivity dem-
onstrating that these residues are critical for receptor activa-
tion [75, 85]. However, more recently, Rowe et al. proposed 
that proton sensitivity is primarily derived from a triad of 
buried residues composed of an aspartic acid and two glu-
tamic acid and not by extracellular histidine residues, which 
would potentially have other roles, such as in the interac-
tion with other peptides or ions [107]. Indeed, multiple ions 
and conditions can modulate or stimulate proton-activated 
GPCRs. Sodium and divalent cations can allosteric modify 
the activation of GPR4, OGR1, and TDAG8 by  H+ (although 
GPR4 and TDAG8 have low sensitivity to divalent cations) 
[38, 107] (Fig. 1). Whether the modulation of proton-acti-
vated GPCRs by these ions in vitro has in vivo relevance is 
unknown.

OGR1

A seminal paper by Ludwig et al. showed that extracellular 
 H+ stimulates OGR1 which couples to the Gαq/11 α subu-
nit stimulating phospholipase C and elevating intracellular 
 Ca2+ concentration [75]. However, as seen for the other two 
proton-activated GPCRs, OGR1 can signal via multiple Gα 
subunits and downstream signaling pathways. For example, 
OGR1 also couples to Gαs and Gαi [97, 113]. Additional 
examples are shown in Table 1.

OGR1 can also be allosterically activated by multiple 
benzodiazepines, such as lorazepam, diazepam, desmethyl-
diazepam, and clobazam, but with different efficacies [37, 
97]. Using the putative lorazepam site in OGR1 as a start-
ing point, Huang et al. performed a sequence of computa-
tional screens and in vitro tests and designed the compound 
ZINC67740571 and named it ogerin [37]. This compound 
shows a stronger allosteric effect than lorazepam and causes 
an elevation of pH-dependent cAMP release while it reduces 
pH-dependent calcium release in HEK293T cells transfected 

with Gpr68. In vivo, ogerin was shown to affect fear condi-
tioning in mice.

Regulation of GPCR activity often involves negative 
feedback mechanisms that reduce the receptor responsive-
ness upon activation. This process, also known as desen-
sitization, occurs through uncoupling between GPCR and 
G protein or decreased availability of the receptor, which 
is regulated by internalization, degradation, or reduction of 
its expression levels. Information regarding proton-activated 
GPCR desensitization is still scarce. Ludwig et al. did not 
find evidence for the desensitization of OGR1 in the CCL39 
hamster fibroblasts cell line [75]. However, activation of 
OGR1 by low pH and lorazepam led to desensitization of 
OGR1 signaling in HEK293T, HEK293, and human airway 
smooth muscle cells (HASM) [39, 91]. Lorazepam and/
or pH 6.8 caused internalization of a HA-tagged OGR1 in 
HEK293 within 5 min. In HASM cells, Nayak et al. assessed 
desensitization via analysis of the intracellular signaling 
downstream of endogenous OGR1 [91]. Authors observed 
that intracellular calcium elevation in response to lorazepam 
and low pH was reduced upon restimulation, which did not 
happen when a non-OGR1 stimulating drug, methacho-
line, was used. These results suggest that OGR1 coupled 
to Gαq may be functionally desensitized in HASM cells. 
Phosphorylation of p42/44, an intracellular signaling step 
downstream of Gαq, was inhibited by lorazepam and low 
pH within 30 min, but by lorazepam alone only after 24 h 
incubation. On the other hand, restimulation with sulazepam 
and low pH reduced phosphorylation of VASP, a molecule 
downstream of OGR1/Gαs. Thus, the activity of OGR1 may 
be controlled by desensitization by protons and allosteric 
agonists. This process has different kinetics depending on 
the agonist and the coupled Gα protein.

In contrast to these findings, Tan and colleagues reported 
that medium with pH 6.6 does not cause internalization of 
OGR1 in leucocytes, while pH 7.7 causes partial internali-
zation [119]. Reacidification of the medium caused partial 
reinsertion of OGR1 in the plasma membrane. Authors 

Fig. 1  Summary of activators 
and modulators of proton-
activated GPCRs and the Gα 
subunits coupled to these 
receptors. Extracellular histidine 
residues (eHis) and a buried 
triad of amino acids have been 
proposed as the mechanisms 
underlying proton sensitivity in 
these receptors. Asp, aspartic 
acid; Glu, glutamic acid
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Table 1  Summary of signaling pathways linked to the activity of OGR1, GPR4, or TDAG8 in various cells and cell systems

Receptor Cell type Stimuli Gα subunit Downstream signalling Reference

OGR1 (Gpr68) Hamster fibroblasts (CCL39) pH ~ 5.5–8.5 (min) Gαq/11 IP/Ca2+
i [75]

Mouse neuroblastoma cells 
(N1E-115 cells)

pH ~ 6.1–7.6 (min–2 h) Gαq/11 cGMP/IP/Ca2+ [55]

HEK293 and human lung 
fibroblasts

pH 6.4, 7.4, and 8.0; 
sulazepam and lorazepam 
(< 1 h)

Gαs cAMP/PKA/p-VASP [97]

HEK293 and human lung 
fibroblasts

pH 6.8, 7.4, and 8.0; loraz-
epam (< 1 h)

Gαq and Gαi (likely) Ca2+/p-ERK [97]

Breast cancer cells (MCF7) OGR1 overexpression Gα12/13 Rho, Rac1 [68]
Prostate cancer cells PC3 OGR1 transfected vs non-

transfected
Gαi [113]

Pancreatic cancer–associated 
fibroblasts

pH 6.4–7.4 (< 1 h) cAMP [143]

Human airway smooth mus-
cle cells

pH 6.4–8 (< 1 h) Ca2+, cAMP, p-ERK, 
p-VASP

[111]

Mouse hippocampal slices pH 6.0 vs 7.4 (1 h) p-PKA, p-AKT, p-Y [159]
Endothelial progenitor cells pH 6.4 vs 7.4) (> 1 h) p-STAT3, VEGFA [94]
Intestine (Caco2) pH 6.6–7.8 (> 24 h) IRE1α/JNK [77]
HEK293T pH 6.5; shear stress (2 Pa) 

(2 min)
Ca2+; PLC/Ca2+ [147]

Rat endplate chondrocytes pH 6.4 vs 7.4 (min–hrs) Ca2+/calpain, calcineurin [155]
Goat mammary epithelial 

cells
OGR1 silencing p-AKT, p-mTOR [160]

TGDA8 (Gpr65) Chinese master ovary cells 
(CHO) and hepatoma 
(RH7777)

pH ~ 6–8 (< 1 h) Gαs cAMP [134]

HeLa cells pH 6.5 vs 7.5 (< 1 h) cAMP [64]
Human keratinocytes CO2 15% vs 5% + UVB 

(24 h)
cAMP, I-κBα, p65 [112]

Mouse microglia pH 6.8 vs 7.6 + LPS (< 1 h) cAMP, p-ERK, p-JNK [48]
CD14+ monocytes from IBD 

patients carrying Gpr65 
mutation

pH 6.5 vs 7.6 cAMP

Monocyte (U937) pH ~ 6.4 vs 7.4 (hrs) Gα13 Rho/c-myc [50]
Post-ischemic rat primary 

cortical neurons
TDAG8 pharmacological 

agonism (6 h + ischemia)
p-AKT, p-CREB [76]

Mouse lymphoma cell 
(WEHI7.2)

pH 6.5 vs 7.5 (< 1 h) p-ERK, p-CREB [108]

GPR4 (Gpr4) HEK293 pH ~ 5.5–8.5 Gαs cAMP [75]
Hepatoma (RH7777) pH ~ 6.5–8 (< 1 h) Gαs AC/cAMP [122]
HEK293 cells pH ~ 6.2–7.8 (< 1 h) Gαs cAMP [73]
Human umbilical vein 

endothelial cells
pH 6.4, 7.4, and 8.4 (< 1 h) Gαs cAMP/EPAC [10]

HEK293 pH ~ 6.2–7.8 (< 1 h) Gαq/11 IP/NFAT [122]
HEK293 pH 7.15 vs 7.6 (< 1 h) Gα13 Rho/SRE [122]
Human umbilical vein 

endothelial cells
pH 6.4 vs 7.4 (hrs) Gα12/13 Rho/ROCK/MLCK [58]

Colorectal carcinoma 
(HCT116, HT29, SW620, 
SW480)

GPR4 silencing RhoA/LATS/YAP1 (hippo) [154]

Human trophoblast cell line 
(HTR8/SVneo)

GPR4 silencing and overex-
pression

p-MEK, p-ERK [99]
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attributed the differences to the work by Huang et al. (Nayak 
et al. was not published at that time) to the method used to 
detect OGR1 expression.

In contrast with the direct regulation of GPCRs via desen-
sitization, downstream signaling can be inhibited via regu-
lators of G protein signaling (RGS). These proteins most 
typically terminate GPCR-mediated signal transduction by 
accelerating the Gα intrinsic hydrolytic rate from GTP to 
GDP and by reverting the heterotrimeric G protein to its 
inactive state. Most likely proton-activated GPCR signaling 
is regulated by multiple RGS, but only little is known about 
the detailed role of these proteins in the regulation of proton 
sensors. Airway surface liquid pH plays an important role 
in the physiology and pathophysiology of the lungs [156]. 
Both low pH and inflammation can induce hypersecretion of 
mucins, glycoproteins that form the airway mucus [30, 72]. 
The human bronchial epithelial cell line (16HBE) secretes 
a mucin named MUC5AC when exposed to medium with 
low pH [72]. This process is OGR1-dependent and is inhib-
ited by RGS2. Acidity levels also play a pivotal role in the 
activity of osteoblasts and osteoclasts. The potential of 
RGS in the control of pH sensing is further illustrated by 
in vitro experiments using human umbilical vein endothelial 
cells (HUVECs) transfected with Rho guanine nucleotide 
exchange factor 1 (p115-RhoGEF, Arhgef1). This protein 
functions as an RGS by inhibiting Gα12/13 signaling, and 
it inhibits GPR4-mediated paracellular gap formation in 
HUVECs [58].

Although protons are recognized as the main activators 
of OGR1, GPR4, and TDAG8, membrane stretch may be 
essential for OGR1 activity [138]. Experiments performed 
with cell lines from multiple organs demonstrated that the 
pH-dependent activation of OGR1-Gαq is also dependent 
on the stiffness of the cell culture substrate and cell shape 
[138]. Moreover, using stretchable membranes, authors iden-
tified that cell stretch also activates OGR1 signaling, which 
is blunted if actin polymerization is inhibited. These results 
are in agreement with in vivo experiments performed by 
another group, in which shear stress was shown to activate 
OGR1 in mouse endothelial cells [147]. In this study, OGR1 
was mainly found in small diameter arterioles of different 
organs like the intestine, brain, pancreas, and liver. Dele-
tion of OGR1 not only eliminated the increase in intracel-
lular calcium in response to flow in primary microvascular 
endothelial cells, but it also attenuated dilation and remode-
ling of third order mesenteric arteries in response to elevated 
blood flow [147]. Interestingly, the increase in intracellular 
calcium induced by shear stress observed in a breast cancer 
cell line was mostly absent at pH values below 6 and above 
8, demonstrating that mechanosensing via OGR1 requires 
pH values in the same range as for its activation by protons 
[147]. Therefore, both works show that OGR1 is a coinci-
dence sensor for pH and mechanostimuli, e.g., both stimuli 

are concomitantly essential for the normal activity of OGR1, 
a seemingly unique feature among GPCRs.

TDAG8

While extensive research on the role of GPR4 and TDAG8 
in physiology and pathophysiology has been done, they are 
understudied when it comes to investigate their basic proper-
ties, such as their regulation at molecular level and down-
stream signaling.

TDAG8 stimulates cAMP formation and protein kinase 
A activation via Gαs [134], but it can also couple to Gα13 
[50]. Initial in vitro data have been supported by experi-
ments in vivo. Mouse type I astroglial cells from wild-type 
mice show a progressive increase in cAMP production in 
response to acidification, which is mostly blunted in astro-
glia from Gpr65-deficient mice [48]. Further downstream 
from these events, activation of TDAG8 has been shown 
to influence multiple intracellular pathways (Table 1). The 
same astroglial cells from Gpr65-deficient mice lack the 
reduction in phosphorylation levels of extracellular signal-
regulated kinase (ERK1/2 or MAPK) and c-Jun N-termi-
nal kinase (JNK) in response to concomitant exposure to 
acidification and lipopolysaccharide (LPS) [48]. Likewise, 
pharmacological stimulation of TDAG8 in rats post-cerebral 
ischemia induced phosphorylation of AKT and CREB in pri-
mary cortical neurons [76]. This agonist was developed with 
the same strategy used for ogerin [37]. Silencing of Gpr65 
in human epidermal keratinocytes isolated from neonatal 
foreskin also blunts the cAMP induction by acidification via 
hypercapnia [112]. As a consequence, this silencing reduces 
phosphorylation of IκBα and p65 and elevates IL6 and TNF 
production [112]. As for OGR1, receptor internalization was 
observed for TDAG8 in HEK293T cells after acute stimula-
tion with low pH [39].

GPR4

GPR4 also stimulates cAMP formation and protein kinase 
A activation via Gαs [75]. However, its signaling shows 
diverse modalities. For example, GPR4 can couple to Gαq/11 
and Gα12/13 [58, 122, 142], or to Gαs, but activating EPAC 
instead of PKA [10]. By large, research on GPR4 signaling 
has been performed in immortalized cell lines but much less 
is known about its signaling in vivo or ex vivo conditions 
and its regulation. Collectively, these studies show an influ-
ence of this receptor on multiple downstream effectors and 
pathways, such as the hippo pathway, MEK/ERK signaling, 
and activation of SRE and NFAT [99, 122, 154]. There are 
no known pharmacological agonists for GPR4, but several 
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antagonists have been developed and successfully applied 
in vivo [25, 82, 109, 129, 137].

In summary, all three GPCRs can signal via different Gα 
subunits and coupling may occur in a cell-specific manner. 
Moreover, the sensitivity to pH may also dependent on the 
Gα subunit associated to the respective GPCR [52] (Fig. 1).

Interactions among proton‑activated 
receptors and with other receptors

Little is known about physical or functional interactions 
between proton-activated receptors and other receptors. 
As mentioned above, OGR1 and G2A can form heterom-
ers if cotransfected [39], OGR1 and GPR4 can also form 
homomers, and OGR1 and TDAG8 may heteromerize [39]. 
Whether any of these dimers occur in vivo and have func-
tional relevance remains to be established given that cellular 
expression patterns between these receptors differ and that 
many GPCRs are arranged by scaffold proteins that cluster 
proteins in distinct cellular domains. It has been also sug-
gested that GPR4 may form heterodimers with LPA and S1P 
receptors [157]. However, these findings were later criti-
cized, given that GPCRs may mostly heteromerize within 
members of the same subfamily [22]. However, recipro-
cal functional regulation between OGR1 and the calcium 
sensing receptor (CaSR) was demonstrated by Wei et al. in 
primary cerebellar granule cells [139] where stimulation of 
OGR1 inhibited CaSR and vice versa. Moreover, conditions 
that stimulate each receptor, i.e., reduction of extracellu-
lar pH for OGR1 and elevation of extracellular calcium for 
CaSR, inhibit the signaling dependent on the other recep-
tor. Interestingly, another study performed by Huang et al. 
with HEK293T cells showed that extracellular calcium had 
a small stimulatory effect on OGR1 [38]. The discrepancy 
might be explained by endogenous CaSR expression in 
HEK293T [33, 133]. When Wei et al. inhibited CaSR with 
specific antagonists, low pH caused an increase in intracel-
lular calcium via OGR1 in cerebellar granule cells [139].

Given that certain cell types express more than one mem-
ber of the subfamily of proton-activated GPCR, one could 
expect the existence of functional coordination between 
them [32, 46]. Limited expression data obtained from Gpr4, 
Gpr65, or Gpr68 knockout models have not shown changes 
in the mRNA expression of the other two members when one 
was deleted. However, there are multiple examples of OGR1 
and TDAG8 performing opposite roles especially in immune 
cells during inflammatory processes (see below section “A 
brief overview on the role of proton-activated GPCR in 
organ inflammation”) , but it is unknown whether this origi-
nated from functional coordination. However, an example 
of functional complementation was observed between pro-
ton sensors of different protein families: GPR4 and TASK2, 

a potassium channel activated by protons, in stimulating 
respiration in the retrotrapezoid nucleus (see next section 
GPR4 and OGR1 in control of breathing). Another similar 
example is observed in ipsilateral joints suffering from rheu-
matoid arthritis, in which three proton sensors contribute to 
inflammation and pain: TDAG8, transient receptor potential 
vanilloid subtype 1 (TRPV1), and acid-sensing ion channel 
3 (ASIC3) [36].

GPR4 and OGR1 in control of breathing

The pattern of breathing is highly sensitive to pH [29, 118]. 
In mammals, central and peripheral chemosensors are 
responsible for the detection of alterations in  O2,  CO2, and 
pH and communicate these changes to central areas respon-
sible for controlling and generating breathing patterns. 
Peripheral  CO2 sensing is accomplished by glomus cells in 
the carotid body. Unpublished data from our group suggest 
that this structure expresses GPR4 but its contribution to 
respiratory regulation remains unknown. The retrotrapezoid 
nucleus (RTN) is a brainstem area containing chemosensi-
tive neurons that are excited by extracellular acidification 
[29]. RTN neurons from WT mice showed an increased 
depolarization and firing rate when exposed to acidic pH, 
whereas RTN neurons from Gpr4 knockout mice exhibit 
low sensitivity to  CO2 and acidic pH stimulation [61]. The 
exact signaling mechanism and targets of GPR4-dependent 
signaling have remained elusive to date. NE 52-QQ57, a 
GPR4 antagonist, reduces the hyperventilatory response 
to hypercapnia [35]. Likewise, mice lacking Gpr4 show a 
reduced ventilator response to increasing concentrations 
of  CO2 in the ambient air while mice deficient for either 
Gpr68 (OGR1) or Gpr65 (TDAG8) have normal respira-
tory responses [61]. Genetic rescue experiments reintro-
ducing Gpr4, specifically in RTN neurons, mostly restore 
the respiratory defect in mice suggesting that GPR4 is both 
required and sufficient to drive  CO2-dependent changes in 
respiration. Interestingly, mice deficient for TASK2, a potas-
sium channel present in a subset of RTN neurons and also 
activated by protons, exhibited a similarly reduced response 
to pH alterations and GPR4/TASK2 double knockout mice 
show an almost completely abrogated response to  CO2 and 
pH variations with respiratory failure and high lethality 
after birth [61]. This work demonstrates that GPR4 is not 
only important for breathing control, but also that within 
a specific organ pH sensors may work in a redundant and 
complementary fashion.

In brain, GPR4 is not only found in RTN neurons but is 
also highly abundant in the endothelial cells of the brain 
vasculature [35, 142]. Both metabolic and respiratory aci-
dosis elevate cerebral blood flow in most but not all brain 
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regions [23, 24]. In mice,  CO2 induces vasoconstriction in 
the brainstem, the site where RTN neurons and the centers 
regulating breathing are located. In contrast, in the same 
animals,  CO2 caused vasodilatation and increased blood 
flow in the amygdala. Both vasoconstriction in the brain-
stem and vasodilatation in amygdala were attenuated in 
mice with global GPR4 deletion [142]. A similar reduced 
vasoreactivity to  CO2 was found in mice with brain-spe-
cific deletion of Gαq/11, the Gα protein likely mediating 
GPR4 signaling in endothelium. Reduced vasoreactivity in 
Gαq/11 KO mice was paralleled by an impaired respiratory 
response which was less pronounced than in mice glob-
ally lacking GPR4 and suggested that endothelium plays 
an important role in the brainstem response to elevated 
arterial  CO2. The authors hypothesized that  CO2-induced 
vasoconstriction serves to accumulate  CO2 in brainstem 
regulating RTN neuron activity. Gαq/11 KO mice showed 
also increased  CO2-induced anxiety behavior suggesting 
that endothelium-dependent regulation of blood flow in 
amygdala contributes to fear reactions [142]. The differ-
ence in  CO2-induced vasoreactivity between vessels of 
the brainstem and amygdala may be related to a reduced 
 CO2-stimulated release of the vasodilators NO, PGF1α, 
and PGE2 from brainstem-derived endothelia.

Thus, GPR4 modulates  CO2/pH-dependent breathing 
through at least two distinct mechanisms by either directly 
regulating RTN neurons or by inducing vasoconstriction in 
brainstem. The latter is possibly enabled by the absence of 
vasodilating effectors. As discussed below, GPR4 may also 
play a role in kidney in modulating the renal response to 
acidosis and by increasing the capacity of the kidneys to 
excrete acids. Functioning both in the respiratory and renal 
responses to an acid load, GPR4 may take a central role 
in the defence mechanisms maintaining systemic acid–base 
balance. This might also limit the use of systemically acting 
GPR4 antagonists.

In addition, pH sensing via OGR1 also influences con-
tractility of smooth muscle cells and has a direct impact 
on airway resistance [111]. The role of OGR1 in airway 
physiology was recently reviewed by Nayak and Penn [90]. 
Briefly, in vitro studies demonstrated that OGR1 can cause 
contraction or relaxation of airway smooth muscle cells 
depending on whether it signals via Gαq or Gαs. Biased 
signaling with different benzodiazepines activates (agonism) 
either both or a single G protein type (Gαs). This observa-
tion expands the range of possibilities for targeted therapies, 
which might also be extrapolated to other organs. However, 
the therapeutic potential of OGR1 controlling airway resist-
ance has still to be demonstrated in vivo.

Proton‑activated GPCR in brain function

Brain acid–base status modulates key parameters to brain 
function like cerebral blood flow, brain metabolism, and 
neuronal activity [45]. All proton-activated GPCRs are 
expressed in the brain and have been recently implicated 
in some of these functions in health and disease [35].

Hypercapnia is also a potent inducer of certain behav-
ioral activities, such as fear, anxiety, and panic [21]. 
Acidification by high  PCO2 alters neuronal activity and 
stimulate proton sensors in multiple areas of the brain 
associated with these behaviors [131]. In vivo and ex vivo 
experiments with mice or murine brain slices exposed to 
hypercapnia in vitro demonstrated that low pH in the sub-
fornical organ is detected by TDAG8 in the microglia, 
which induces the release of the cytokine IL1β [130]. 
This cytokine stimulates neurons of the subfornical organ, 
which finally communicates with effector areas respon-
sible for cardiovascular, freezing, and fear responses. 
Patients with panic disorders show an (modest) elevation 
of Gpr65 (TADG8) expression levels in peripheral blood 
mononuclear cells in comparison with control individu-
als [115]. Moreover, mice lacking TDAG8 seem to show 
reduced anxiety and depression after a forced swim test 
[80]. As aforementioned, activation of OGR1 with the ago-
nist ogerin inhibits fear conditioning [37]. Interestingly, 
another group reported that OGR1 knockout mice have 
disturbed hippocampal synaptic activity, which leads to 
impaired avoidance memory [149].

Brain ischemia, a common condition to multiple dis-
eases and disorders, also imposes alterations to brain 
acid–base balance. Different severities of acidosis and 
alkalosis may occur from acute to subacute phases of 
ischemia [66, 124] and changes in brain extracellular and 
intracellular pH values have been associated to additional 
injury or neuroprotection [123]. It has been proposed that 
mild acidosis is neuroprotective, but in severe ischemia 
when pH can fall to values around 6, acidosis exacerbates 
the damage [53, 123]. Indeed, mild acidosis in mice acti-
vates OGR1 and provides neuroprotective effects after 
transient middle cerebral artery occlusion [135]. Mice 
lacking OGR1 showed enlarged infarct area and performed 
worse in behavioral tests. Conversely, bicarbonate injec-
tion in the injured area and Gpr68 overexpression in the 
brain attenuated the damage [135]. Authors speculated 
that in mild acidosis, PKC activation via OGR1 provides 
protective effects, while in severe acidosis, other protons 
sensors, such as ASICs and the proton-activated chlo-
ride channel (PAC), are active and cause further damage. 
RNA sequencing data from brains collected from Gpr68 
knockout mice subjected to transient middle cerebral 
artery occlusion do not show changes in the expression 

Pflügers Archiv - European Journal of Physiology (2022) 474:487–504 493



 

1 3

of ASICs or PAC [158]. However, Gpr68 deletion caused 
changes in three genes encoding hemoglobin and a few 
genes already associated with neuroprotection. In a simi-
lar manner, activation of TDAG8 has also been proposed 
as neuroprotective in brain ischemia [76]. The TDAG8 
agonist BTB09089 reduced infarct area in ischemic mice 
and also the expression of inflammatory markers 24 h after 
reperfusion.

On the other hand, pharmacological GPR4 inhibition 
prevented cognitive impairment in mice receiving the 
neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine 
(MPTP), a Parkinson’s disease model [31]. GPR4 might 
prevent apoptosis and the reduction in the number of dopa-
minergic neurons at least in the striatum and substantia 
nigra pars compacta induced by MPTP. Therefore, agonists 
and antagonists of proton-activated GPCR may be prom-
ising tools to treat diseases and conditions that cause pH-
mediated injury to the brain or to stimulate neuroprotective 
mechanisms.

GPR4 and OGR1 and renal function

As a normal response to an acid load, the kidneys increase 
urinary acidification and  the synthesis of new bicarbonate 
mainly through the process of ammoniagenesis and by 
excreting higher amounts of ammonium  (NH4

+). Also, sev-
eral urinary buffers known as titratable acidity (mostly phos-
phate, but also citrate, urate, and creatinine) are excreted 
[132]. These processes are coordinated and regulated both 
not only by systemic factors such as angiotensin II, aldos-
terone, or endothelin but also by local mechanisms induced 
by local acid–base sensors [5]. Gpr4 knockout mice show 
a more alkaline urine with lower urinary titratable acid-
ity under baseline conditions and lower  NH4

+ excretion 
when subjected to an acid load for four days paralleled by 
an incomplete adaption of acid–base transport proteins in 
the collecting duct [116, 117]. Chronic acidosis leads to a 
remodeling of the collecting duct with a relative increase in 
the number of acid-secretory type A intercalated cells, which 
in part is mediated by proliferation of these cells triggered by 
GDF15 [41, 141]. GPR4 is expressed in type A intercalated 
cells at very low level and at a higher levels in neighboring 
principal cells. Principal cells secrete GDF15 in response to 
acidosis which then stimulates type A intercalated cell pro-
liferation. GPR4 is not required for acidosis-induced GDF15 
secretion but for its action on type A intercalated cells [12]. 
Whether the link between GPR4 and GDF15 extends beyond 
the kidney remains to be addressed.

OGR1 has also been implicated in the control of urine 
acidification. Renal HEK cells transfected with OGR1 show 
higher sodium dependent and independent proton secretion 
capacity while this response was not seen in cells transfected 

with OGR1 lacking critical histidine residues [85]. However, 
counterintuitively, isolated proximal tubules from Gpr68 
(OGR1) knockout mice show an elevated proton secretion 
rate [85]. Consistently, apical brush border membrane prepa-
rations from Gpr68 knockout mice subjected to 7-day  NH4Cl 
load show increased expression of the proton secreting pro-
tein sodium hydrogen exchanger 3 (NHE3, Slc9a3) [44]. The 
typical elevations in ammonium and calcium excretion by 
chronic metabolic acidosis are also disturbed in Gpr68 KO 
mice [44]. Gpr68 KO mice do not develop the hypercalciuria 
typical for metabolic acidosis which may be caused by the 
higher expression of NHE3 in the proximal tubule driving 
increased paracellular  Ca2+ reabsorption in this segment. 
Also, the expression of the TRPV5  Ca2+ channel, present 
in the late distal convoluted tubule and connecting tubule, 
was enhanced in acid-loaded Gpr68 KO mice compared to 
their littermates. Surprisingly, Gpr68 mRNA expression is 
barely detectable in all these nephron segments while it can 
be detected in interstitial renal cells raising the question how 
Gpr68 may influence these tubular transport processes.

Proton‑activated GPCRs in bone

Extracellular pH is a strong modulator of bone structure 
and physiology. Chronic metabolic acidosis impairs bone 
mineralization, which was initially considered to be mostly 
a consequence of physicochemical dissolution of the min-
eral constituents of bones [3, 26]. However, pH is a key 
regulator of osteoblastic and osteoclastic activities and the 
physicochemical effect is considered only a minor compo-
nent [3]. Therefore, it is conceivable that bone cells require 
pH-sensing mechanisms for the response to local or systemic 
acid–base changes. Indeed, proton sensors like ASIC1 and 
TRPV1 play important roles in pH-mediated bone func-
tions [70, 103]. All three receptors are expressed in bone 
cells. GPR4 has been found in osteoblasts [93], OGR1 has 
been detected in osteoclasts [152] and osteoblasts [75], and 
TDAG8 has been shown in osteoblasts [93] and in osteo-
clasts [34].

Little is known about the role of GPR4 in bone; a role 
in osteoblast synthesis of the receptor activator of nuclear 
factor-kappa B ligand (RANKL) has been shown in vitro, 
while the in vivo relevance is unclear [93]. In contrast, the 
role of OGR1 in bone has been studied by several groups, 
however, with conflicting results. In vitro, suppression of 
OGR1 with siRNA inhibits osteoclastogenesis [98, 152]. At 
least four different studies reported apparently contradict-
ing phenotypes in the bones of OGR1 knockout mice [44, 
59, 67]. Krieger and colleagues identified increased osteo-
clast activity along with higher bone turnover and mineral 
density in 8-week male mice with global OGR1 deletion 
[60]. However, studies from the same group showed that 
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osteoclast-specific OGR1 deletion in 10–12 weeks female 
mice causes the opposite effect, a lower osteoclastic activ-
ity [59]. In this work, authors did not observe differences in 
bone microstructure in male mice. Li et al. also investigated 
bones of 8-week-old mice with global deletion of OGR1. For 
this, they examined two pairs of homozygous floxed control 
and OGR1 knockout animals, one female and one male per 
pair. They did not find any major abnormality in bones [67]. 
Still, they reported reduced osteoclastogenesis when using 
peritoneal macrophages induced with RANKL. We have also 
investigated the bones of 16-week-old OGR1-deficient mice 
and we did not find microstructural abnormalities at baseline 
and after 4 and 8 weeks of acid loading with  NH4Cl in both 
male and female mice [44] using the same model as Krieger 
et al. in [60]). Around postnatal week 16, skeletal growth in 
mice is completed, which suggests that OGR1 might have 
a more prominent role in earlier periods. However, we also 
examined osteoclastic activity in vitro from non-adherent 
bone marrow cells stimulated with macrophage colony-
stimulating factor and RANKL [44]. Cells were collected 
from 6- to 8-week-old male and female mice, and we did 
not find any relevant functional difference between both 
genotypes. Osteoclastic-specific OGR1 deletion as gener-
ated by Krieger et al. is an important step to dissect the role 
of OGR1 in bone independent of other non-osseous func-
tions. In humans, rare homozygous mutations in OGR1 have 
been found in three families with amelogenesis imperfecta, a 
rare disease impairing mineralization of tooth enamel [96]. 
OGR1 was detected in enamel and mutations detected are 
a frameshift, an in-frame deletion, and a missense mutation 
which impairs pH-dependent activation of OGR1 [110] sug-
gesting that OGR1 has an important role in tooth develop-
ment and mineralization.

Also, TDAG8 (Gpr65) is expressed in bone, mostly in 
osteoclasts. In ovariectomized mice, bone resorption was 
enhanced in the absence of TDAG8 along with a higher 
number of osteoclasts and increased osteoclast activity [34]. 
These data suggest that TDGA8 may exert a suppressive 
function in osteoclasts and that its absence causes excessive 
bone resorption.

OGR1 and GPR4 and insulin secretion 
and sensitivity

Acid–base balance also modulates endocrine functions. 
In humans, metabolic acidosis consistently causes insulin 
resistance while alkalosis has opposite effects by mecha-
nisms not well understood yet [79, 145]. In vivo experiments 
demonstrated an increase in glucose stimulated-insulin 
release by acidosis and a decrease by alkalosis [88, 126]. 
However, experiments in vitro with isolated pancreatic 
islets produced diverse results, with either a stimulation by 

medium alkalinization [71] or inhibition/no effect by both 
low or high pH [42, 83]. OGR1-deficient mice show baseline 
reduced insulin and glucagon levels, while keeping normal 
blood glucose levels [88]. Additionally, these mice do not 
exhibit an elevated glucose-stimulated insulin secretion in 
response to acidification, and OGR1-deficient isolated pan-
creatic islets subjected to low pH conditions do not secrete 
insulin. Caution should be taken when analyzing these data, 
as most of the previous studies with isolated pancreatic islets 
have shown an inhibition or lack of effect by acidosis in 
glucose stimulated-insulin release instead of stimulation [42, 
71, 83].

In contrast to the phenotype observed in OGR1 KO mice, 
mice lacking GPR4 have lower fasting glucose levels with 
inappropriately normal to high insulin levels suggesting 
increased insulin sensitivity [28]. Indeed, GPR4 is highly 
expressed in white adipose tissue and mice lacking GPR4 
showed faster return of glucose levels during the intraperi-
toneal glucose tolerance test and lower glucose levels when 
injected with insulin. In the absence of GPR4, mice had also 
higher circulating leptin levels while expression of PPARα 
was decreased in the liver, skeletal muscle, and white adi-
pose tissue. Interestingly, in mice fed a high fat diet, the dif-
ferences in glucose metabolism mostly disappeared between 
genotypes while in aged mice, the absence of GPR4 was 
still associated with increased insulin sensitivity The exact 
mechanisms on how GPR4 interferes with cellular insulin 
signaling, however, remains to be established.

Gastrointestinal tract

Substantial work has been done investigating the role 
of proton-activated GPCRs in inflammatory diseases of 
the gastrointestinal tract because of their potential role in 
other inflammatory diseases and the identification of single 
nucleotide polymorphisms (SNPs) in and close to GPR65 
that associate with inflammatory bowel disease in several 
cohorts [1, 74]. We briefly cover this topic in the next sec-
tion, but interestingly, not much is known regarding the roles 
of these receptors in normal intestinal functions. TDAG8 is 
a marker of a subset of vagal afferents innervating intestinal 
villi [9, 144]. These neurons are involved in the detection 
of nutrients and regulation of intestinal motility, but proton 
sensitivity was not investigated in this context [144]. Proton 
sensors may also be modulated by the proton pump inhibi-
tor omeprazole, which is a widely used drug in treatment 
of gastroesophageal reflux disease, peptic ulcer disease and 
other diseases affecting the gastrointestinal tract. When ome-
prazole is used to treat Caco-2 cells, an immortalized cell 
line commonly used as a model of intestinal epithelia, the 
expression levels of proton sensors ASIC1a, TRPV4, and 
OGR1 are altered [121]. Inhibition of OGR1 with  Cu2+ or an 
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OGR1 neutralizing antibody reduced magnesium transport 
in these cells [121]. However, the quality of these antibodies 
is unclear and copper inhibits many cellular processes at the 
concentrations used in this study.

A brief overview on the role 
of proton‑activated GPCRs in organ 
inflammation

Even though the role of the proton-activated GPCRs in path-
ological states is not the main topic of this review, we will 
briefly mention some major findings as this may be instruc-
tive to understand their roles particularly in the immune 
system. The co-occurrence of inflammation, hypoxia, and 
local acidification has been known for a long time, but the 
role of pH as a modulator of pro and anti-inflammatory path-
ways has been only more recently recognized [81, 104, 105]. 
In addition, local inflammation and concomitant hypoxia 
are themselves additional factors causing local acidifica-
tion [20]. Activation of proton-activated GPCRs has been 
implicated in the regulation of inflammatory processes that 
span from the infiltration of immune cells to their differen-
tiation, proliferation, and activity [7, 27, 120, 136, 153]. The 
abundant expression of GPR4 in endothelial cells allows 
to mediate at least in part the pH-dependent activation of 
endothelial cells and subsequent immune cell invasion [58, 
92]. GPR4 activation by low pH increases vessel perme-
ability by increasing paracellular formation of gap junctions 
[58]. Moreover, GPR4 has also been implicated in endoplas-
mic reticulum stress and inflammation in endothelial cells 
in vitro [15, 16]. Among immune cells, Gpr4 mRNA has 
been detected in B cells by single cell RNA sequencing, and 
it might be expressed in monocytes and macrophages but its 
function in these cells has not been examined in detail [65, 
84, 95]. OGR1 and TDAG8 are found in multiple immune 
cell types, such as macrophages, monocytes, dendritic cells, 
neutrophils, T and B cells, and natural killer cells [2, 86, 
95, 128, 146, 151]. In addition, TDAG8, which is the most 
abundantly expressed proton-activated GPCR in immune 
cells, is also found in eosinophils and mast cells [56, 146, 
162]. Other cells of importance for inflammatory processes 
also express proton-activated GPCRs, such as epithelial 
cells, fibroblasts, and smooth muscle cells. Therefore, a 
simplified view of the organization of the these receptors 
in immune responses would be that TDAG8 and OGR1 
control pH-dependent activities (e.g., proliferation, cell 
activity) in various immune cells, while GPR4 plays rather 
a role in activation of endothelial cells and facilitation of 
infiltration. Whether OGR1 also contributes to the vascu-
lar response during inflammation has not been addressed 
to date. However, one should also take into consideration 
that these receptors also play important roles in other cell 

types involved in inflammatory processes (and associated 
events) like epithelial cells, fibroblasts, and smooth muscle 
cells [77, 90, 111, 137]. For example, OGR1 has been shown 
to play a role in endoplasmic reticulum stress in an epithelial 
cell line [77], inhibition of GPR4 in fibroblasts reduces pH-
dependent transition to myofibroblasts [137], and TDAG8 
participates in proliferation and migration of smooth muscle 
cells with impact in atherosclerosis [11].

Large part of the current knowledge on the role of these 
receptors in inflammation comes from studies on gastroin-
testinal and lung inflammation, and experimental autoim-
mune encephalomyelitis (EAE) [2, 18, 40, 125, 136, 146]. 
While the experimental strategies were very diverse in these 
studies, there were some common findings across tissues 
and organs. OGR1 deficiency was mostly anti-inflammatory 
and protective while TDAG8-deficiency caused opposite 
effects [2, 18, 40, 120, 125, 146]. We will term this here as 
“OGR1-TDAG8 reciprocity,” but it still unknown whether 
this phenomenon is relevant and whether it occurs in an 
independent or coordinated manner. In inflammatory bowel 
disease models, genetic and pharmacological inhibition of 
GPR4 was also protective and a promising target for thera-
pies aiming at reducing intestinal fibrosis [109, 136, 137]. 
Pharmacological inhibition of OGR1 also produced similar 
protective effects [127]. On the other hand, biased agonism 
via benzodiazepines might provide a different angle for the 
treatment of asthma and other inflammatory diseases [89].

While we do not cover in this review the role of proton-
activated GPCRs in tumor biology, this topic has already 
been reviewed by others [49, 140]. Cancer cells commonly 
have elevated intracellular pH compared to normal cells 
while often the extracellular milieu around the tumor is more 
acidic. Inflammatory processes modulated by pH are often 
very important in tumors and pH-sensing mechanisms might 
become valuable targets for the treatment of cancer.

Open questions

There are multiple open questions that should be addressed 
and we like to discuss some of them here. There are also 
technical and/or biological issues that have been hampering 
this research field and may require special attention.

1. Functional properties: Even though there are a few 
GPCRs that couple to several Gα proteins, proton-acti-
vated GPCRs seem to signal through cell- and maybe 
even context-specific Gα proteins. Attention may be 
needed to determine the specific signaling pathway used 
by specific receptors.

2. The field is still hampered by the lack of reliable and suf-
ficiently specific antibodies allowing for the exact locali-
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zation of these receptors or performing studies on their 
regulation. Proton-activated GPCR reporter mice have 
been used to partly circumvent this issue [137, 147].

3. Cell or organ specific knockout models may be a helpful 
tool to avoid multiple confounding factors observed in 
global knockout models.

4. Use of specific agonists and antagonists for each recep-
tor is needed and is becoming now available. The use 
 Cu2+ or  Zn2+ as inhibitors is problematic as these metals 
interfere not specifically with a single type of proton-
activated GPCR and also react with many other cellular 
proteins.

These tools and precautions will be useful to address open 
biological questions:

• No genetic buffering/redundancy among proton-activated 
GPCR has been observed in data coming from studies 
with knockout mice (e.g., deletion of GPR4 does not 
lead to a compensatory increase in OGR1 expression). 
Is there functional complementarity coming from non-
GPCR proton sensors? TASK2 and GPR4 functional 
complementarity [61] illustrates such type of interaction. 
Double/triple knockout models or concomitant pharma-
cological inhibition may reveal potential functional inter-
actions and compensatory effects.

• Which RGS proteins are involved in the regulation of 
these receptors? How are proton-activated receptors oth-
erwise regulated? Cellular models are needed, but these 

studies may be complicated by the fact discussed above 
that cell type–specific mechanisms may exist.

• Is the mechanosensing activity described for OGR1 
[138, 147] a general OGR1 feature in cell types other 
than those previously tested? Do other proton-sensing 
GPCRs also show mechanosensing activity?

• In some cell types, OGR1 and TDAG8 show functional 
“reciprocity.” Are they regulated in concert? Does this 
relationship have a relevant biological meaning? Again, 
cell and animal models with deletion of two or all recep-
tors may be helpful to address some of these questions

• Which other well-described biological processes modu-
lated by extracellular pH are regulated by these proton-
activated GPCRs? (e.g., renal ammoniagenesis, hepatic 
urea production, muscle proteolysis, brain energy metab-
olism, immune cell chemotaxis)

• What is the molecular identity and role of other pH-sens-
ing mechanisms and how do these mechanisms interact 
with the proton-activated GPCRs?

• Are proton-activated GPCRs relevant drug targets in 
human disease and are drugs targeting them safe for 
humans? Given the ubiquitous expression of these recep-
tors, drugs may need to be administered locally or be 
delivered in a target-specific manner, e.g., only topical 
as inhalation or non-absorbable drug.

Fig. 2  Summary of the 
main physiological roles of 
proton-activated GPCR. RTN, 
retrotrapezoid nucleus; SFO, 
subfornical organ; RANKL, 
receptor activator of nuclear 
factor-kappa B ligand
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Summary

Survival of cells relies on the constant detection of intra- 
and extracellular alterations and on the capacity of adapt-
ing to environmental changes. Although multiple cellular 
phenomena caused by alterations in pH levels have been 
described over the last century, the identification and inves-
tigation of proton sensing mechanisms provided some miss-
ing key elements for the understanding of multiple biologi-
cal questions that are regulated by proton-activated GPCRs 
(Fig. 2). Proton-activated GPCRs are cell membrane recep-
tors enriched in amino acids that can be protonated or depro-
tonated in a pH range compatible with the pH found in most 
extracellular biological fluids (~ 6–7.4) and thereby elicit 
intracellular signaling via a variety of Gα subunits. While 
allosteric ligands (and in the case of OGR1, mechanostimu-
lation) modulate the activity of these receptors, protons are 
considered the main ligand. Therefore, examining proton-
activated GPCRs provides an opportunity to understand how 
pH governs multiple cell and organ activities without neces-
sarily interfering with acid–base status of biological com-
partments. Pharmacological intervention at these receptors 
has been shown in preclinical studies to prevent detrimental 
conditions caused by diseases, but whether these drugs will 
be effective in and safe for humans are still central questions 
to be answered.
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