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Noroviruses are the major cause of food- or water-borne gastroenteritis outbreaks in humans. The norovirus
protease that cleaves a large viral polyprotein to nonstructural proteins is essential for virus replication and
an attractive target for antiviral drug development. Noroviruses show high genetic diversity with at least five
genogroups, GI–GV, of which GI and GII are responsible for the majority of norovirus infections in humans.
We cloned and expressed proteases of Norwalk virus (GI) and MD145 virus (GII) and characterized the en-
zymatic activities with fluorescence resonance energy transfer substrates. We demonstrated that the GI
and GII proteases cleaved the substrates derived from the naturally occurring cleavage site in the open read-
ing frame (ORF) 1 of G1 norovirus with similar efficiency, and that enzymatic activity of both proteases was
inhibited by commercial protease inhibitors including chymostatin. The interaction of chymostatin to Nor-
walk virus protease was validated by nuclear magnetic resonance (NMR) spectroscopy.

© 2011 Elsevier Inc. All rights reserved.
Introduction

Noroviruses are responsible for more than 60% of all food- or water-
borne gastroenteritis outbreaks in humans with an estimated 23 million
annual cases in the U.S. alone, followed by Salmonella infection (C.D.C.,
2010; Fankhauser et al., 1998). The symptoms of noroviral gastroenteritis
such as nausea, vomiting, diarrhea, headaches, fever, chills, myalgias and
sore throat usually last for 24 to 48 h (Green et al., 2001). Although nor-
oviruses generally causemild tomoderate gastroenteritis, it can incapac-
itate affected individuals in military troops on ships or in war zones
(Green et al., 2001), and can be severe to life-threatening in the young,
elderly and immunocompromised patients (Atmar and Estes, 2006;
Dolin, 2007). Recent studies have shown that noroviral diarrhea can per-
sist for up to 4 weeks (Rockx et al., 2002; Sakai et al., 2001) and the virus-
es can be excreted for up to 3 weeks (Rockx et al., 2002). Furthermore, it
has been reported that norovirus diarrhea and shedding lasted longer
than 2 years in an immunocompromised patient (Nilsson et al., 2003).

The Norwalk virus (NV) is the first enteric calicivirus discovered in
1972 (Kapikian et al., 1972). Since the discovery of the first norovirus,
at least five genogroups have been established in the genus Noro-
virus. Among them GI, GII, and rarely GIV viruses infect humans.
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The GI and GII noroviruses are further subdivided into genotypes
GI/1–7 and GII/1–15 (Green, 2007). NV is the most studied prototype
virus and is classified as GI/1 strain. In recent years, GII/4 noroviruses
became predominantly associated with norovirus outbreaks and spo-
radic cases worldwide (Siebenga et al., 2010; Zheng et al.). Overall,
norovirus strains belonging to the GII are found in 75–100% of spo-
radic cases of norovirus infections (Patel et al., 2009), and GII/4
strains account for 60–70% of all reported norovirus outbreaks global-
ly (Kroneman et al., 2008; Siebenga et al., 2009).

However, no vaccine or antiviral drug is currently available for
norovirus infections, which is largely due to the absence of cell cul-
ture systems and animal models for human noroviruses. Noroviruses
show high diversity, and immunity to one strain does not necessarily
provide protection from infection with another strain. In addition, in-
adequate long-term immunity against noroviruses is indicated by re-
peated infections in adults (Glass et al., 2009; Green, 2007). Although
noroviruses do not multiply in food or water, they can cause large
outbreaks because as few as 10–100 virions are sufficient to cause ill-
ness in a healthy adult (Green, 2007). Noroviruses are classified as
NIAID category B priority pathogens (NIAID) due to their highly con-
tagious nature and a potential to cause a serious public health chal-
lenge. Therefore, development of antiviral drugs is highly desirable
for preventing and treating norovirus infections.

Noroviruses are single-stranded RNA viruses and encode three open
reading frames (ORFs) for a nonstructural polyprotein and minor and
major structural proteins. The gene organization of the norovirus
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nonstructural polyproteins encoded by ORF1 is N-terminal protein
(Nterm, NS1-2), NTPase (NS3), p22 (3A-like protein, NS4), VPg (NS5),
protease (Pro, NS6), and RNA-dependent RNA polymerase (Pol, NS7)
(Green et al., 2001) (Fig. 1). Norovirus protease specifically recognizes
and cleaves LQ/GP (Nterm/NTPase), LQ/GP (NTPase/p20), PE/GK (p20/
VPg), FE/AP (VPg/Pro), and LE/GG (Pro/Pol) junctions to produce the
mature proteins during viral replication (Belliot et al., 2003; Hardy et
al., 2002; Liu et al., 1999; Sosnovtsev et al., 2006). Norovirus protease
is classified as 3C-like cysteine protease due to its similarity to picorna-
virus 3C protease, which has a catalytic triad of amino acids composed
of C, H, and E or D (Green, 2007; Nakamura et al., 2005). Since norovirus
protease is essential for viral replication, viral protease represents an at-
tractive target for antiviral drug development. The design and screening
of antiviral agents targeting viral protease can be greatly facilitated by
the availability of an assay that is suitable for large scale screening of po-
tential novel drugs targeting viral protease.

The fluorescence resonance energy transfer (FRET) protease assay
has been developed to provide a rapid and specific identification of
protease inhibitors for various cellular and viral proteases including
foot-and-mouth virus and severe acute respiratory syndrome (SARS)
coronavirus (Blanchard et al., 2004; Chen et al., 2005; Jaulent et al.,
2007). In this assay system, substrates have a fluorescence donor
and a quencher on each end, and the donor fluorescence signal in
the uncleaved substrate is inhibited by the interaction of the fluores-
cence donor and quencher. Once substrates are cleaved by a protease,
the donor fluorescence is no longer quenched, yielding an increase in
fluorescence intensity. Addition of protease inhibitors to the assay in-
hibits the cleavage of the substrates, which leads to reduced fluores-
cence intensity, enabling screening of potential protease inhibitors.
The FRET protease assay system is also a useful tool for measuring
the activity and substrate specificity of a protease. So far, most of infor-
mation on the proteolytic processing of the norovirus proteases has
been obtained using in vitro transcription–translation assay systems
(Belliot et al., 2003; Hardy et al., 2002; Scheffler et al., 2007; Seah et
al., 1999; Someya and Takeda, 2009). Limited studies are reported
on the kinetics of GI norovirus proteases using fluorogenic (Someya
et al., 2008) or chromogenic substrates (Hussey et al., 2011). However
studies on those of GII norovirus protease are not available. Further-
more, a FRET-based protease assay suitable as a high-throughput
screening of protease inhibitors has not yet been reported for noro-
virus proteases of GI or GII noroviruses (Zeitler et al., 2006).

In this study, we describe the development and application of a
high-throughput FRET assay using norovirus proteases from NV
(NVpro) and MD145 virus (MD145pro) that belong to genogroups I
(GI/1) and II (GII/4), respectively. Based on the assay, similar kinetic
parameters of the fluorogenic substrates and inhibition by a selection
of standard protease inhibitors including chymostatin were observed
for NVpro and MD145pro. The binding of chymostatin and NVpro was
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Results

MD145pro efficiently cleaved substrates originated from the cleavage
site of GI norovirus

The NVpro and MD145pro exhibited enzymatic activity with sim-
ilar cleavage efficiency on each substrate (kcat/km) (Fig. 2, Table 1),
suggesting that MD145pro is able to efficiently recognize and cleave
the substrates derived from a cleavage site of GI norovirus. Both pro-
teases showed higher cleavage efficiency towards the truncated sub-
strate (DFHLQGP) as indicated by higher kcat/km value, compared to
the substrate of 14 residues (EPDFHLQGPEDLAK) (Table 1). The mu-
tant NV protease (C139A) did not increase fluorescence signal on ad-
dition of substrates, as expected (data not shown). The edans-
DFHLQGP-dabcyl was used as a substrate for further experiments.

Z factor analysis

The Z factor is a measure of the distance between the standard de-
viation for the positive (fluorescence signal) and negative (back-
ground) controls of the assay, and is used to evaluate the overall
quality of a high-throughput screening assay (Inglese et al., 2007;
Zhang et al., 1999). A Z factor of 0.5 or greater is considered robust
and reliable indicator for an assay system for screening purpose
(Blanchard et al., 2004; Zhang et al., 1999). Fig. 3 is the scatter plot
of fluorescence units from positive or negative control wells, showing
assay range and the data variation. The mean Z factor for our FRET
protease assay using NVpro and edans-DFHLQGP-dabcyl as a sub-
strate was calculated as 0.86, demonstrating excellent signal-to-
background ratio, and robustness and sensitivity of the assay.

DMSO tolerance

The effect of DMSO on the FRET-assay with NVpro was determined
and shown in Fig. 4. DMSO concentrations of 0.5–2% (final concentra-
tion, v/v) did not significantly affect enzymatic activity, indicating
that this assay is tolerant of DMSO up to 2%. All the experiments in
this study contained less than 1.5% DMSO.

NVpro and MD145pro showed a similar inhibitor profile

Four commercially available serine protease inhibitors (chymosta-
tin, leupeptin, TPCK, and TLCK) and a papain-like cysteine protease
inhibitor (antipain) were used to probe the inhibitor specificity of
each protease. Chymostatin and TPCK at 50 μM markedly decreased
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fluorescence intensity from inhibition of substrate cleavage by NVpro
and MD145pro (Fig. 5). However, TLCK, antipain and leupeptin failed
to show significant inhibition of NVpro or MD145pro under the same
condition. Then, chymostatin was used to determine the IC50 and in-
hibition constants Ki against both proteases. The dose response
curves for chymostatin on NVpro and MD145pro are shown in
Fig. 6A. Chymostatin inhibited NVpro and MD145pro with a similar
efficiency indicated by comparable IC50 and inhibition constant Ki
values (Table 2). These results indicate that proteases from two pre-
dominant norovirus genogroups share a similar inhibitor profile.

Chemical shift mapping to study the interaction of NVpro and chymostatin

Since chymostatin significantly inhibited norovirus proteases in the
FRET assay, the binding of chymostatin and NVpro was validated using
NMR spectroscopy. A series of 1H–15N HSQC spectra of NVpro with in-
creasing concentrations of chymostatin were analyzed to identify the
residues of NVpro involved in the interaction with chymostatin. NMR
chemical shift perturbations of backbone amide (1H and 15N) resonance
Table 1
Kinetic parameters for cleavage of the substrates by NVpro and MD145pro.

Substrate Protease Kcat

(min−1)
Km

(μM)
Kcat/Km

(M−1 min−1)

EPDFHLQGPEDLAK NV 0.4376±0.0655 790±184.9 0.554×103

MD145 0.3857±0.03416 544.8±84.52 0.708×103

DFHLQGP NV 0.2626±0.02562 272.3±58.19 1.111×103

MD145 0.2201±0.02443 159.8±46.55 1.873×103

It is to note that the kinetic values are based on the concentration of the product
(substrate) converted from the corrected RFU as described in the Materials and
Methods section.
in the 1H–15NHSQC spectra are sensitive probes for changes in chemical
environments surrounding amino acid residues and/or in the relative
populations of different conformations in protein structural ensemble
(Shuker et al., 1996). The weighted chemical shift differences of 1H–15N
resonances for NVpro in the presence of varying concentrations of chy-
mostatin were compared to those observed in the absence of chymosta-
tin (Fig. 7A). Significant chemical shift changes were observed during
chymostatin titration in a concentration-dependent manner (Figs. 7A
and B), indicating the specific interaction between NVpro and chymosta-
tin. On the other hand, PB compound added as an unrelated control
caused no significant chemical shift perturbation for NVpro (Fig. 7C).
In the presence of 2-fold molar excess of chymostatin, the residues of
NVpro that showed significantly shifts (Δd≥0.04) were T4*, K11*, G17,
T27, V31*, I49, A52*, E54, G60, L97, R100, G102, A105*, Q110*,V114*,
H115*, Q117*, G119*, A141*, R147*, G133*, G137*, D138*, C139*,
G140*, A141*, R147*, V152, H157*, A159, A160*, T161*, K162*, S163*,
N165*, and T166*. The residues that could not be traced out due to
the peak disappearance and/or line broadening are marked with aster-
isks and the largest positive values (Δd≥0.15) in Fig. 7A. The line-
broadening effects are likely indicative of chemical exchange on the
slow time scale (μs–ms) due to the conformational dynamics of NVpro
interacting with chymostatin.

Docking model of NVpro with chymostatin

To corroborate the result obtained for NVpro-chymostatin interac-
tion using NMR spectroscopy, we constructed a docking model for
NVpro complexed with chymostatin using HADDOCK program (de
Vries et al., 2010; Dominguez et al., 2003). During the docking,
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Fig. 4. DMSO tolerance. Substrate was incubated with NVpro in the presence of 0–6%
DMSO (v/v) in assay buffer at 37 °C. Fluorescence signals were measured at 1 h incuba-
tion using a plate reader. *Statistically significant (pb0.05) compared to DMSO 0% by
Student's t-test.
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Table 2
IC50 and Ki of chymostatin for the inhibition of NVpro and MD145pro.

Protease Substrate IC50 (μM) Ki (M)

NV DFHLQGP 5.489 4.063±0.6687×10−6

MD145 DFHLQGP 9.861 6.169±0.7115×10−6
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experimental information on the interface between NVpro and chy-
mostatin derived from NMR chemical shift perturbation was required
as ambiguous interaction restraints (AIRs) to drive the docking of two
molecules. Based on the NVpro chemical shift perturbation observed
in the presence of chymostatin and higher solvent accessibility, T4,
K11, S14, A52, K62, R65, D90, E93, L95, R100, Q110, M120, K146,
R147, T161, K162, and S163 are designated as active residues in AIRs.
In addition, catalytically important residues E54, G137, and C139,
which displayed significant perturbation but lower solvent accessibility
were also selected as active residues. H30, S91, R112, I135, and P136 ad-
jacent to those active residueswere defined as passive residues. The po-
sitions of the active and passive residues for NVpro are indicated on the
structure (Figs. 8A and B). As a result of the docking calculation, several
different clusters with similar HADDOCK score were obtained. For all
those clusters, it is indicated that chymostatin is positioned near the ac-
tive and substrate binding sites of NVpro. The structural ensemble in the
lowest energy cluster has RMSD value of 0.8±0.2 Å over all backbone
atoms. The representative structure of the lower energy cluster is pre-
sented in Fig. 8. The structure has favorable energy values, van der
Waals energy of −27.1 kcal mol−1 and electrostatic energy of
−145.3 kcal mol−1, but higher restraint violation energy of 169.9 kcal -
mol−1. This higher violation is mostly due to our unbiased selection of
active residues showing chemical shift perturbation. As clearly seen in
Fig. 8, several residues do not have any direct interactionswith chymos-
tatin (T4, K11, K62, R65, S91, E93, L95, R100, M120, K146, and R147). It
is highly probable that those residues distant from the binding sitewere
indirectly affected and experienced a certain degree of conformational
changes upon binding of chymostatin. The docking model depicted in
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Fig. 6. Dose–responsive curves of chymostatin on NVpro and MD145pro. The dot rep-
resents percentage of substrates cleaved by NVpro in the presence of chymostatin at
different concentrations, compared with control. NVpro and MD145pro are denoted
by the solid line with open circles and the dotted line with filled rectangles,
respectively.
Fig. 8 demonstrates that chymostatin bound to NVpro in a canonical
substrate binding mode as also suggested by NMR data; NVpro-
chymostatin interactions occur mainly in C-terminal domain and an
arch formed by two β-sheets, βII and cII, covers the chymostatin.

Discussion

Noroviruses are the leading cause of food- or water-borne gastro-
enteritis outbreaks worldwide, affecting millions of people in the U.S.
alone. Norovirus infection causes debilitating illness in people of all
age groups at military bases, as well as in cruise ships, schools, and
hospitals. Noroviruses require only a few viral particles to initiate in-
fection and are highly contagious. Moreover, long-lasting immunity
following natural infection rarely develops in people. Considering
these challenges, antiviral drugs for controlling norovirus infections
are in urgent need. Norovirus protease is known to be responsible
for critical virus-mediated post-translational cleavages of the poly-
peptide encoding the viral proteins. Therefore, inhibition of the viral
protease has the capacity to prevent viral replication. There are sever-
al viral protease inhibitors on the market or under development for
pathogenic viruses such as human immunodeficiency virus, hepatitis
C virus, and SARS coronavirus (Ghosh et al., 2007; Kazmierski et al.,
2006; Tsantrizos, 2008; Walker et al., 2003). Robust and reliable as-
says for high throughput screening of potential norovirus protease in-
hibitors can greatly facilitate the development of antiviral drugs
against the viral protease.

The genogroup I and II noroviruses are associated with majority of
norovirus infections in humans. The amino acid homology of prote-
ases among GI noroviruses is 90–94%, while the homology between
GI and GII norovirus proteases is about 65–69%. However, the amino
acid sequence analysis showed that the key residues of the catalytic
site and residues forming the S1 subsite are conserved in GI and GII
noroviruses (Ng and Parra, 2010). A co-transcription and translation
assay study using MD145 ORF1 on the enzymatic activity of MD145
(GII) protease suggested that substrate specificity requirements are
similar to those for NV (GI) based on western blots and radioactive
microsequencing mapping (Belliot et al., 2003). However, there is lit-
tle information on the comparative kinetic properties of proteases
from GI and GII noroviruses. Therefore, we developed a FRET protease
assay with high-throughput capability to use for screening of noro-
virus protease inhibitors, and study the substrate and inhibitor spec-
ificities of norovirus proteases of GI and GII noroviruses.

The conserved amino acid sequences of P7-P6′ at the N2/3 cleavage
site of NV and MD145 noroviruses differ in P3 (H/E), P4 (F/Y) and P6
(P/G) residues, of which P4 position is reported to be important for
maximal activity by earlier mapping studies of the cleavage sites
recognized by calicivirus proteases (Hardy et al., 2002). In our study,
MD145pro cleaved the substrates spanning P7–P7′ or P5–P2′ residues
from the NS2/3 cleavage site of NV with an efficiency similar to NVpro,
indicating that MD145pro recognized and cleaved the substrates with
H and F in P3 and P4 positions, respectively, as efficiently as NVpro. In
addition, NVpro and MD145pro cleaved the substrate with P5–P2′
residues more efficiently than substrate with P7–P7′ residues,
suggesting that P3′–P7′ and P6–P7 residues are not necessary for
substrate binding and cleavage by both proteases. These results are in
line with an earlier report that p-nitroaniline peptide with P5–P1 resi-
dues was most efficiently cleaved by GI protease (Southampton strain)
compared to those containing P6–P1 or P4–P1 residues, and the sub-
strate of P3–P1 residues was not cleaved (Hussey et al., 2011). In



T4* K11* V31* A52* 

A105* 

Q110* 
V114* 
H115* 
Q117* 
G119* 

G133* 
G137* 
D138* 
C139* 
G140* 
A141* R147* 

H157* 
A160* 
T161* 
K162* 
S163* 

N165* 
T166* 

L5 

G17 T27 I49 

E54 

F60 
L95 
L97 

R100 

G102 

L121 
V152 

A159 

NVpro : Chymostatin 
1 : 0.2 

1 : 1 
1 : 2 

1 : 0.5 

Residues 

C
he

m
ic

al
 s

hi
ft 

di
ffe

re
nc

e 
Δd

  

A 

15N
 C

hem
ical shift  (ppm

)

1H Chemical shift (ppm) 

0.6 mM NVpro 
With 1.2 mM Chymostatin 

1H Chemical shift (ppm) 

0.15 mM NVpro 
With 0.3 mM PB 

C B 
102

105

108

111

114

120

123

126

129

132

135

117

102

105

108

111

114

120

123

126

129

132

135

117

10 9 8 7 10 9 8 7

Fig. 7. Chymostatin specifically interacts with NVpro. A. Weighted chemical shift differences of the 1H and 15N resonances for NVpro when titrated with increasing amounts of chy-
mostatin. Largest values (0.15) and asterisks are used to indicate the residues that cannot be assigned after adding 2-fold molar excess of chymostatin due to the peak disappear-
ance or broadness. Weighted chemical shift difference is calculated by an equation, Δd=[1/2(dH2+1/25dN2)]1/2. B. Overlay of 1H–15N HSQC spectra of NVpro in the absence
(black) and in the presence of 2-fold excess of chymostatin (blue). C. Comparison of 1H–15N HSQC spectra of NVpro in the absence and presence of 0.3 mM (2-fold molar excess)
PB compound shows that PB titrated as a control causes generally no chemical shift perturbation on the spectra.

129K.-O. Chang et al. / Virology 423 (2012) 125–133
addition, Chiba virus protease (GI)-substrate complex modeling based
on crystal structure suggested that the substrate binding is stabilized
by interactions of substrate residues P5–P2 to the corresponding binding
sites of the protease (Nakamura et al., 2005).

We then evaluated the inhibitor specificities of NVpro and
MD145pro using a set of commercially available standard protease in-
hibitors. Norovirus protease is structurally similar to the chymotryp-
sin superfamily based on X-ray crystallography (Nakamura et al.,
2005; Zeitler et al., 2006). The standard protease inhibitors share a
common mechanism of action, although they do not share the prima-
ry sequence for the three-dimensional structures (Bode and Huber,
1992; Laskowski and Kato, 1980). The screening of protease inhibi-
tors in our assay revealed that the activities of both proteases were
significantly inhibited by the presence of chymostatin and TPCK. De-
tailed kinetic studies of the inhibition of NVpro and MD145pro by
chymostatin confirmed that both proteases have similar inhibition
profiles, suggesting that protease inhibitors may be developed against
multiple norovirus genogroups. In addition, the versatility of the
assay allows incorporation of proteases from different genogroups
so that screening of compounds against various norovirus gen-
ogroups can be performed. The quality and suitability of the FRET
assay for high throughput screening were demonstrated by high Z
factor of 0.86.

The interaction of chymostatin and NVpro was validated by the
NMR studies. The analysis of NMR chemical shift mapping data
revealed that the resonances of residues that are involved in substrate
binding sites or active sites are greatly affected. Chymostatin that
exhibited strong inhibitory effects against both proteases contains
G–L–F moiety. Previous structural studies on the interaction of chy-
motrypsin and serine standard protease inhibitors showed that side
chain of the P1 residue (F) of chymostatin fits into the specificity sub-
site of chymotrypsin, and the carbonyl oxygen extends toward the
oxyanion hole formed by the G and S residues located in the active
site of the enzyme. The P1–P3 residues of chymostatin also interact
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with the enzyme by forming a short, anti-parallel β-sheet interaction
(Coombs et al., 1999). These interactions represent a substrate-like
binding mode for enzymes. Our docking results using HADDOCK
based on NMR chemical shift perturbation study indicate that chy-
mostatin specifically interacts with NVpro in a canonical binding
mode that can be seen in the protease-substrate/substrate-directed
inhibitor complexes. At this stage we are not able to give a clear an-
swer for whether chymostatin covalently modifies the nucleophilic
thiol group and forms hemithioacetal adduct or forms non-covalent
enzyme-inhibitor complex. However our results indicate that critical
residues for the catalysis are targeted by chymostatin.

In conclusion, we demonstrate a development and application of a
FRET norovirus protease (GI and GII) assay with high-throughput ca-
pability for screening potential antiviral compounds and monitoring
enzymatic reactions, and the interaction of chymostatin and noro-
virus protease by NMR spectroscopy. These results provide valuable
information for the study of antivirals and enzyme activities.

Materials and methods

The expression and purification of proteases from NV and MD145 viruses

Full-lengths codon-optimized cDNAs corresponding to the com-
plete amino acid sequence of NVpro and MD145pro were synthesized
and cloned into the pET28a vector (GenScript, Piscataway, NJ). The
synthesized cDNA sequences include start and stop codons as well
as sequences encoding N-terminal six H for Ni column purification.
The plasmid encoding NVpro or MD145pro was transformed into E.
coli BL21 cells. Each protein was expressed in a regular Luria-Bertani
broth by induction with 1 mM isopropyl β-D-thiogalactopyranoside
(IPTG) for 4 h at 37 C° in a shaking incubator. The harvested cells
were sonicated and ultracentifuged. Both proteases were soluble
and the supernatants were applied to a Ni-NTA affinity column (QIA-
GEN, Valencia, CA) for purification. The mutant NVpro with C (nucle-
ophile) to A substitution at position 139 (C139A) was generated by
site-directed mutagenesis. All proteins were monomers with a size
of approximately 20 kDa as determined by size exclusion chromatog-
raphy (Fig. 9), which is in contrast to previous reports that norovirus
proteases stably formed a dimer (NVpro) or were predominantly di-
meric in solution (Southampton virus protease) (Hussey et al.,
2011; Zeitler et al., 2006). Interestingly, our preliminary x-ray crystal-
lography revealed NVpro as dimers, suggesting that the His-tag at the
N-terminus does not interfere with dimerization (data not shown).
These results indicate that the concentration and/or condition of the
prepared protease may influence the monomer-dimer equilibrium
of NVpro.

For NMR studies, uniformly 15N-labeled NVpro was expressed in
the E. coli BL21 cells grown in M9 minimal media supplemented
with 1 g/L 15NH4Cl (Cambridge Isotope Laboratories, Andover, MA)
and purified as previously described (Takahashi et al., 2011). Briefly,
the cells containing the expression plasmid encoding NVpro were
grown in a starter culture consisting of 50 ml Luria Bertani media at
37 °C for 6–8 h. The cells were then grown in M9 minimal media to
an OD600 value of 1.0 and induced with 1.0 mM IPTG for 5 h. The
cells were harvested by centrifugation, subsequently resuspended in
buffer containing 50 mM sodium phosphate (pH 8.0), 300 mM sodi-
um chloride, and 10 mM imidazole, and sonicated at 4 °C. After cen-
trifugation of the cell lysates, NVpro was purified from the cell
lysate supernatant using a Ni-NTA affinity column (Qiagen, Valencia,
CA). Size exclusion chromatography on a Superdex 75 prep grade
(GE healthcare, Amersham, UK) was applied as a final purification
step. Gel-filtration standard (Biorad, Hercules, CA) containing thyro-
globulin (670 kDa), γ-globulin (158 kDa), ovalbumin (43 kDa), and
myoglobin (17 kDa) was used to analyze the molecular weight of
the eluted proteins. NMR samples contained uniformly 15N-labeled
NVpro (0.1–0.6 mM), 50 mM sodium phosphate (pH 6.5), 100 mM
NaCl, 5 mM DTT, and 3 mM NaN3 in 90% H2O/10% D2O unless other-
wise noted.

FRET assay with proteases from Norwalk and MD145 noroviruses

Substrates
Two fluorogenic substrates, edans-EPDFHLQGPEDLAK-dabcyl

(Zeitler et al., 2006) and edans-DFHLQGP-dabcyl derived from the
P7–P7′ and P5-P2′ residues on the NS2/3 cleavage site in ORF1 of
NV, respectively, were synthesized (GenScript, Piscataway, NJ). The
designation of substrate residues for P1 and P1′ starts at the scissile
bond and counts toward the N- or C-terminus, respectively, as sug-
gested by Schechter and Berger (1967).

FRET protease assays
Stock solutions (10 mM) of the substrates were prepared in

DMSO, and diluted in assay buffer (50 mMHEPES buffer [pH 8.0] con-
taining 50 mMNaCl, 0.4 mM EDTA, 60% Glycerol, and 6 mMDTT). The
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Fig. 9. Purification of NVpro. A. His-tagged NVpro was purified by size exclusion chromatography. B. SDS-PAGE analysis of purified NVpro. The untagged version of the protease has
a predicted molecular weight of 19 kDa. The (His) 6-tagged proteases are shifted to a slightly higher molecular weight.
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25 μl of protease (0.5 μM, final concentration) was mixed with 25 μl of
serially diluted substrates in assay buffer in a 96-well black plate
(Nalge Nunc International, Rochester, NY). The fluorescence signals
were detected using an excitation wavelength of 360 nm and an
emission wavelength of 460 nm on a fluorescence microplate reader
(FLx800, Biotek, Winooski, VT) every 5 min for 30 min at 37 °C.

Correction factor for the inner filter effects
The background (substrate control well without protease)-sub-

tracted relative fluorescence units (RFU) were corrected for inner fil-
ter effects. The inner filter effects are produced at higher substrate
concentrations due to the absorption of fluorescence by the quencher
on the adjacent substrates, and cause attenuation of fluorescence in-
tensity, abolishing the linear correlation between the cleaved sub-
strate concentration and the fluorescence intensity (Cuerrier et al.,
2005; Jaulent et al., 2007). Briefly, serially diluted edans reference
standards (free edans) were added to wells in a 96-well plate with
or without equal concentration of substrate, and fluorescence read-
ings were obtained on a microplate reader. The correction factors to
compensate for the inner filter effects were determined empirically
as described previously (Cuerrier et al., 2005; Jaulent et al., 2007).

Determination of kcat/km
The corrected RFU was converted to the concentration of the

product of protease reaction by plotting edans fluorescence reference
standard as RFU versus concentration. The initial velocities (Vo), rate
of enzyme reaction, were calculated using the first 30 min of the pro-
gress curve, and plotted against substrate concentrations (Michaelis–
Menten plot) using GraphPad Prism program (GraphPad Software,
San Diego, CA) to determine the ratio of kcat/km, which is the measure
of efficiency of the catalytic reaction (specificity constant).

Determination of Z factor
The substrate edans-DFHLQGP-dabcyl (16 μM, final concentration)

was added to wells containing NVpro at 0.5 μM of final concentration
(positive control wells) or assay buffer (negative control wells) in a
96-well black plate. Since Z factor is dependent onmeans and standard
deviations, each combination hadmore than 30wells. The plate was in-
cubated at 37 °C for up to 1 h and the fluorescence readings were
obtained. The means and standard deviations of fluorescence were cal-
culated for negative and positive wells to determine Z factor as previ-
ously described (Blanchard et al., 2004; Inglese et al., 2007).

Z f actor ¼ 1−3 σρþσnð Þ
μp−μnj j :

Where, σp=standard deviation of positive controls, σn=standard
deviation of negative controls, μp=means of positive controls, μn=
means of negative controls.

DMSO tolerance
To investigate the tolerance of the assay toward DMSO, a solvent

typically used to dissolve test compounds, 50 μl reactions containing
0.5 μM NVpro and 16 μM fluorogenic substrate (edans-DFHLQGP-
dabcyl) in assay buffer were supplemented with DMSO. The DMSO
concentrations varied between 0% and 6% (v/v) at otherwise constant
conditions. Fluorescence was measured following incubation at 37 °C
for 60 min. All reactions were performed in triplicate to determine
the effect of DMSO on enzyme activity.

FRET protease assay with protease inhibitors

Pilot screening of protease inhibitors
Commercially available standard protease inhibitors including

serine protease inhibitors (chymostatin, leupeptin, N-tosyl-L-phenyl-
alanine chloromethyl ketone [TPCK], and tosyl-L-lysine chloromethyl
ketone [TLCK]) and a papain-like cysteine protease inhibitor (anti-
pain) were obtained from Sigma-Aldrich (St Louis, MO). Stock solu-
tions (10 mM) of inhibitors were prepared in DMSO, and further
diluted in assay buffer. The final concentrations of DMSO in the
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assay did not exceed 1.5% (vol/vol). NVpro and MD145pro at a final
concentration of 0.5 μM and the substrate (edans-DFHLQGP-dabcyl)
at 16 μM that give a strong signal and minimal inner filter effects
were used for the studies. Inhibitors at a final concentration of
50 μM were pre-incubated with NVpro or MD145pro in 25 μl for
30 min at 37 °C, and the same volume of substrate was added to a
96-well black plate, followed by incubation. The mixtures were incu-
bated at 37 °C, and fluorescence readings were obtained on a micro-
plate reader after 60 min of incubation. The substrate concentration
used for pilot screening was well below the km, but substrate deple-
tion was not observed in the control well (without an inhibitor) dur-
ing 60 min incubation time. The reduction of cleaved products by
each preparation was calculated by the comparison to that of control
without any inhibitor.

Determination of IC50 and Ki of chymostatin
Continuous monitoring of activity kinetics of NVpro and MD145pro

was performed to evaluate the detailed efficacy of chymostatin. Prote-
ases (0.5 μM, final concentration)weremixedwith serially diluted chy-
mostatin (0–50 μM) in 25 μl of assay buffer and incubated at 37 °C for
30 min, followed by the addition of various concentrations of substrates
(30–100 μM). The mixtures were incubated at 37 °C, and fluorescence
readings were obtained on a microplate reader at every 5 min for up
to 30 min. The RFUswere corrected for innerfilter effects and converted
to the concentration of the product of protease reaction. The dissocia-
tion constant for inhibitor binding (Ki) values was determined by non-
linear regression analysis using GraphPad Prism software. The dose-
dependent FRET inhibition curves were fitted with variable slope
(four parameters) using GraphPad Prism software in order to deter-
mine the concentration of chymostatin that reduces enzyme velocity
by half (IC50). The IC50 values were determined in the presence of sub-
strate at 30 μM at 60min.

Solution NMR spectroscopy of NVpro

All NMR experiments were performed at 25 °C on a Varian VNMR
500 MHz spectrometer equipped with a 5 mm triple resonance in-
verse detection cryogenic NMR probe. All NMR spectra were pro-
cessed using NMRPipe (Delaglio et al., 1995), and analyzed with
Sparky (Goddard and Kneller, 2006) and CARA software (http://
www.nmr.ch) (Keller, 2004). Inhibitor titration experiments were
carried out by direct addition of 10 mM stock solution of chymostatin
dissolved in DMSO-d6 (Cambridge Isotope Laboratories, Andover,
MA) into uniformly 15N-labeled NVpro solution. 2D 1H–15N HSQC
spectra of NVpro were monitored during addition of 0.2, 0.5, 1 and
2 M equivalents of chymostatin. Complex points 1024×128 and spec-
tral widths of 14×38 ppmwere used to record all the spectra. Recent-
ly we have reported a total of 94% of the backbone 1H and 15N
resonance assignments of free NVpro (Takahashi et al., 2011). The as-
signment of the HSQC spectra in the presence of chymostatin was
used to investigate the interaction with the inhibitor by following
the peak shifts during titration. Since the use of DMSO-d6 as a co-
solvent caused a slight but traceable resonance peak shifts in dose-
dependent manner, the titrations were repeated with DMSO-d6
alone. Each spectrum with varying amount of chymostatin was com-
pared with that of DMSO-d6 at a corresponding titration point. As a
control, similar experiments were repeated using an unrelated com-
pound dissolved in DMSO-d6 that does not inhibit NVpro activity
(PB compound). Chemical shift changes were characterized using a
weighted chemical shift difference (Δδ− [1/2{δH2+1/25δN2}]1/2)
(Grzesiek et al., 1996).

Docking calculations

The docking models of NVpro in complex with chymostatin were
built using the HADDOCK (high-ambiguity driven biomolecular
docking) program (de Vries et al., 2010; Dominguez et al., 2003), in
which the experimental information on residues involved in intermo-
lecular interaction can be used as ambiguous interaction restraints
(AIRs) to drive the docking. Protein residues directly involved in
intermolecular interaction are defined as “active residues”, while
neighboring residues of active residues as “passive residues”. HAD-
DOCK docking protocols consist of three-stage procedure, a rigid-
body energy minimization, a semi-flexible refinement in torsion
angle space and a final refinement in explicit solvent. Crystal struc-
ture of NVpro (PDB code: 2FYQ) (Zeitler et al., 2006) was used as
the starting structure. NVpro residues showing peak disappearance
or chemical shift perturbation greater than the average shift value,
0.019 ppm, in 1H–15N HSQC spectrum of NVpro with chymostatin
and possessing higher solvent accessibility were selected as active
residues. Solvent accessibility was calculated using GETAREA
(Robert Fraczkiewicz, 1998), where residues are defined as solvent
exposed when the ratio of side-chain surface area to its random coil
value exceeds 50%. All solvent accessible surface neighbors of active
residues were then defined as passive residues in the docking calcula-
tion. Whole residues of the small ligand, chymostatin, were selected
as active residues. Initially, a total of 1000 structures were calculated
at the rigid body minimization stage. From this calculation, the 200
lowest-energy structures were then selected for the subsequent
semi-flexible simulated annealing and the refinement in explicit sol-
vent. The final structures were clustered using the backbone root-
mean-square deviation (RMSD) with a cutoff of 7.5 Å. All the struc-
tures were drawn with the PyMol (DeLano).

Statistics

The student t-test was used to compare the significance of the un-
paired sample means. P valuesb0.05 were considered significant.
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