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Purpose: Post-translational modification (PTM) of lens proteins is believed to play various roles in age-related lens
function and development. Among the different types of PTM, phosphorylation is most noteworthy to play a major role
in the regulation of various biosignaling pathways in relation to metabolic processes and cellular functions. The present
study reported the quantitative analysis of the in vivo phosphoproteomics profiles of human normal and cataractous lenses
with the aim of identifying specific phosphorylation sites which may provide insights into the physiologic significance
of phosphorylation in relation to cataract formation.
Methods: To improve detection sensitivity of low abundant proteins, we first adopted SDS-gel electrophoresis
fractionation of lens extracts to identify and compare the protein compositions between normal and cataractous lenses,
followed by tryptic digestion, enrichment of phosphopeptides by immobilized metal affinity chromatography (IMAC)
and nano-liquid chromatography coupled tandem mass spectrometry (nanoLC-MS/MS) analysis.
Results: By comprehensively screening of the phosphoproteome in normal and cataractous lenses, we identified 32
phosphoproteins and 73 phosphorylated sites. The most abundantly phosphorylated proteins are two subunits of β-
crystallin, i.e., βB1-crystallin (12%) and βB2-crystallin (12%). Moreover, serine was found to be the most abundantly
phosphorylated residue (72%) in comparison with threonine (24%) and tyrosine (4%) in the lens phosphoproteome. The
quantitative analysis revealed significant and distinct changes of 19 phosphoproteins corresponding to 28 phosphorylated
sites between these two types of human lenses, including 20 newly discovered novel phosphorylation sites on lens proteins.
Conclusions: The shotgun phosphoproteomics approach to characterize protein phosphorylation may be adapted and
extended to the comprehensive analysis of other types of post-translational modification of lens proteins in vivo. The
identification of these novel phosphorylation sites in lens proteins that showed differential expression in the cataractous
lens may bear some unknown physiologic significance and provide insights into phosphorylation-related human eye
diseases, which warrant further investigation in the future.

Human eye lenses are composed of elongated fiber cells,
in which about 90% of total soluble proteins belong to three
major classes of proteins, i.e., α-, β- and γ-crystallins [1,2].
Essentially these crystallins can exist in the eye lens with little
turnover throughout the entire human lifespan albeit with
various degrees of post-translational modification (PTM).
Various types of PTM have been identified in animal eye
lenses including especially human lenses, e.g.: 1.
Deamidation [3,4], 2. Non-enzymatic glycosylation or
glycation [5,6], 3. Oxidation of some amino acid residues of

Correspondence to: Shyh-Horng Chiou, Center for Research
Resources and Development, Kaohsiung Medical University,
Kaohsiung 807 or Institute of Biological Chemistry, Academia
Sinica, Taipei 115, Taiwan; Phone: (886)-7-3133874; FAX:
(886)-7-3133434; email: shchiou@kmu.edu.tw

lens proteins such as tryptophan and methionine [7,8], 4.
Sulfhydryl-disulfide oxidation [9,10], 5. Acetylation of NH2-
terminal and lysine residues [11,12], 6. Truncation of
crystallins [13,14], and 7. Phosphorylation [15-23]. Among
these, phosphorylation is most noteworthy to play a major role
in the regulation of various biosignaling pathways in relation
to metabolic processes and cellular functions [24-26], which
may include cancer development, aging, and cataract
formation. Therefore, identification of protein
phosphorylation and its exact phosphorylated residues in
proteins or enzymes of interest are always considered as a
preeminent and nontrivial task in the conventional structural
and functional study of various cellular proteins. Mainly
attributable to the recent advent and state-of-the-art
instrumentation of proteomics, the investigation of protein
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phosphorylation has gradually become more amendable to
routine analysis.

The recent explosion in available genomic sequence
information is providing a useful sequence infrastructure for
proteomics database. A major aspect of various proteomics
strategies is the determination of protein identity (Protein ID)
using analytical ‘‘fingerprints’’ or peptide mass fingerprinting
(PMF) generated by digestion of proteins with specific
enzymes such as trypsin, from which tandem mass (MS/MS)
spectra of peptide fragments can then be used for comparison
and confirmation of protein ID in available sequence
databanks. The strategy based on the direct analysis of
peptides generated from protein digestion by high-resolution
liquid chromatographies coupled with tandem MS/MS
spectrometry has facilitated the so-called “shotgun
proteomics” for the identification of protein mixtures from
any tissues of interest. Various MS/MS spectra can be
algorithmically compared with predicted peptide spectra from
sequence databases to identify the respective proteins. By
combining with the recent development of capillary
multidimensional liquid chromatography (capillary-MDLC),
this shotgun proteomics approach is capable of characterizing
proteins directly from entire cell lysates [27-31]. In shotgun
proteomics, MDLC is a necessity to reduce sample
complexity and increase dynamic range of protein
identification. Recently mass spectrometric methods are
being developed along the line that not only identifies proteins
in a mixture but also compares the relative levels of protein
expression between two different samples, i.e., quantitative
shotgun proteomics.

The serious drawback of conventional gel-based 2-D gel
proteomics lies in low sensitivity and under-representation for
some special classes of proteins such as the extremely basic
or acidic groups of proteins and membrane proteins [32-34].
In our previous study [35], phosphorylated peptides from
trypsin-digested total protein mixtures of porcine lenses were
concentrated and enriched on IMAC followed by
identification of phosphopeptides on μLC-MS/MS. Gel-free
IMAC phosphopeptide enrichment coupled with μLC-MS/
MS analysis was found to be capable of identifying
phosphorylated sites of various proteins from the whole lens
extract. In this study, we have further applied quantitative
shotgun proteomics to study and compare protein
phosphorylation between normal and cataractous lens extracts
to provide some basis to probe the role of phosphorylation in
relation to cataract formation in vivo.

METHODS
Materials and biologic tissues: Normal (30-year-old) and
cataractous (68-year-old, Grade III of nuclear sclerosis)
human lenses were obtained post mortem from the
Department of Ophthalmology, Chang Gung Memorial
Hospital, Taipei, Taiwan (J.-S. Lee). Eye lenses were kept and
stored at −80 °C freezer before dissection. Triethylammonium

bicarbonate (TEABC) and iron chloride (FeCl3) were
purchased from Sigma Aldrich (St. Louis, MO). The BCATM

protein-assay reagent kit was obtained from Pierce (Rockford,
IL). Ammonium persulfate and N,N,N’,N’-
tetramethylenediamine were purchased from Amersham
Pharmacia (Piscataway, NJ). Reagent-grade acetic acid (AA)
was purchased from J. T. Baker (Phillipsburg, NJ).
Trifluoroacetic acid (TFA), formic acid (FA) and HPLC-
grade acetonitrile were purchased from Sigma Aldrich.
Chemically-modified and sequencing-grade trypsin was
purchased from Promega (Madison, WI).
Preparation of lens extracts: Lenses were homogenized and
suspended in 20 mM Tris-HCl, pH 6.8 buffer containing 0.1%
SDS and centrifuged for 30 min at 20,000× g for the extraction
of total lens proteins as described previously [36-38].
1-D gel SDS–PAGE: After estimation of protein content by
using a BCATM protein-assay reagent kit (Pierce, Rockford,
IL), 10 μg of proteins in lens extracts were loaded on 12.5%
one-dimensional SDS–PAGE for protein separation, followed
by staining with Coomassie brilliant blue R-250 and destained
in 10% methanol/ 7% acetic acid.
In-gel digestion and nanoLC-ESI-MS/MS: Based on the SDS–
PAGE analysis of samples, differentially expressed proteins
were selected for further identification by nanoLC-MS/MS.
The protein bands separated on 1-D SDS–PAGE were cut
from gels, and then destained three times with 25 mM
ammonium bicarbonate buffer (pH 8.0) in 50% acetonitrile
(ACN) for 1 h. The gel pieces were dehydrated in 100% ACN
for 5 min and then dried for 30 min in a vacuum centrifuge.
Enzyme digestion was performed by adding 0.5 μg trypsin in
25 mM ammonium bicarbonate buffer per sample at 37 °C for
16 h. The peptide fragments were extracted twice with 50 μl
50% ACN/ 0.1% TFA. After removal of ACN and TFA by
centrifugation in a vacuum centrifuge, samples were dissolved
in 0.1% formic acid/ 50% ACN and analyzed by nanoLC-ESI-
MS/MS at the core facility laboratory of the Center for
Research Resources and Development, Kaohsiung Kaohsiung
Medical University, Kaohsiung, Taiwan and at Institute of
Chemistry, Academia Sinica, Taipei, Taiwan. Proteins were
identified in the NCBI databases by use of MS/MS ion search
with the search program MASCOT as described previously
[35].
Gel-assisted digestion: The protein samples from lenses were
subjected to gel-assisted digestion. The sample was
incorporated into a gel directly in an Eppendorf vial with
acrylamide/bisacrylamide solution (40%, v/v, 29:1), 10% (w/
v) APS, 100% TEMED in a proportion of 14:5:0.7:0.3. The
gel was cut into small pieces and washed several times with
25 mM TEABC containing 50% (v/v) ACN. The gel samples
were further dehydrated with 100% ACN and completely
dried using a SpeedVac (ASAHI TECHNO GLASS Corp.,
Tokyo, Japan). Proteolytic digestion was then performed with
trypsin (protein: trypsin=50:1, w/w [g/g]) in 25 mM TEABC
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with incubation overnight at 37 °C. The tryptic peptides were
dried completely under vacuum and stored at −30 °C.

IMAC preparation and protocol: This step of sample
preparation and procedure is most critical for a successful
phosphoproteomics study of complex protein mixtures
isolated from biologic tissues. The IMAC column was first
capped one end with a 0.5 μm frit disk enclosed in stainless
steel column-end fitting. The Ni-nitrilotriacetic acid (Ni-
NTA) resin was extracted from spin column (Qiagen, Hilden,
Germany) and packed into a 10-cm microcolumn (500 μm i.d.
PEEK column, Upchurch Scientific/Rheodyne, Oak Harbor,
WA) as described previously [39]. Automatic purification of
phosphopeptides was performed by connecting to an
autosampler in an HP1100 solvent delivery system (Hewlett-
Packard, Palo Alto, CA) with a flow rate 13 µl/min. First, the
Ni2+ ions were removed with 100 µl 50 mM EDTA in 1 M
NaCl. Then the IMAC column was activated with 100 µl 0.2
M FeCl3 and equilibrated with loading buffer for 30 min
before sample loading. The loading buffer/ acetic acid was 6%
(v/v) and the pH was adjusted to 3.0 with 0.1 M NaOH
(pH=12.8). The peptide samples from trypsin digestion were
reconstituted in the loading buffer and loaded into the IMAC
column that had been equilibrated with the same loading
buffer for 20 min. Then the unbound peptides were removed
with 100 μl washing solution consisting of 75% (v/v) loading
buffer and 25% (v/v) ACN, followed by equilibration with
loading buffer for 15 min. Finally, the bound peptides were
eluted with 100 µl 200 mM NH4H2PO4 (pH 4.4). Eluted
peptide samples were dried under vacuum and then
reconstituted in 0.1% (v/v) TFA (40 μl) for further desalting
and concentration using ZipTipsTM (Millipore, Bedford, CA).

NanoLC-MS/MS analysis: Purified phosphopeptide samples
from about 500 µg total protein extract were reconstituted in
4 µl buffer A (0.1% formic acid (FA) in H2O) and analyzed
by LC-Q-TOF MS (Waters Q-TOFTM Premier; Waters Corp,
Milford, MA). For LC-MS/MS analysis by Waters Q-
TOFTM Premier system, samples were injected into a 2
cm×180 μm capillary trap column and separated by 20
cm×75 μm Waters1 ACQUITYTM 1.7 mm BEH C18 column
using a nanoACQUITY Ultra Performance LCTM system
(Waters Corp., Milford, MA). The column was maintained at
35 °C and bound peptides were eluted with a linear gradient
of 0%–80% buffer B (buffer A, 0.1% FA in H2O; buffer B,
0.1% FA in ACN) for 120 min. MS was operated in ESI
positive V mode with a resolving power of 10,000.
NanoLockSpray source was used for accurate mass
measurement and the lock mass channel was sampled every
30 s. The mass spectrometer was calibrated with a synthetic
human [Glu1]-fibrinopeptide B solution (1 pmol/µl, from
Sigma Aldrich) delivered through the NanoLockSpray
source. Data acquisition was operated in the data directed
analysis (DDA). The method included a full MS scan (m/z
400–1600, 0.6 s) and 3 MS/MS scans (m/z 100–1990, 1.2 s

each scan) sequentially on the three most intense ions present
in the full scan mass spectrum.
Database search and data processing/filtering: Raw MS/MS
data were converted into peak lists using Distiller (version 2.0;
Matrix Science, London, UK) with default parameters. All
MS/MS samples were analyzed using Mascot (version 2.2.1;
Matrix Science). Mascot was set up to search the
Swissprot_Mammalia (version 54.2, 55307 entries) assuming
trypsin as the digestion enzyme. MASCOT was searched with
a fragment ion mass tolerance of 0.1 Da and a parent ion
tolerance of 0.1 Da. Two missed cleavages were allowed for
trypsin digestion. Phosphorylation (Ser/Thr/Tyr) and
oxidation (Met) were selected as two variable modifications.
To evaluate the false discovery rate of protein identification,
we repeated the search using identical search parameters and
validation criteria against a randomized decoy database
created by MASCOT. The false discovery rates with
MASCOT score >36 (p<0.05) was 0.73% in our
phosphoproteomics study of lens protein extracts.
Label-free quantitation method: The quantitative analysis of
peptides in the label-free experiments was performed by
employing our recently published software, IDEAL-Q [40,
41]. The raw data files acquired from Waters Q-TOFTM

Premier were converted into files of mzXML format by the
program massWolf, and the search results in MASCOT were
exported in eXtensive Markup Language data (.XML) format.
After data conversion, the confident peptide identification
results (p<0.05) from each LC-MS/MS run were loaded and
merged to establish a global peptide information list
(sequence, elution time, and mass-to-charge). Alignment of
elution time is then performed based on the peptide
information list using linear regression in different LC-MS/
MS runs followed by correction of aberrational
chromatographic shift across fragmental elution-time
domains. To calculate relative peptide abundance, the tool
performs reconstruction of extracted ion chromatography
(XIC), and calculation of XIC area. The fold-change of a given
peptide was calculated by the ratio of relative peptide
abundance between different samples.

RESULTS AND DISCUSSION
In spite of the biologic significance and physiologic role of
protein phosphorylation and the rapid advances in MS
methodologies, high-throughput characterization of site-
specific phosphorylation residues in proteins is still
challenged by the technical difficulties [42,43] associated
with their dynamic modification patterns, substoichiometric
concentrations, heterogeneous forms of phosphoproteins, and
low sensitivity and response from MS analyses of total protein
mixtures extracted from biologic tissues. Therefore improved
methodologies that specifically enrich the transient
phosphoproteome in a routine and comprehensive manner are
important for studying phosphorylation-dependent cellular
signaling associated with various diseased states [44].
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Experimental design and methodology evaluation:
Identification of large numbers of phosphopeptides with high
specificity, reproducibility and recovery is critical in
phosphoproteomics analysis. IMAC takes advantage of the
phosphate groups as electron donors that chelate metal ion
(Fe3+-NTA-silica) to preferentially retain phosphopeptides.
Although the simple and routinely used protocol yields
adequate results for simple phosphoprotein mixtures, the
results for proteome-wide analysis are far from satisfactory.
As shown previously [35,39], we have found the IMAC
protocol used herein can yield an efficient enrichment and
obtain specific purification for phosphopeptides devoid of
contamination (a lack of nonspecific competitive binding).
The pH effect for the binding and elution of phosphopeptides
in IMAC protocol has been critically evaluated,
demonstrating that the current IMAC method can reflect the
representative phosphorylated amino-acid distribution such as
phosphotyrosine, phosphoserine and phosphothreonine in the
cell without bias. To date, the specificity and recovery
reported in our IMAC protocol significantly exceed those
previously achieved by single-step IMAC or IMAC in
combination with methylation [45]. This protocol
demonstrated high specificity (98%) that was comparable
with TiO2 chromatography [46,47]. As compared to two-step
purification methods, our protocol provides comparable
selectivity and low sample loss with some advantages over
current procedures. In terms of practical use, it offers a simple
one-step, more reproducible method amenable to automatic
phosphopeptide purification and enrichment using a Fe3+-
IMAC microcolumn. Greater than 90% column recovery and
enrichment specificity can be routinely achieved for single
IMAC purification of up to 1 mg of protein lysates from
various cell lines or tissues.

Gel-based 1D- or 2D-gel proteomics: In 1993, Henzel et
al. [48] first reported and started the popular gel-based
proteomics analysis by combining 2D-gel electrophoresis and
mass spectrometry. The global identification of proteins in
biologic samples was based on pre-separation of a protein
mixture on 2-D gel electrophoresis. The mass spectral patterns
from tandem mass (MS/MS) analysis of protein fragments
generated from protease digestion were then compared with
predicted peptide spectra from sequence databases to identify
the respective proteins. Although previously 2-D gel
electrophoresis coupled with tandem MS has been considered
as the method of choice in proteomics study, only up to 2,000
individual polypeptide chains at most can be resolved on a
single 2-D gel [31]. The number of detected proteins is still
being relatively small as compared to the whole genome-
encoded functional proteins of about 20,000~30,000 in higher
vertebrates. It is especially under-representative of some
special classes of proteins such as low-abundance
transcription factors and membrane proteins [32-34] because
of the low solubility of these classes of proteins in the first
dimensional isoelectric-focusing (IEF) protein separation of

2-D gel electrophoresis in the absence of SDS denaturing
agent. In our proteomic study of porcine lens proteins [35],
we have also encountered poor solubility of some proteins in
pre-MS 2-D gel separation.

To improve the detection sensitivity for low abundant
proteins, fractionation was first performed for the total protein
extracts of normal and cataractous human lenses by 1-D SDS–
PAGE gels (Figure 1). The proteins were separated into at
least more than 10 different protein bands or zones from total
protein mixtures of normal and cataract lenses. In comparison
with normal human lens-proteome, only four crystallin
proteins, i.e., β-crystallin B1, β-crystallin B2, βs-crystallin
B1, and γD-crystallin in cataractous lens showed significant
decrease in their expression levels. Similar results in previous
reports also pointed to the important role of differential
crystallin expression leading to cataract formation [49-51]. It
can be seen that 1-D gels are less tedious and time-consuming
than 2-D gels and still afford a respectable and extensive
protein separation capable of protein ID analysis after LC-
MS/MS. The unambiguous identification of some major
classes of β- and γ-crystallin classes were confirmed and
verified in addition to α-crystallins reported previously [35].
However, similar to the previous 2-D gel phosphoproteomic
study of α-crystallins, the phosphorylated sites identified by
1-D gel-based methodology are still very limited; only a few
well known abundant and predominant sites such as Ser-59,
Ser-81 and Ser-155 in αA-crystallin, Ser-19, Ser-21 and
Ser-59 in αB-crystallin, and Thr-189, Ser-9 and Ser-95 in
βB1-crystallin were identified [35]. We could not find any
other phosphopeptides in trypsin-digested protein bands
corresponding to other lens proteins when using the 1-D or 2-
D gel approach probably due to lower abundance of
phosphopeptides generated from digestion of protein bands.
Therefore we have resorted to the newer strategy of
quantitative shotgun proteomics by using IMAC for the
enrichment of phosphopeptides generated from the protease
digestion of total lens extracts.

Gel-free proteomic analysis of phosphorylated proteins
in human lenses: Because the capability of a gel-based
proteomic approach to identify phosphoproteins was limited
for phosphopeptide identification, we adopted instead a gel-
free protocol similar to shotgun proteomic approaches [28,
29]. By enrichment of the lens phosphopeptides on IMAC
followed by LC-MS/MS analysis, we have identified 73
phosphorylation sites in human lens proteins (Table 1). As
shown in Table 1, the identified 172 nondegenerate
phosphopeptides belonged to 32 proteins in the human lens,
including 9 crystallin proteins and other non-crystallin lens
proteins possessing different cellular functions. Among the
identified phosphoproteins, the relative proportions of the
corresponding proteins with functions relating to protein
folding, metabolism and cytoskeleton were 32%, 28%, and
25%, respectively (Figure 2). The other 15% phosphoproteins
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consisted of proteins with specified functions of transport,
cellular redox system and homeostasis.

As shown in Figure 3A, further analysis of the whole
phosphoproteome in human lenses indicated that
phosphorylation on serine (72%) was more common than that
on threonine (24%) and tyrosine (4%). In Figure 3B, most
phosphopeptides were identified as being crystallin proteins,
indicating that the major classes of lens crystallins are also the
most abundant phosphoproteins in the human lens tissue. The
proportions of phosphopeptides identified as being βB1-
crystallin, βB2-crystallin, αB-crystallin, γD-crystallin,
filensin, αA-crystallin, and βs-crystallin were 12%, 12%, 9%,
8%, 8%, 6%, and 6%, respectively, emphasizing the fact that
βB-crystallin subunits are indeed the major phosphorylation
targets in the lens and may play a significant role in the
phosphorylation-related biosignaling function in this
transparent lens tissue.

Identification of phosphorylation sites in human lens
crystallins: As shown in Table 1, the phosphorylation sites of
crystallin proteins were found to spread over the entire
polypeptide regions of these crystallins. Based on the
proportion of phosphorylation sites in each crystallin, we

found that Ser-81 (31%) and Ser93/Thr-118 (25%) are the
predominant phosphorylation-sites in βB1- and βB2-
crystallin, respectively (Figure 4A,B). In addition, the
phosphorylation of αB-crystallin was shown to distribute
evenly over the whole crystallin molecule at Ser-19 (23%),
Ser-21 (22%), Ser-59 (22%), and Ser-139 (22%; Figure 4C)
similar to our previous report on porcine αB-crystallin [35].
In contrast, some predominant phosphorylation sites present
in other crystallin proteins were also identified, e.g., Ser-75
(50%) in γD-crystallin, Thr-148 (33%) in αA-crystallin, and
Tyr-11/Ser-167 (33%) in β-crystallin S (also denoted as βs-
crystallin). The mechanisms underlying the differential
phosphorylation at specific sites of these crystallins remain
unknown, which should be of interest for further study in the
future.

Identification of phosphorylation sites in non-crystallin
proteins involved in cytoskeleton, metabolism, transport, and
cellular redox homeostasis: In addition to 9 lens crystallins,
23 non-crystallin proteins were also found to be
phosphorylated in vivo in our phosphoproteomic analysis
(Table 1). It is noteworthy that similar to αB-crystallin (a
member of the small heat-shock protein family in the lens),

Figure 1. Comparative analysis of
normal and cataractous human lens
proteins by SDS–PAGE followed by
LC-nanoESI-MS/MS. As shown in the
left panel, a total of 10 μg lens proteins
derived from normal (N) and
cataractous (P) eye lenses were resolved
with 12.5% SDS–PAGE and stained
with Coomassie brilliant blue R-250. In
the right panel, protein and peptide
bands with different expression levels
identified by LC-nanoESI-MS/MS were
indicated by arrows. In comparison with
normal human lens proteome, four
crystallin proteins, β-crystallin B1, β-
crystallin B2, βs-crystallin, and γD-
crystallin in the cataract lens were found
to significantly decrease in expression
levels as compared to normal lens.
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another heat-shock protein beta-1 (homolog of heat-shock
proteins Hsp27 and Hsp20) with chaperone activity was
shown to be phosphorylated at Ser-82 [52,53]. To date these
phosphorylated sites in the non-crystallin proteins have never
been identified in the lens tissue and warranted for detailed
functional characterization in the future.

Comparative analysis of phosphoproteome in human
lenses with or without cataract: To investigate the differential
post-translational modification of human lens proteins with or
without cataract, we performed quantitative
phosphoproteomic analysis. As shown in Table 2, 19
phosphoproteins consisting of 8 crystallin proteins and 11
non-crystallin proteins with their corresponding 28
phosphorylated sites were identified between these two types

of human lenses. Among these identified proteins, the extents
of 15 phosphorylated sites were found to increase by twofold
while 13 sites decreased in phosphorylation, indicating that
complicated post-translational modification such as
phosphorylation may be one of the causative factors
underlying the development of human cataract. Furthermore,
some quantitative changes in the phosphorylation status were
found even in the same proteins from normal and diseased
lenses such as βB1-crystallin and αB-crystallin. In human
cataractous lenses, two phosphorylated sites in βB1-crystallin,
Ser-32 and Ser-81, were found to decrease while Ser-93
increased in their relative phosphorylation ratios (P/N ratio in
Table 2). The different proportions of phosphorylation and
specific phosphorylated sites associated with normal and

Figure 2. The percent distribution of
annotated functions for identified
phosphoproteins in normal human
lenses. After being identified by using
gel-free IMAC phosphopeptide
enrichment and LC-MS/MS analysis,
phosphoproteins were classified into
five functional categories annotated in
the proteomic databank. The
proportions of annotated functions
related to protein folding, metabolism,
and cytoskeleton were 32%, 28%, and
25%, respectively. The other 15%
identified proteins belonged to protein
families of transport, cellular redox
homeostasis, and other unidentified
functions.

Figure 3. The percent distribution of
phosphorylated sites in normal human
lens proteins identified by using gel-free
IMAC phosphopeptide enrichment and
LC-MS/MS analysis. A: Proportions of
three different phosphorylated amino-
acid residues (Ser/Thr/Tyr) in normal
human lens extract. Phosphorylation on
serine (72%) was more common than
threonine (24%) and tyrosine (4%). B:
Proportions of the identified proteins
with phosphorylation in normal human
lens proteins. The proportions of
phosphopeptides identified in βB1-
crystallin, βB2-crystallin, αB-crystallin,
γD-crystallin, filensin, αA-crystallin,
and β-crystallin S (or denoted as βs-
crystallin) were 12%, 12%, 9%, 8%,
8%, 6%, and 6%, respectively.

Molecular Vision 2011; 17:186-198 <http://www.molvis.org/molvis/v17/a23> © 2011 Molecular Vision

193

http://www.molvis.org/molvis/v17/a23


cataractous human lens proteins may form a firm basis for
unraveling the mechanistic pathways of cataract formation
with aging. Furthermore, among the differentially expressed
phosphopeptides, 20 phosphorylation sites were verified to be
newly discovered based on comparison with those in the
phosphoprotein databases, Uni-Prot and PhosphoSitePlus*
website. The data also revealed 14 novel phosphorylation sites
on 7 crystallin proteins. These differentially expressed
phosphorylation and their associated phosphorylated sites
might be the potential therapeutic targets of cataract disease,
which warrant further investigation.

Conclusions: The conventional gel-based
phosphoproteomics analyses by 1-D SDS–PAGE coupled
LC-MS/MS and separately by IMAC enrichment of
phosphopeptides followed by shotgun label-free quantitation
method have been used to analyze and compare
phosphorylation patterns of lens proteins from whole tissue
extracts of normal and cataractous lenses. In this report we
have focused on employing efficient IMAC protocol of
phosphopeptide enrichment for profiling and quantitative

analysis of transiently phosphorylated proteins. The IMAC
protocol reported herein demonstrated enrichment with high
specificity and low sample loss without the need for additional
esterification and desalting step. This procedure may be
applicable to a variety of materials such as tissue, cell and
body fluid. As judged by the higher sample recovery and
greater number of phosphopeptides identified by the critically
validated IMAC procedure [35,39] in this study as compared
to previous reports on phosphorylation analysis in the
literature [4,15-18,54,55], it should prove feasible for the
routine phosphoproteome analysis in the future. The
combination of this protocol with either stable isotope tagging
or a label-free methodology may be further employed for
large-scale comparative proteomic studies to decipher the
dynamic and complicated phosphoproteomes from various
biologic samples of diverse tissues. On the other hand, the
identification of these novel phosphorylation sites in lens
proteins that showed differential expression in the cataractous
lens may bear some as-yet-unknown physiologic significance

Figure 4. The percent distribution of
phosphorylation sites of phosphorylated
crystallin proteins in normal human lens
proteins. Distribution of in vivo
phosphorylation sites in A: βB1-
crystallin; B: βB2-crystallin; C: αB-
crystallin; D: γD -crystallin; E: αA-
crystallin; and F: βS-crystallin. Ser-81
(31%) and Ser93/Thr-118 (25%) are the
predominant phosphorylation-sites in
βB1-crystallin and βB2-crystallin,
respectively. In addition, the
phosphorylation of αB-crystallin was
shown to distribute almost evenly over
the whole crystallin molecule at Ser-19
(23%), Ser-21 (22%), Ser-59 (22%), and
Ser-139 (22%). In contrast, there was at
least one predominant phosphorylated
site in other crystallin proteins, i.e.,
Ser-75 (50%) in γD-crystallin, Thr-148
(33%) in αA-crystallin, and Tyr-11/
Ser-167 (33%) in βS-crystallin.
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and provide insights into phosphorylation-related human eye
diseases.
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