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Abstract Clark has recently suggested that predictive processing advances a theory

of neural function with the resources to put an ecumenical end to the ‘‘represen-

tation wars’’ of recent cognitive science. In this paper I defend and develop this

suggestion. First, I broaden the representation wars to include three foundational

challenges to representational cognitive science. Second, I articulate three features

of predictive processing’s account of internal representation that distinguish it from

more orthodox representationalist frameworks. Specifically, I argue that it posits a

resemblance-based representational architecture with organism-relative contents

that functions in the service of pragmatic success, not veridical representation. Fi-

nally, I argue that internal representation so understood is either impervious to the

three anti-representationalist challenges I outline or can actively embrace them.

Keywords Predictive processing � Clark � Mental representation � Representation

wars � Intentionality � The job description challenge � The free-energy

principle � Organism-relativity � Structural resemblance

1 Introduction

Predictive processing is an ambitious theory in cognitive and computational

neuroscience. Its central thesis is that brains self-organize around the imperative to

minimize a certain kind of error: the mismatch between internally generated,

model-based predictions of their sensory inputs and the externally generated sensory

inputs themselves (Clark 2016; Friston 2009, 2010; Hohwy 2013). Clark (2015) has

recently suggested that this overarching theory of neural function has the resources
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to put an ecumenical end to what he calls the ‘‘representation wars’’ of recent

cognitive science. Specifically, he argues that it implies an understanding of internal

representation that can accommodate important insights from the enactivist tradition

without renouncing the theory’s representational credentials.

In this paper I defend and develop Clark’s suggestion. First, I broaden the

representation wars beyond those that have characterised the enactivist debate. I

outline three important challenges to representational cognitive science advanced by

a motley crew of pragmatists, behaviourists, reductionists, and those in the tradition

of embodied, embedded, extended and enactive cognition. Second, I articulate three

features of predictive processing’s account of internal representation that distinguish

it from more orthodox representationalist frameworks. Specifically, I argue that it

posits a resemblance-based representational architecture with organism-relative

contents that functions in the service of pragmatic success, not veridical

representation. Finally, I argue that internal representation so understood is either

impervious to these three anti-representationalist challenges or can actively embrace

them.

The structure of the paper is as follows. In Sect. 2 I identify three foundational

challenges to representational cognitive science, concerning (1) representational

function, (2) representational content, and (3) cognitive function. In Sect. 3 I

provide a brief introduction to predictive processing and elaborate its account of

internal representation. In Sect. 4 I argue that this account of internal representation

can either accommodate or avoid the concerns enumerated in Sect. 2.

2 The Representation Wars

The concept of internal representation is central to the contemporary cognitive

sciences and has been since the downfall of behaviourism and the ‘‘cognitive

revolution.’’ A foundational assumption across these sciences is that intelligent

behaviour and adaptive response mandates the construction and manipulation of

content-bearing internal states or stand-ins for elements of the distal environment

(Bermudez 2010; Von Eckardt 2012).

Despite this orthodoxy, the attribution of representational states has always been

mired in controversy and confusion. As Dietrich (2007, 1) puts it, ‘‘though there is a

vast quantity of on-going research dependent on representations… no scientist

knows how mental representations represent,’’ a state of affairs that ‘‘has persisted

since the inception of the cognitive sciences.’’ Stubborn worries concerning the

metaphysics of representation, the nature of representational explanation and the

apparent theoretical limits of traditional cognitive science have provoked outright

scepticism towards internal representations in various heterodox corners of

psychology and philosophy.

Since at least the early 1990s, a significant source of this scepticism has been the

tradition of embodied, embedded, enactive and extended (henceforth EEEE)

cognition. Members of this movement have argued that the concept of internal

representation should be marginalised or even eliminated in the sciences of mind

142 D. Williams

123



and behaviour (cf. Anderson 2014; Chemero 2009; Hutto and Myin 2013; Varela

et al. 1993).1

The resultant debates have some claim to be called the ‘‘representation wars,’’

both for the sharp divisions they’ve sown concerning the status and proper extent of

representational explanation, and for their apparent resistance to straightforward,

empirical resolution. To frame them as a recent phenomenon, however, is to ignore

the extent to which many of the core bones of contention go back much further in

the history of psychology and philosophy, finding their first expression in the work

of pragmatists, behaviourists, and physicalist reductionists not necessarily support-

ive of the positive research agendas in the EEEE tradition.

In this section I give a brief overview of three of these historic and foundational

challenges to representational cognitive science. The aim is not to be exhaustive, to

adequately defend these sceptical challenges or to consider the myriad responses to

them advanced in the literature over many years—an impossible ambition in a paper

of this scope. Rather the hope is to identify three very general sources of scepticism

concerning the existence and extent of internal representation in cognition, and

reveal the way in which superficially different kinds of anti-representationalism

have been motivated by an underlying stock of core grievances. These foundational

concerns, I think, have a good claim to have laid the framework for what might

reasonably be called the representation wars. They concern representational

function, representational content, and cognitive function.

2.1 Representational Function

The first challenge asserts that the concept of representation implies a functional

role that the physical structures and processes implicated in intelligence either do

not or cannot perform. Variants on this challenge thus hinge on two variables: first,

a specification of what the relevant functional role is—that is, what characteristics

an internal structure must possess to qualify as genuinely representational;2 and

second, a specification of what the relevant physical structures and processes

implicated in intelligence are. Two prominent examples of this anti-representation-

alist strategy are worth briefly reviewing.

First, many hold that an internal representation’s content (or the properties in

virtue of which it possesses that content) must be causative for it to qualify as

genuinely representational (O’Brien and Opie 2004; Ramsey 2007). As Dretske

(1988, 80) puts it, ‘‘the fact that [representations] have a content, the fact that they

have a semantic character, must be relevant to the kind of effects they produce.’’ A

plausible motivation for this functional claim is this: if internal representations are

to genuinely explain intelligent behaviour, their effects on behaviour must be a

function of their representational status as content-bearers. Without this, a

representational explanation of the system’s behaviour would be causally

redundant. Anti-representationalists then seize on this functional consideration to

1 Shapiro (2011) provides an excellent overview.
2 There is an enormous literature tackling this question (cf. Haugeland 1991; Ramsey 2007; Von Eckardt

2012).
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argue for an ontological conclusion. Stich (1983), for example, famously argues that

the causal irrelevance of content to classical computational architectures implies at

best a ‘‘syntactic’’ theory of mind, not a representational one.3

Second, many theorists have argued that representation implies a triadic relation

between the vehicle, its target, and—crucially—the cognitive system that uses or

interprets the former to direct its behaviour appropriately towards the latter

(O’Brien 2015; Ramsey 2007; Von Eckardt 2012). One rationale for this functional

claim is that it is implied by the very concept of representation.4 A deeper rationale,

however, resembles the requirement that content be causative: for an internal

structure to qualify as representational—for it to perform interesting work qua

representation—its representational status must surely be exploited by the cognitive

system of which it is a part (O’Brien 2015; Shea 2014). In the mid-twentieth

century, this functional claim was taken to imply that cognitive processes could not

implicate internal representations without inner homunculi as intelligent as the

processes they were drawn upon to explain (Ryle 1949; Wittgenstein and Anscombe

1953).5

What should we make of arguments like this? As noted above, they come in

stronger and weaker forms. The strongest conclusion is that the concept of

representation is so mired in folk superstition and ways of thinking that it deserves

no place in mature science (Rosenberg 2011, 2015). This claim typically relies on a

very strong form of physicalist reductionism, however, or else threatens to define

the concept of internal representation out of existence.

A weaker and more plausible manifestation comes in the form of a challenge—

specifically, what Ramsey (2007) calls the ‘‘job description challenge.’’ Drawing on

the above considerations, the challenge is to demonstrate that the relevant

component parts and operations of cognitive systems perform recognisably

representational jobs—that their status as representations genuinely explains the

cognitive system’s behaviour.

Anti-representationalists who pursue this line of argument contend that the

challenge is not met. Ramsey (2007) himself, for example, argues that the concept

of representation has been trivialized in contemporary cognitive science, and that

many of the structures characterised as representations in our most promising

approaches to cognition are not usefully understood as performing representational

roles. A complementary strategy is developed by those who seek to model the

physical structures and processes responsible for intelligence within a non-

representational framework—an attempted existence proof that there is nothing

distinctively representational about the functions they perform (Anderson 2014;

Chemero 2009).

It is not my intention to evaluate these arguments here. Before moving on,

however, I note something that will be a recurring theme in each of the three

challenges I outline: except for the very strong manifestation of this challenge, its

3 The explanatory irrelevance of meaning is also central to Quine’s (1960) anti-representationalism (c.f.

Hylton 2007). See also Bechtel (2009) for this view of classical computationalism.
4 This seems to be the view of Peirce (1931–58), Ryle (1949), and Wittgenstein and Anscombe (1953).
5 See Ramsey (2007, ch. 4) for an up-to-date version of this challenge.
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application is not global. That is, one might agree with Ramsey that the concept of

representation in contemporary cognitive science has been trivialised, and that many

of the processes characterised as representations are not genuinely representational,

while nevertheless thinking that some theories do genuinely posit full-blooded

representational structures.6

2.2 Representational Content

The second challenge to representational cognitive science is the most notorious. It

contends that representational content cannot be placed within a naturalistic

metaphysics, and so does not exist.

This scepticism has given rise to what Von Eckardt (2012) calls ‘‘the

foundational problem of cognitive science,’’ the ‘‘content determination prob-

lem’’: is it possible to identify the natural properties, relations and processes that

determine the intentional properties of internal representations without circular-

ity? A widely-held assumption is that unless this problem can be answered—

unless content can be reduced to naturalistically kosher non-content—represen-

tational explanation in cognitive science must at best be an instrumental gloss on

fundamentally non-representational processes (Fodor 1987; Sterelny 1991). Quine

(1960) most famously advanced this scepticism, but it has surfaced repeatedly in

different guises over the past half a century or so (cf. Hutto and Myin 2013;

Rosenberg 2015). Importantly, the challenge is posterior to the foregoing worry

about representational function: scepticism about content can only arise for states

or structures assumed to be functioning as content-bearing representations in the

first place (Ramsey 2007).

Much of the work attempting to answer this challenge has taken place within the

framework of ‘‘naturalistic psychosemantics,’’ where the goal is to account for the

reference and extension of in-the-head symbols from which the propositional

contents of intentional states can be recursively constructed (Fodor 1987).7 This

project is motivated by at least three considerations. First, a popular view is that

cognition is rule-governed symbol manipulation and that much of human and

complex nonhuman animal cognition takes place within a discrete symbol system

with a combinatorial syntax and semantics—that is, a language (Fodor 1975;

Schneider 2011). Second, folk psychology and its postulation of propositional

attitudes licenses the characterisation of mental states with the semantic vocabulary

we bring to bear on language (Sellars et al. [1956] 1997). Finally, truth-conditional

semantics suggests a systematic theory of content for such a symbol system,

whereby truth-conditions of molecular symbol structures (the contents of propo-

sitional attitudes) are constructed from the reference and extension of their

constituents and their mode of combination (cf. Davidson 1967).

6 Ramsey (2007) argues that only classical computationalism passes the job description challenge, partly

in virtue of positing structural or ‘‘S-representations’’. If my argument here is correct, predictive

processing does as well—and (partly) for the same reason (see Sect. 4.1 below).
7 See Hutto and Satne (2015) for an up-to-date review.
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The challenge is thus to account for the reference mapping from in-the-head

symbols to things in the environment, subject to the strictures of some form of

metaphysical naturalism and a host of further theoretical desiderata—determinacy,

shared contents, and the possibility of misrepresentation, for example—that have

proven stubbornly difficult to satisfy. Anti-representationalists who pursue this line

of argument contend that the challenge cannot be met: meaning is perhaps an

ineliminable part of our folk ontology—an ‘‘adaptive fiction,’’ as Rosenberg (2015)

puts it—but deserves no place in literal science.

Again, it is not my intention to evaluate this form of scepticism here. As before,

however, I flag up a general lesson: insofar as the bulk of interest in this area has

fallen on linguaformal semantic properties and the preservation of folk psycholog-

ical intuitions, it invites the possibility that one might embrace this form of

scepticism while nevertheless thinking that there are robust kinds of internal

representation not properly characterised with the semantic vocabulary appropriate

to language or hostage to folk intuition, and thus not vulnerable to the same kinds of

challenges (c.f. Churchland 2012; Cummins 1996; O’Brien and Opie 2004, 2015). I

return to this important point in Sect. 4.

2.3 Cognitive Function

Whatever one thinks of the foregoing challenges, they are relatively well-defined.

The same is not true for the third I will consider. Nevertheless, it has played an

important historical role in the anti-representationalist tradition and continues to

exert a considerable influence in discussions concerning the existence and extent of

internal representations today. The challenge has two parts. The first is summarised

in the slogan that ‘‘cognition exists to guide action’’ (Glenberg et al. 2013, 573)—or,

in, Anderson’s (2003, 92) words, that ‘‘thinking beings ought…[to] be considered

first and foremost as acting beings.’’ The second is an implication often drawn from

this slogan—indeed, often not distinguished from it in the embodied cognition

literature—that the concept of internal representation should therefore be either

marginalised (Anderson 2014) or eliminated (Chemero 2009) in the cognitive

sciences. I consider both stages in turn.

First, then, the idea that we should understand the nature of thought in terms of its

role in guiding action of course goes back to the American pragmatists, as does the

broadly anti-representationalist conclusion drawn from it (cf. Godfrey-Smith 2015).

It is a package of commitments nicely encapsulated in the Deweyan slogan

popularised by Rorty (1979, 1989) that mind and language are for ‘‘coping, not

copying.’’

It is only in recent decades, however, that this action-oriented perspective has

become a defining theme of a scientific research programme. The tradition of

ecological psychology initiated by Gibson (1979), for example, ‘‘takes as its starting

assumption that animals’ perceptual systems are geared for action in the world—

foraging, finding shelter, avoiding predators and the like—and not to creating a

replica of the world inside their heads’’ (Barrett 2011, 155, my emphasis). More

generally, the thesis that ‘‘cognition is for action’’ is often advanced by scientists

and philosophers working within the EEEE tradition as a subversive claim with
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destructive implications for traditional representationalist conceptions of the mind.

Engel et al. (2015, 1), for example, argue that cognitive science is experiencing a

‘‘paradigm shift’’ in the form of a ‘‘pragmatic turn away from the traditional

representation-centred framework’’ towards a view that understands cognition ‘‘as

subserving action.’’

The slogan that ‘‘cognition is for action,’’ however, can seem hopelessly vague

(Goldinger et al. 2016). It is often justified on broadly evolutionary grounds, as with

Anderson and Chemero’s (2016) claim that ‘‘the brain evolved to guide action’’.

But—prima facie, at least—an evolutionary perspective would suggest that the

brain evolved to facilitate survival and reproduction, a purpose plausibly served by

an amalgam of different functions for different organisms under different

environmental conditions, and thus unlikely to be illuminated by a conception of

‘‘action’’ or ‘‘action-relatedness’’ so broad to encompass them all.

A popular response to this worry is to explicate ‘‘action-oriented views’’ in terms

of regulation and control (Anderson 2014; Cisek 1999; Van Gelder 1995). This

control-theoretic perspective takes on various forms among different authors in the

EEEE tradition, but the core idea is that a brain should first and foremost be

understood as a ‘‘control system for the [organism’s] interaction with the external

environment’’ (Pezzulo 2016, 24). Cisek (1999) has developed this view in

interesting and influential ways, drawing on insights from Dewey, mid-twentieth

century cybernetics and perceptual control theory. He notes that living systems are

distinguished from non-living systems in acting upon their environments to regulate

their essential variables and thus maintain internally optimal states. In this way they

effectively self-organize and thus ‘‘actively, if temporarily, resist entropic disso-

lution’’ (Anderson 2014, 183). He then takes this fact to imply a fundamental job

description for brains: ‘‘to exert control over the organism’s state within its

environment’’ (Cisek 1999, 8–9) and thus ‘‘maintain organism-relevant variables

within some desired range’’ (Anderson 2016, 7). Viewed in this light, one sees that

‘‘the fundamental cognitive problem facing the organism—deciding what to do

next—is best understood not as choosing the right response to a given stimulus, but

rather as choosing the right stimulus—the right experience to seek—in light of a

goal’’ (Anderson 2016, 7).

This control-theoretic perspective on brain function is not implausible, and is

supported by a growing body of work in theoretical biology and neuroscience

(Barrett 2017a; Sterling and Laughlin 2015). Indeed, as we will see in Sect. 3.4, it is

a central tenet of the predictive processing framework to be defended here. Suppose

one accepts it, however. Why should it constitute a threat to representationalist

theories of cognition? Which view is it opposed to?

The enemy here is a ‘‘reconstructive’’ understanding of perception and cognition

alleged to be characteristic of classical cognitive science, according to which ‘‘the

purpose of perception is to build objective models (representations) of the mind-

independent world’’ (Anderson 2017, 5). On this ‘‘representation-centred para-

digm,’’ cognition is ‘‘understood as a capacity for deriving world-models, which

might then provide a database for thinking, planning, and problem-solving’’ (Engel

et al. 2015, 3). The ‘‘aim of the brain’’ is thus to internally reconstruct the objective

structure of the surrounding environment in the form of ‘‘observer-independent’’
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(Anderson 2014, 172) or ‘‘neutrally specified models’’ (ibid 191) for the purposes of

‘‘higher cognition,’’ such that ‘‘the subject of cognition is a detached observer with a

‘‘bird’s eye’’ view of the world’’ (Engel et al. 2015, 2).

According to Anderson and other advocates of embodied cognition, this

reconstructive understanding of brain function cannot be sustained once we

recognise that it ‘‘evolved to control action.’’ Specifically, an action-oriented

perspective on cognition forces us to recognise the many profound ways in which

contingent and idiosyncratic contributions of the organism—its practical interests,

morphology, response profile, and so on—are implicated in all aspects of cognitive

functioning. This influence is not well-described by the concept of re-presentation

and its associated implication that internal states mirror or reflect independently

identifiable contents of the external world—what Varela et al. (1993) call a ‘‘pre-

given world.’’ An action-oriented perspective implies ‘‘not a representational but a

performative theory of mind and brain’’ (Anderson 2014, 162), in which

‘‘neuroscience would not need to explain how brains act as world-mirroring

devices but rather as ‘vehicles of world-making’ (Varela et al. 1993): vehicles

which support, based on individual learning history, the construction of the

experienced world and the guidance of action’’ (Engel et al. 2015, 4, my emphasis).

This idea is of course central to the tradition of ecological psychology, where the

concept of ‘‘affordances’’ in characterising perception emphasises idiosyncratic

properties of the animal and the ‘‘abilities available in… [its] form of life’’ in

structuring its responsiveness to environmental conditions (Ramstead et al. 2016,

16). On this view, perception relates an organism to its ‘‘Umwelt’’ (von Uexküll

[1934] 1957), a reality fundamentally warped around its practical interests and

morphology (Barrett 2011, 80). It is also the dimension of the enactivist tradition

that Clark seeks to placate in his treatment of predictive processing. Specifically,

enactivists deny that the function of ‘‘perception is… to determine how some

perceiver-independent world is to be recovered’’ in the form of ‘‘action-neutral’’

representations (Varela et al. 1993, 173–174).8 As Clark (2016, 293) puts it, they

advance in opposition to this representationalist view a perspective in which

‘‘organism and world… are… co-defined by a history of structural coupling: a kind

of active ‘‘fitting’’ of each to the other, rather than a passive ‘‘mirroring’’.’’

How plausible is this line of argument? As a rebuke to an unfortunate tendency in

both the philosophical tradition and classical cognitive science of viewing the mind

as something that floats free of the organism’s time-pressured practical engagements

with the environment, it is salutary. The idea of what Wilson (2002) calls

‘‘representation for representation’s sake’’ is biologically unrealistic, and the

presumption that cognition consists in the construction and manipulation of what

Anderson (2014) calls ‘‘neutrally specified’’ or ‘‘observer-independent’’ models

does suggest an implausibly passive conception of brain function—a perspective

nicely captured by what Dewey (1925) decried as the ‘‘spectator theory of

knowledge.’’

Nevertheless, to visit our recurring theme once again, it is unclear why these

important considerations should be taken to undermine internal representation as

8 Quoted in Clark (2016, 290).
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such. After all, the claim that cognition is for ‘‘coping, not copying’’ is evidently

consistent with the view that an enormous amount of the latter occurs in facilitating

the former. And the fact that the brain’s internal states do not comprise ‘‘objective’’

or ‘‘impartial’’ models of the distal environment does not entail that they do not

comprise internal models at all.

2.4 Summary

The foregoing overview has provided a skeletal, whistle-stop tour of three

foundational challenges to representational cognitive science that have emerged in

the previous century. There is an enormous amount of work enumerating and

answering these challenges that I have ignored here. Further, I have focused

predominantly on destructive challenges to representationalism, rather than the

important body of constructive anti-representationalist research programmes such

challenges have given rise to.

One important lesson that I have tried to stress in each of these challenges,

however, is this: what can often seem like a challenge to representational cognitive

science as such emerges on closer inspection to be an objection to one specific kind

of internal representation, or to a specific interpretation of what internal

representation amounts to. This suggests the possibility of an ecumenical resolution

of the theoretical divisions these challenges have sown—one which embraces

internal representations but which nevertheless does justice to the foregoing

concerns. This hopeful prospect, of course, is the thesis advanced by Clark (2015)

that I wish to defend here, and brings me to predictive processing.

3 Predictive Processing and Internal Representation

There are numerous excellent introductions to predictive processing of different

levels of mathematical sophistication and from different theoretical perspectives in

both the scientific and philosophical literature.9 The aim of this section is twofold:

to give a brief and selective introduction to its central claims and core theoretical

structure, and to articulate the account of internal representation that falls out of it. I

postpone consideration of how this account answers the foregoing anti-represen-

tationalist challenges until Sect. 4.

3.1 Predictive Processing: A Brief Overview

First, then, predictive processing shares with mainstream cognitive science the

following assumption:10 to generate adaptively valuable behaviour in real time,

brains must identify the evolving state of the environment—including the internal,

bodily environment—from the trace of ambiguous input signals it leaves on the

organism’s sensorium (Clark 2013). These sensory inputs are ambiguous in that

9 See especially Clark (2013, 2016), Friston (2009, 2010), Hohwy (2013), and Seth (2015).
10 See Gibson (1979) and Anderson (2017) for challenges to this starting assumption.
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they dramatically underdetermine their environmental causes. Further, adaptive

behaviour mandates the integration of potentially conflicting sensory cues from

across the perceptual modalities as well as some means of coping with the

ineliminable noise that arises in biological systems (Rescorla 2013, 2016). In other

words, brains confront an almost unimaginably difficult causal inference problem:

they must infer the hidden state of the constantly changing environment from its

profoundly non-linear and ambiguous effects on the organism’s numerous sensory

transducers (Hohwy 2013).

A popular approach in perceptual psychology and neuroscience models this

process of causal inference as Bayesian inference, an optimal way of combining

prior expectations based on learning or innate endowment with incoming evidence

to arrive at an estimate of how things are (Lee and Mumford 2003; Penny 2012;

Rescorla 2013). This Bayesian approach has numerous well-advertised attractions:

it provides a compelling account of how perceptual systems overcome the noise and

ambiguity in their sensory inputs, and offers illuminating explanations of otherwise

perplexing phenomena such as perceptual constancies and illusions (cf. Rescorla

2013). In addition, there is extensive behavioural evidence that subjects do in fact

integrate perceptual cues in this Bayes optimal way (cf. Knill and Pouget 2004).

Thus specified, however, the ‘‘Bayesian brain hypothesis’’ (Knill and Pouget

2004) is a purely ‘‘performance-oriented model’’: it asserts that the brain performs

Bayesian inference without explaining how it does so. What is needed is a

specification of the actual brain-based algorithms that realise Bayesian inference

and the neural structures and processes that implement them (Colombo and Seriès

2012).

Predictive processing attempts to bridge this gap (Friston et al. 2017). It claims

that (approximate) Bayesian inference occurs through hierarchical predictive coding

and prediction error minimization. There are two concepts central to an

understanding of this process: the concept of a hierarchical probabilistic generative

model, and the concept of predictive coding. I introduce both in turn.

A generative model represents the hidden, interacting causes (the latent

variables) responsible for generating some data set, and can induce candidate

instances of that data for itself based on its generative assumptions (Danks 2014, 44;

Hinton et al. 1995). This is the data expected given its model structure and

parameters: its representation of the causal matrix currently responsible for its

inputs. In this way a generative model can be contrasted with a purely

discriminative model that maps input data onto appropriate categorisations of that

data, familiar from the first wave of feed-forward connectionist models (cf.

Rumelhart and McClelland 1986).

Crucially, generative models for rich, structured bodies of data must be

multilevel or hierarchical, separating out hidden causes at different levels of

abstraction (Clark 2013; Hinton et al. 1995). A generative model for vision, for

example, might represent the causal matrix responsible for the evolving stream of

retinal stimulation at different levels of spatial and temporal scale. Levels low down

in the hierarchy (e.g. in V1) will thus represent fast-moving regularities or

constancies implicating fine-grained environmental features (e.g. light distributions,

orientation, shading, and so on) while levels higher up will estimate slower-moving
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regularities involving more invariant conditions (Friston 2008; Hohwy 2013, 27).

Crucially, this means that the data for every level of the hierarchy—with the

exception of the first—consists of representations at the level below, ensuring that

deeper ‘‘layers of neural populations produce increasingly abstract statistical

summaries of the original visual input’’ (Blouw et al. 2016, 6).

Finally, a hierarchical generative model is probabilistic if these representations

throughout the model are realised as probability distributions or density functions—

that is, representations of the probability that a random variable (or set of variables)

assumes a given value (Knill and Pouget 2004, 712). We saw above that perceptual

inference is ineradicably saturated with uncertainty. Hierarchical probabilistic

generative models (henceforth HPGMS) factor in this uncertainty, encoding

probability distributions defined over distal, interacting causes at multiple levels of

abstraction.

Predictive coding then characterises the nature of message-passing throughout

this hierarchical generative model. Traditional approaches in perceptual psychology

and neuroscience model perception as a process of bottom-up feature detection or

evidence accumulation (e.g. Marr 2010). Roughly, perceptual systems detect

increasingly sophisticated features of the environment as information passes from

initial sensory inputs up through the relevant area of sensory cortex. Predictive

coding reverses this picture. Descending predictions carried from top-down synaptic

connections are issued from higher levels of cortical hierarchies, reflecting the

sensory data the brain expects given the state of its generative model. These

predictions are compared against the sensory data or the representation at the level

below, and the only information then passed back up the hierarchy is the mismatch

between the two distributions: a prediction error quantifying the divergence

between the sensory data the model expects (at each level) and the data it receives

(Lee and Mumford 2003).

By combining generative models and predictive coding in this way, the brain can

identify the multilevel set of interacting hidden causes that best explain its evolving

sensory input by minimizing the error in its predictions of this input—a process

thought to combine prior expectations enshrined in the generative model with

incoming evidence in the Bayes optimal way outlined above (Clark 2013; Hohwy

2013). In an inversion of traditional wisdom, sensory input is thus harnessed as

feedback to the brain’s endogenously generated predictions. Crucially, transforming

sensory input into feedback in this way enables brains to learn the generative

models that facilitate the effective minimization of prediction error by… minimizing

prediction error. That is, brains induce both the structure and parameters of the

generative model that makes Bayesian inference possible by reconfiguring their

patterns of neuronal connection in response to errors in their predictions of the

incoming sensory data, such that both learning and online response are governed by

the same overarching principle (Clark 2016, 15).

So far this process is extremely reactive. An overarching imperative to minimize

prediction error, however, can be satisfied in one of two ways: either by updating

top-down predictions to bring them into alignment with the incoming data, or by

updating the incoming data to bring it into alignment with top-down predictions.

Whereas the former constitutes ‘‘reactive inference’’ (Sims 2016), the latter is
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known as ‘‘active inference’’ (Hohwy 2013). The upshot is that ‘‘perceiving and

acting are but two different ways of doing the same thing’’ (Hohwy 2013, 76).

One manifestation of active inference is sensory sampling: the brain actively

moves the sensory organs around to confirm (or disconfirm) its model-based

predictions of current environmental state (Hohwy 2013, 75–82). In the most

ambitious formulation of predictive processing to be considered here, however,

active inference is extended to explain what would ordinarily be thought of as

‘‘goal-directed’’ behaviour. On this view, motor control is a matter of predicting the

proprioceptive sensory inputs the brain would receive were the body configured in a

desired way. The resultant prediction error conditioned by the absence of this action

is then quashed in a self-fulfilling prophecy: the motor plant activates classical

reflex arcs to bring the incoming signal into alignment with top-down propriocep-

tive predictions (Friston et al. 2017). More generally, the ‘‘goals’’ that ultimately

drive such behaviour are assumed to be conditioned by interoceptive predictions

that function as homeostatic set-points—a crucial feature of the framework that I

return to in more depth in Sect. 3.4 (Seth 2015; Seth and Friston 2016).

For now, however, this emaciated summary of predictive processing must do.

There are numerous dimensions of the theory I have had to leave out in the

foregoing presentation, not least the crucial role of ‘‘precision-weighting’’

throughout the predictive processing architecture, in which the influence of sensory

and prior information is modulated at every level by estimates of their context-

variable reliability (i.e. precision) (cf. Clark 2016, ch. 2). Further, there is a large

and growing literature extending this basic framework to explain an array of other

psychological phenomena: attention (Feldman and Friston 2010), social cognition

(Friston and Frith 2015), neural pathologies such as schizophrenia (Fletcher and

Frith 2008) and autism (Van de Cruys et al. 2013), language (Lupyan and Clark

2015), off-line forms of cognition such as dreaming, mental time-travel, and

counterfactual reasoning (cf. Clark 2016, ch. 3), and more.

Thanks both to this wealth of fertile theoretical applications and its connection to

deeper considerations drawn from theoretical biology to be expanded below (in

Sect. 3.4), many advocates of predictive processing are confident that it heralds a

genuine ‘‘paradigm shift in the cognitive neurosciences’’ (Friston et al. 2017, 1)—

‘‘the most complete framework for date for explaining perception, cognition, and

action’’ (Seth 2015, 1). As Hohwy (2017, 1) puts it, the upshot is a ‘‘unified theory

of brain function [that] seeks to explain all aspects of mind and cognition as the

upshots of prediction error minimization’’ (Hohwy 2017, 1). Next I turn to consider

in more depth the account of internal representation that falls out of this unified

theory of brain function.

3.2 Predictive Processing and Internal Representation

Prima facie, at least, predictive processing is a robustly representational theory of

cognition. At its core is the notion of a hierarchical generative model estimating the

most probable causes of the brain’s evolving sensory inputs. In this section I identify

three features of its account of internal representation that distinguish it from more

orthodox understandings of internal representation. In the next section I argue that
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this account can either accommodate or avoid the anti-representationalist challenges

enumerated in Sect. 2.

3.3 The Model-Building Brain

First, in stark opposition to much of classical cognitive science and contemporary

philosophy, predictive processing’s account of internal representation is resolutely

non-linguaformal.11

A popular view—what Horst (2016) calls the ‘‘standard view’’ in classical

cognitive science and philosophy—holds that the bulk of human cognition takes

place within a system of representation characterised by the structural units,

semantic properties and forms of reasoning associated with language (Fodor and

Pylyshyn 2015). On this view, a three-tiered compositional architecture of word-

sized concepts, sentence-sized intentional states and argument-sized inferences

provides the central medium of brain-bound representation and computation,

interfacing with peripheral perceptual input modules and motor output modules

(Fodor and Pylyshyn 2015; Schneider 2011). The upshot is that the ‘‘fundamental

unit of cognition is the judgement, a unit that lives in a space of sundry logical

relations with other actual and possible judgements, a unit that displays the

characteristic feature of truth and falsity’’ (Churchland 2012, 4).

A long, alternative tradition in philosophy and psychology rejects this

propositionalist account of mental representation in favour of an iconic or analogue

understanding of the mind’s representational capacities (O’Brien and Opie

2004, 2010, 2015). Advocates of this view contend that much of sophisticated

internal representation is founded on similarity or physical analogy with the mind’s

objects. Instead of language, the relevant paradigms from everyday life here are

representational tools such as pictures, diagrams, graphs, maps, and models. Here is

Craik (1943), for example, eerily prefiguring central themes of predictive processing

in the early 1940s:

‘‘If the organism carries a ‘‘small-scale model’’ of external reality… within its

head, it is able to… react to future situations before they arise, utilize the

knowledge of past events in dealing with the present and future, and in every

way react in a much fuller, safer, and more competent manner to the

emergencies which face it’’ (Craik 1943, 61).

In predictive processing, Craik’s hypothesised ‘‘small-scale model’’ becomes the

brain’s rich, hierarchically structured generative model of hidden bodily and

environmental causes. This generative model functions as a ‘‘physical working

model’’ realised in cortical networks that ‘‘shares a relation-structure to that of the

process it imitates’’ (Craik 1943, 51, my emphasis). Specifically, it recapitulates the

causal-probabilistic structure of dependence relationships among functionally

significant (see below) environmental variables as revealed in the statistical patterns

of sensory input. In this way ‘‘neuroanatomy and neurophysiology can be regarded

11 Clark (e.g. 2016, 309, fn. 19) notes the non-linguaformal character of predictive processing

representations, but not (explicitly) their analogue character (see below).
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as a distillation of statistical or causal structure in the environment disclosed by

sensory samples’’ (Seth and Friston 2016, 3), and the brain’s generative model

‘‘inherits the dynamics of the environment and can predict its sensory products

accurately’’ (Kiebel 2009, 7). In other words, brains can only generate ‘‘from the

inside’’ successful anticipations of the sensory signals produced by the environment

by becoming that environment.

If this is right, it suggests the brain and its environment would comprise two

dynamical systems whose evolutions in interaction with each other could be

(roughly—see below) represented by the same set of differential equations (Wiese

2016, 12). For this reason, Gladziejewski (2015) argues that generative models

within predictive processing function as ‘‘causal-probabilistic maps’’: structural

models comprised of states whose functional relations roughly recapitulate the

dynamical interactions among their represented objects.12 The upshot is that

‘‘the hierarchical structure of the real world literally comes to be ‘‘reflected’’

by the hierarchical architectures trying to minimize prediction error, not just at

the level of sensory input but at all levels of the hierarchy’’ (Friston 2002,

237–238; see also Friston 2005, 825).

This relation of ‘‘second-order structural resemblance’’ (O’Brien and Opie

2004, 2010, 2015) is familiar from graphical models in machine learning and

statistics (Pearl 2009).13 Indeed, structural resemblance between the representation

and its domain is plausibly a characteristic of all statistical models—in fact, of all

models (Giere 2004; Godfrey-Smith 2006). A Bayesian network, for example,

consists of a structure of variables and their causal-probabilistic dependencies, along

with a set of model parameters that determine the relevant strengths of such

relationships (Pearl 2009, 13–20). If accurate, this causal-probabilistic structure will

replicate the causal-probabilistic structure of the domain it represents. Further, as

with predictive processing, such networks can be learned by comparing the data

they generate with the data generated by the domain itself (Danks 2014, 44).

Predictive processing in effect bets that the neocortex instantiates a hierarchical

Bayesian network (Gladziejewski 2015, 571). However, instead of explicitly

representing the parameters that determine the strength of the relevant causal-

probabilistic dependencies among environmental variables—in a set of symbolic

descriptions, for example—cortical networks instantiate such dependencies in the

configurations of synaptic connections that govern neuronal activity (Hinton 2005).

In so doing they effectively realise a dynamical model (albeit a causal-probabilistic

one) of the body and environment. An interesting upshot is that—if predictive

processing is correct—brains deploy the very kind of representation that advocates

of dynamical systems theory argue we should use to model the brain.14

12 See also Gopnik et al (2004).
13 The structural resemblance is ‘‘second-order’’ in that it doesn’t require the kinds of relations to be the

same, only that the pattern of relations among elements in the one domain replicates the pattern of

relationships among elements in the other.
14 See also Grush (2004).
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Of course, this is highly schematic, and much more work needs to be carried out

here, both in clarifying the relevant relation of resemblance, and in explaining the

mechanics of how patterns of neuronal activity can mimic environmental

dynamics.15 Nevertheless, it emphasises something important about generative

models within the context of predictive processing: their description as ‘‘models’’

should be construed quite literally. They are physical structures that structurally

resemble their targets. If the hype surrounding predictive processing is well-

founded, it suggests that the pendulum in coming years might swing back towards

(structural) resemblance accounts of mental representation that have in recent times

proven very unpopular in the philosophy of mind (c.f. Cummins 1996; Horst 2016).

That is, we might finally have a compelling alternative to language-like accounts of

our fundamental cognitive architecture.16

The upshot is a beautifully Aristotelian picture of the mind as an organ enformed

by the dynamical structure of the environment it interacts with. The brain emerges

as an arena not for the construction and manipulation of internal judgements but as a

generator of ‘‘causal-probabilistic maps.’’

3.4 The Pragmatic Brain

The overarching function of predictive brains is the minimization of prediction

error. In many introductions to predictive processing in the literature, you could be

forgiven for thinking this is simply a good trick for learning and updating a model of

the world in the service of veridical causal inference and effective intervention.

Indeed, it was heuristically useful to introduce the framework in a similar way

above. On this reading, predictive processing is a manifestation of what Anderson

(2014) calls the ‘‘reconstructive’’ understanding of cognition that we saw in

Sect. 2.3, in which the function of the perceptual system is to transition from an

impoverished sensory input to an objective reconstruction of the distal environment.

Nevertheless, this interpretation is subtly but importantly misleading. As many

authors have pointed out, predictive processing does not make representation itself

an end of brain function (Clark 2016, 168; Hohwy 2013, 55; Seth 2015). Instead,

phenomena such as perception, learning and action are better and more perplexingly

viewed as emergent from a deeper imperative to minimize prediction error.

To understand this, one must situate predictive processing within the context of

the ‘‘free-energy principle,’’ an ambitious framework in theoretical biology and

neuroscience in which prediction error minimization is viewed as a special case of a

more fundamental imperative in biological systems to self-organize under

conditions tending towards increasing disorder (Friston 2009, 2010; Friston and

Stephan 2007). Crucially, this theoretical context situates predictive processing

15 For the former, see Gladziejewski (2015) and Wiese (2016). For the latter, see Churchland (2012). A

fascinating question here is how to make sense of representational activity underlying active inference,

especially the counterfactual predictions involved (cf. Gladziejewski 2015, 575, fn. 14).
16 Of course, this raises the fascinating question of how such a model architecture might be transformed,

augmented and restructured by exposure to the vehicles of natural language in humans. See Clark (2016,

ch. 10) for exploration of this question, and Churchland (2012, ch. 5) for discussion of language in the

more general context of analogue cognition.
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within the control-theoretic framework for understanding brain function advanced

by advocates of ‘‘action-oriented’’ cognition that we saw in Sect. 2.3. As before, any

evaluation of the free-energy principle lies far beyond the scope of the current

paper. Instead I provide a heuristic overview of those of its features that are

necessary for general understanding and that bear on my interests here.

The free-energy principle begins with the familiar observation that biological

systems are distinctive in acting upon their environments to maintain their structural

integrity and the homeostasis of their essential variables, thereby appearing to

violate the increasing tendency towards entropy mandated by the second law of

thermodynamics (Friston 2009; Schrödinger 1945). In other words, biological

systems restrict themselves to a narrowly circumscribed subset of possible

biophysical states and thus maintain homeostasis over long (but finite) timescales

(Friston 2009). There are an enormous number of states a rabbit could be in, most of

which would be inconsistent with its survival. Somehow it remains within a subset

of such states, reflecting the nature of its phenotype and what’s required for that

phenotype to remain viable.

Importantly, these states can be described in terms of the environment’s impact

upon the biological system—that is, activity at and transitions between the states at

its sensory interface with the world (Friston 2010). Thus if we consider an

organism’s phenotype an implicit model of the set of states it must remain within to

survive, homeostasis can be glossed as the minimization of surprisal, where

‘‘surprisal’’ is an information-theoretic term that measures the improbability of an

outcome relative to a model. Crucially, this makes surprisal organism-relative: what

has high surprisal for one organism may have low surprisal for another (Hohwy

2013, 52). In effect, this means that biological systems are ‘‘defined by the particular

way they resist disorder,’’ such that ‘‘a specific type of living agent simply is a set of

states that maintain themselves within certain bounds—the bounds that describe the

conditions necessary for their own survival’’ (Clark 2017, 3).

Biological systems cannot directly evaluate the surprisal of a given state,

however, for they can’t average over an infinite number of copies of themselves in

all possible states to evaluate the surprisal of a given sensory state (Hohwy 2015, 3).

This fact then motivates Friston’s (2009, 2010) bold proposal: a tractable optimiza-

tion task that the brains of organisms can perform that approximates the

minimization of surprisal is the minimization of variational free energy—an

information-theoretic quantity that, under some simplifying assumptions, translates

to long-term prediction error. Thus ‘‘prediction error minimization is, essentially, a

tool for self-organisation’’ (Gladziejewski 2015, 563).

As the authors of a recent textbook put it, ‘‘the core task of all brains… is to

regulate the organism’s internal milieu’’ (Sterling and Laughlin 2015, xvi).

Predictive processing is advanced as a ‘‘process theory’’ (Friston et al. 2017)

intended to explain how they achieve this.

For our purposes, what is crucial about the free-energy principle is its emphasis

on the extent to which internal representation is understood within the context of

predictive processing as a means to a non-representational, pragmatic end: namely,

the end of maintaining the homeostatic integrity of the organism under conditions

tending towards increasing disorder. This effectively situates predictive processing
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in the context of the ‘‘good regulator theorem’’ advanced in the cybernetics tradition

(Seth 2015), and implies that the brain recovers the distal environment through its

generative model only insofar as it bears on its regulatory function—an important

point I return to below.17 As Seth (2015, 3) puts it, ‘‘perception emerges as a

consequence of a more fundamental imperative towards homeostasis and control,

and not as a process designed to furnish a detailed inner ‘‘world model’’ suitable for

cognition and action planning’’ (Seth 2015, 3, my emphasis).

3.5 Modelling the Umwelt

An immediate upshot of this pragmatic perspective on brain function is that the

contents of generative models within predictive processing are profoundly

organism-relative, structured by the contingent practical interests and idiosyncratic

properties of the organisms of which they are a part (Clark 2015, 2016; Madary

2015; Barrett 2017a). As Gladziejewski (2015) puts it, ‘‘the way the whole

prediction error minimization machinery works is not neutral from the point of view

of the ‘‘interests’’ of an organism as a self-organising entity.’’

To see this, recall again the core tenets of the reconstructive perspective on

cognition introduced in Sect. 2. On this view, the brain can be decomposed into

functionally differentiated perceptual sub-systems that implement algorithms for

computing the value of functions, where the output—the value—of such functions is

understood as a veridical representation of the distal environment to be passed on to

‘‘higher’’ cognitive areas (Crane 2003, ch. 3). Marr’s (2010) seminal work on vision

provides the exemplar: the purpose of the visual system is to provide an accurate

and objective three-dimensional representation of the distal environment—to

identify ‘‘what is where’’ (Marr 2010)—from the representation of light intensities

on the retina. In addition, the more ‘‘discursive’’ regions of mental representation in

classical cognitive science are typically understood to be reliant on a determinate

reference mapping from brain-bits to reality-bits, specifiable in the perspective-

independent vocabulary of natural science (Fodor 1987; Fodor and Pylyshyn 2015).

The upshot of this ‘‘classical representation-centred paradigm’’ is clear: the

brain’s function is at least in part the construction of veridical re-presentations of the

world, the contents of which are explained in terms of a mapping between internal

and independently identifiable external states. The ‘‘subject of cognition’’ is thus

viewed as ‘‘a detached observer with a ‘‘bird’s eye’’ view of the world’’ (Engel et al.

2015, 3).

Predictive processing positions itself in stark opposition to this view. The brain

represents the causal structure of the ambient environment only insofar as it bears on

its practical function of homeostatic control, extracting ‘‘the patterns that matter for

the interactions that matter’’ (Clark 2016, 292) and discarding the rest. As Barrett

(2017a, 3) puts it, ‘‘a brain did not evolve for rationality, happiness or accurate

perception. All brains accomplish the same core task: to efficiently ensure resources

for physiological systems with an animal’s body (i.e. its internal milieu) so that an

17 The theorem states that ‘‘every good regulator of a system must be a model of that system,’’ thus

essentially tying homeostasis to representation (Conant and Ashby 1970).
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animal can grow, survive and reproduce.’’ The upshot is straightforward, profound,

and diametrically opposed to reconstructive views: ‘‘modelling the world ‘‘accu-

rately’’ in some detached, disembodied manner would be metabolically reckless.

Instead, the brain models the world from the perspective of its body’s physiological

needs’’ (Barrett 2017a, 6).

In the vocabulary introduced in Sect. 2, the brain thus recovers the organism’s

‘‘Umwelt,’’ or what Barrett (2017a, b) nicely terms its ‘‘affective niche’’: the

environment as it matters to the organism and its physical integrity. ‘‘Anything

outside your affective niche,’’ Barrett (2017b, 73) notes, ‘‘is just noise: your brain

issues no predictions about it, and you do not notice it.’’

In a wonderful essay on the ‘‘frame problem’’ in classical artificial intelligence,

Haugeland (1987, 92) expresses a worry with cognitive-scientific theories that rest

on internal models of the sort that predictive processing postulates:

One thing that’s frightening about ‘‘mental scale models’’ is that there’s no

obvious end to them: Why not just recreate the entire universe, monad-like,

inside each individual brain? Well, because it’s manifestly absurd, that’s why.

But what could motivate, or even delineate a more modest scheme?

Predictive processing motivates a more modest scheme: generative models

recapitulate the causal-probabilistic structure of the organism’s affective niche as

carved out by the brain’s regulatory function. As Clark (2016, 196) puts it, it is ‘‘the

agent-salient structure of the distal realm [that] becomes reflected in both the large-

scale shape and the spontaneous activity patterns of the neural architecture’’ (my

emphasis). The rest is discarded as noise.

3.6 Summary

Predictive processing presents a radical and exciting conception of cognitive

activity: brains are prediction machines that self-organize around the imperative to

minimize the mismatch between predicted and received sensory inputs, an

imperative that mandates both reactive and active inference. These inferential

processes are made possible through the construction of a richly structured

hierarchical generative model of functionally salient environmental causes, the

contents of which are coloured at every level by the practical interests of the

organism and function as instruments in the service of homeostatic control.

4 PP and the Representation Wars

My thesis is this: by nesting a compelling structural resemblance-based account of

internal representation within a fundamentally pragmatic brain, predictive

processing has the resources to either avoid or accommodate the chief anti-

representationalist concerns outlined in Sect. 2. I now consider each of these

challenges in turn.
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4.1 Representational Function

Recall the first anti-representationalist challenge introduced in Sect. 2: do the

structures characterised as representations in the foregoing presentation—as

‘‘inferences,’’ ‘‘predictions,’’ and ‘‘generative models,’’ for example—genuinely

warrant this representational interpretation? That is, do they perform recognisably

representational jobs within the cognitive architecture described by predictive

processing?

Anderson and Chemero (2013) have recently expressed scepticism on just this

score. They argue that representational interpretations of predictive processing

conflate ‘‘different senses of ‘‘prediction’’ that ought to be kept separate.’’ One sense

of ‘‘prediction’’—what they call ‘‘prediction1’’—‘‘is closely allied with the notion

of correlation, as when we commonly say that the value of one variable ‘‘predicts’’

another,’’ and is ‘‘essentially model-free’’ (Anderson and Chemero 2013, 203).

Another sense (‘‘prediction2’’), by contrast, ‘‘is allied instead with abductive

inference and hypothesis testing,’’ and is ‘‘theory laden and model-rich.’’ At most,

they argue, the evidence for predictive processing is evidence for the ubiquity of

prediction1 in cortical activity. Conceptualising such activity in terms of prediction2

is a ‘‘theoretical choice not necessitated by the evidence’’ (Anderson and Chemero

2013, 204). Given that one can describe the functional asymmetry between bottom-

up and top-down signals at the core of predictive processing in a non-represen-

tational vocabulary,18 Anderson and Chemero raise a reasonable challenge: why

bother with the representational interpretation of such cortical processes advanced

above?

This challenge is easily answered, however. As Gladziejewski (2015) has

recently argued, the generative models posited by predictive processing perform

robustly representational functions within the overall cognitive architecture it posits.

Indeed, predictive processing ‘‘might be as representational as cognitive-scientific

theories get’’ (Gladziejewski 2015, 561).

I won’t recapitulate every detail of Gladziejewski’s nuanced treatment here, with

which I am in complete agreement. For our purposes, the core idea is relatively

straightforward: generative models within predictive brains function as ‘‘action-

guiding, detachable, structural models that afford representational error detection’’

(Gladziejewski 2015, 559). Each of these characteristics should be familiar from the

foregoing presentation, so I will move through them relatively quickly.

First, generative models are structural models in exactly the sense introduced in

Sect. 3.3: they are physically realised cortical networks that recapitulate the causal-

probabilistic structure of the (functionally significant) environment.

Second, this structural resemblance is actively exploited by the brain in its proper

functioning, guiding the organism’s environmental interventions. To see this, recall

from Sect. 3 why brains minimize prediction error: namely, to maintain the

organism within its expected states. As Gladziejewski (2015) notes, the central

thesis of predictive processing is that the brain’s ability to achieve this feat is

18 See Rao and Ballard (1999). Indeed, it is this fact that makes the predictive processing architecture a

genuine ‘‘process theory’’ with a potential mechanistic implementation.
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dependent on the resemblance between the causal-probabilistic structure of the

generative model and the ambient environment. That is, effective active inference is

only possible given a sufficiently accurate model of the causal-probabilistic

dependence relationships among significant environmental variables (cf. Hohwy

2013, 91). As Gladziejewski and Milkowski (2017) note in a recent paper, this

makes the structural resemblance between the generative model and the environ-

ment causally relevant to the brain’s proper functioning. Such models are thus

‘‘action-guiding’’ in that the organism’s ability to intervene on its environment to

maintain its viability is functionally dependent on the degree to which its cortical

networks accurately recapitulate the causal-probabilistic structure of the action-

relevant environment.

Third, an implication of this is that such models are ‘‘detachable.’’ Specifically, it

is the generative model itself that functions as the locus of behavioural control—of

the organism’s active-inference induced environmental interventions—and not

some direct coupling with the environment. As Gladziejewski (2015) puts it, ‘‘active

inferences are dictated by endogenously-generated hypotheses about causes in the

external world.’’ In this way such generative models genuinely function as a proxy

or stand-in for the surrounding environment in much the same way that one might

exploit a map as the locus of navigational decisions in navigating an unfamiliar

terrain. Further, given the fundamentally predictive character of generative models,

this detachment is such that active inferences are guided as much by model-based

expectations (predictive simulations) of how things will be as by estimates of how

they are.

Finally, such generative models afford representational error detection. Specif-

ically, they enable the brain to determine to what extent its internal stand-in for the

environment genuinely mirrors its functionally relevant causal structure. This

follows from a simple fact: because the brain’s proper functioning is dependent on

its ability to minimize prediction error, and this ability is in turn dependent on to

what extent its internal model recapitulates the causal-probabilistic structure of the

world, the brain can harness failures of prediction error to detect errors in the

accuracy of its internal model. Indeed, it is this ability of predictive brains to harness

their own sensory inputs as feedback to the installation and deployment of their

generative model that is one of the most attractive features of predictive processing

(Hohwy 2013, 49).

As this analysis showcases, the characterisation of generative models as models

within predictive processing is neither idle nor vacuous. Such structures function in

a way that is robustly representational in character, enabling brains to effectively

coordinate the organism’s behaviour with the surrounding environment by

constructing an internal surrogate or simulation of that environment with which

to predict its sensory effects and support adaptive interventions. It is thus not just

that cortical networks recapitulate the causal-probabilistic structure of the environ-

ment that renders them generative models. It is the fact this structural resemblance is

causally relevant to the brain’s homeostatic functioning and exploited in a way that

is recognisably representational in character. Talk of ‘‘models’’ and ‘‘prediction’’ is

therefore fully justified.
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With this analysis in hand, consider again Anderson and Chemero’s preference

for focusing exclusively on anticipatory dynamics within cortical networks in place

of the representational interpretation advanced here. It should now be clear that this

suggestion neglects the two most important questions in the vicinity. First, what is

the function of such anticipatory dynamics? Second, how are they achieved? It is in

answering these questions that the representationalist interpretation of predictive

processing is required: effectively anticipating the incoming signal is necessary for

the organism’s ability to intervene upon the environment to maintain homeostasis,

and it is made possible by the exploitation of an internal model of the signal source.

Without this representationalist interpretation, the brain’s ability to so successfully

‘‘predict1’’ its incoming sensory inputs is both unmotivated and unexplained. It is

not enough to show that brains are ‘‘prediction machines’’: predictive processing

explains how and why they become this way—namely, by installing and deploying a

model with which to guide the organism’s viability-preserving interventions in the

world.

4.2 Content Determination

Recall now the second challenge introduced in Sect. 2: representational content

cannot find a place in the natural world. After consciousness, this ‘‘problem of

intentionality’’ constitutes the most significant challenge to a thoroughly naturalistic

understanding of the mind, and it has given rise to a truly staggering amount of

philosophical work. Of course, I cannot demonstrate that predictive processing

solves this perennial problem here. Instead, I offer some preliminary reasons to

think that it genuinely transforms the nature of the problem in a significant way.

Specifically, I argue that it situates the problem firmly in the domain of cognitive

science, not metaphysics.

To see this, it is helpful to begin with a remark by Clark (2015, 2) in a recent

paper discussing the implications of predictive processing for the problem of

content:

To naturalize intentionality… ‘‘all’’ we need do is display the mechanisms by

which such ongoing viability-preserving engagements are enabled, and make

intelligible that such mechanisms can deliver the rich and varied grip upon the

world that we humans enjoy. This, of course, is exactly what PP [predictive

processing] sets out to achieve.

This passage should be puzzling for two reasons. First, Clark seems to suggest

that naturalizing intentionality is a matter of identifying the neural mechanisms

implicated in hierarchical prediction error minimization, which he takes to be part

and parcel of the first-order research programme of predictive processing itself. This

stands in stark contrast to the division of labour philosophers are accustomed to, in

which cognitive scientists posit a computational architecture and philosophers

explain what determines the contents of its representations (Fodor 1987; Von

Eckardt 2012). Second, Clark seems to ignore all those characteristics of

intentionality that have made the problem of content so difficult, reducing it

instead to our ability to gain a ‘‘rich and varied grip upon the world.’’ What about
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determinacy, shared contents, and the possibility of misrepresentation, for example

(Fodor 1987; Hutto and Satne 2015)? It is common knowledge in the philosophy of

mind that a mere account of internal mechanisms has little to say about such

recalcitrant phenomena.

Nevertheless, I think that Clark is on to something, and it follows once more from

predictive processing’s structuralist approach to internal representation.

First, recall from Sect. 2.2 that almost all work on ‘‘naturalizing content’’ has

been concerned with linguaformal semantic properties, where the challenge has

been to establish the referential properties of in-the-head symbols from which the

propositional contents (truth-conditions) of intentional states are recursively

constructed. At the heart of this project is a rigid distinction between the formal

or ‘‘syntactic’’ properties of such symbol structures and their semantic properties, in

which—as with all forms of digital computation—it is assumed that computational

procedures are sensitive only to the former, not the latter. Those who argue that

cognition is a matter of syntax-sensitive operations on symbol structures thus need a

story about how such structures acquire their contents—hence the project of

‘‘naturalistic psychosemantics’’ (Fodor 1987). As many have noted, however, a

worry with this project is that its starts from the view that the representational status

of such structures is epiphenomenal. Worse, this worry is exacerbated by the fact

that most attempts to provide a semantics for such symbol structures appeal to

extrinsic properties such as causal or informational relations that are irrelevant to

the intrinsic properties by which they perform their functional roles (Bechtel 2009;

O’Brien and Opie). For many, this engenders the suspicion that such forms of in-

the-head digital computation are not truly representational at all (Stich 1983; Searle

1980), or that their semantic interpretation is at best part of the ‘‘informal

presentation of the theory’’ (Chomsky 1995, 55)—what Dennett (1987, 350) once

called a ‘‘heuristic overlay’’ (cf. also Bechtel 2009; Egan 2013).

Structuralist accounts of internal representation of the sort implied by predictive

processing fundamentally transform this situation in at least two important ways.

First, the semantic properties of such models are grounded in their intrinsic

structure—in the case of predictive processing, in the intrinsic patterns of cortical

activity that realise its causal-probabilistic structure (Cummins 2010). Thus the

properties implicated in cognitive processing—the intrinsic structure of the

representational vehicles—are the same properties in virtue of which they represent

(through resemblance) their target (O’Brien and Opie 2010). Second, as noted in the

previous section, this structural resemblance between the two systems is causally

relevant to the cognitive system’s functioning: the proper functioning of predictive

brains is causally dependent on the structural resemblance between their generative

model and the environment (Gladziejewski and Milkowski 2017). These two

features are bound up with one another, of course: it is only because the intrinsic

structure of a predictive brain’s internal model is simultaneously responsible both

for its ability to represent and for the capacities it exhibits that the former can be

causally relevant to the latter.

The implication of these facts is straightforward and genuinely transformative,

however: issues concerning content determination become directly relevant to the

question of how such structures perform their systemic role. As O’Brien and Opie
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(2010) note, representational systems that exploit a structural similarity between

their internal states and their target are not merely ‘‘syntactic engines’’ that acquire a

semantics through interpretation or through hypothesised causal relations to

environmental states; they are full-blown ‘‘semantic engines’’ in which ‘‘compu-

tational processes … are driven by the very properties that determine the contents of

[their internal] vehicles’’ (O’Brien and Opie 2010, 8).

The immediate implication of this fact is to situate questions concerning content

determination firmly in the realm of cognitive neuroscience, just as Clark suggests.

The question becomes how the brain’s structural and dynamical properties can

recapitulate the nested causal structure of the environment in the exploitable manner

suggested above—a question upon which there has already been extensive research

(Friston 2002, 2008). The problem of integrating representational properties into a

scientific metaphysics thus becomes first and foremost a problem in science, not

metaphysics. Of course, the suggestion is not that philosophers have no role to play

in this project—a self-defeating suggestion in the current context, and one

undermined by the recent explosion of extremely valuable work in just this area

drawn upon here.19 Rather, the claim is that this work is now firmly entangled with

the explanatory concerns of first-order science in a manner largely absent from the

programme of naturalistic psychosemantics as it has been practiced in recent

decades.20

But what about those desiderata that have proven so difficult to accommodate in

this project: determinacy, shared contents, the possibility of misrepresentation, and

so on? How would a mere account of neural mechanisms speak to those

phenomena?

This gets things backwards, however. Cognitive science—indeed, science in

general—is under no obligation to accommodate folk psychological or semantic

intuitions (Churchland 2012; Cummins 2010). Contra Hutto (2017), the mere fact

(if it is a fact) that we currently have no story about how to reduce semantic

properties as viewed through the lens of folk psychological intuition—namely, as

fine-grained determinate truth-conditions—to purely physical properties is not itself

an objection to representationalist treatments of predictive processing. The question

is whether such properties are necessary for generative models to perform their

functional role. And—as a number of philosophers have noted (Churchland 2012;

Cummins 2010; O’Brien and Opie 2015)—these properties in fact sit uneasily with

structural representations of the sort harnessed by predictive brains. Representa-

tional media such as maps and models, for example, typically lack the fine-grained,

determinate contents we pre-theoretically attribute to folk psychological states and

associate with linguistic expressions, and these characteristics are likely to be

carried over to representation in natural systems.21 Further, the prospects of

identical or shared contents looks hopeless in the context of predictive processing:

the internal models of similar animals with similar learning histories will no doubt

19 I thank an anonymous reviewer for pressing this point.
20 See Cummins (2010) for this criticism.
21 I thank an anonymous reviewer for this way of framing things.
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overlap and resemble each other to substantial degrees, but their contents will still

likely be endlessly idiosyncratic (Clark 2015).

What about the notorious problem of misrepresentation or error? Again, I cannot

hope to tackle this enormous issue here, except to note one cause for optimism: by

focusing on the subservience of generative models to pragmatic success, predictive

processing moves us away from a picture of internal representations as judgements

to one in which they function as representational tools—that is, physically

instantiated surrogates for the action-salient causal structure of the environment that

facilitate viability-preserving environmental interventions. As many have noted,

structural representations force us to shun the idea of representational evaluation as

a binary phenomenon in favour of a much looser and more graded notion of

accuracy or ‘‘aptness,’’ where—crucially—the vehicle’s representational value is

relativized to the sort of practical application for which it exists to provide guidance

(Horst 2016, 86).22 It is a familiar theme in the philosophy of science that models

are not true or false; they are invariably highly idealised, selective and often

purposefully distortive stand-ins for a domain that enable us to coordinate our

practical engagements with it (Giere 2004). Representational error must therefore

be evaluated against such practical ends. As Clark (2015, 4) puts it, ‘‘the test of a

good [generative] model is how well it enables the organism to engage the world in

a rolling cycle of actions that maintain it within a window of viability’’ (my

emphasis).

If this is right, it suggests that many of the problems associated with classical

attempts to naturalize intentionality may not arise in the context of predictive

processing. Clark’s suggestion is perhaps a little over-stated, but it touches on

something important. The core thesis of predictive processing is that brains install

and deploy a generative model of environmental causes in the service of

homeostasis. If we can explain how cortical networks come to embody these

pragmatic structural models, and how such models can be exploited in cognitive

functioning, we will have ‘‘naturalized’’ intentionality in the only way that could be

important to the representational status of the framework.

Before turning to the final challenge outlined in Sect. 2, it is worth introducing an

objection that might naturally arise in response to the foregoing treatment. The

objection is this: even if one accepts that predictive processing can avoid the first

two anti-representationalist challenges in the manner I have suggested, the principal

explanation of this is not anything specific to predictive processing. Rather, it is the

fact that predictive processing posits structural representations. Such structural

representations, however, are common to a much broader class of approaches in

cognitive science, including both classical computational and connectionist

accounts of information-processing. Thus it is not predictive processing as such

that puts an end to the representation wars, but the broader class of structural model-

based approaches of which it is merely one manifestation.23

This objection clearly gets something right. A structural approach to internal

representation has become increasingly popular in recent years—and for good

22 Gladziejewski (2015, fn. 6) make a similar point.
23 I thank an anonymous reviewer for forcefully articulating this objection.
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reason.24 Part of the argument I have advanced here is that predictive processing can

capitalize on the theoretical advantages it enjoys with this broader class of models.

Nevertheless, predictive processing also contributes something genuinely novel.

In addition to its implication that model-based representation is the fundamental

kind of representation employed by the brain, it also situates this compelling

structural resemblance-based account of internal representation within an overar-

ching account of neural function that can effectively answer the third anti-

representationalist challenge introduced in Sect. 2. It thus comes with a fuller

package of answers to the concerns raised by those sceptical of internal

representations in cognitive science. It is to this final challenge, then, that I turn

next.

4.3 Cognitive Function

Superficially, at least, the third anti-representationalist challenge introduced in

Sect. 2 is the most straightforward to address given the presentation of predictive

processing in this paper. This challenge, recall, contends that the concept of

representation implies an implausibly ‘‘reconstructive’’ account of perception that

fails to capture the ‘‘action-oriented’’ character of cognition and thus the many

profound ways in which contingent properties of the organism are implicated in the

contents of its experience.

First, predictive processing fully embraces the control-theoretic perspective on

brain function we saw associated with the most perspicuous advocates of this

‘‘action-oriented’’ view in Sect. 2. Predictive brains are fundamentally pragmatic

brains, designed to maintain the organism’s viability under conditions tending

towards disorder. As we saw in Sect. 3.4, any representation that occurs in such

systems is subservient to this practical end.

In addition, numerous authors have noted that predictive processing provides a

literal vindication of the functional primacy many in the EEEE tradition ascribe to

action in cognition (Bruineberg et al. 2016; Clark 2016). To see this, note that

reactive or perceptual inference—that is, the process by which brains update top-

down predictions to bring them into alignment with the incoming signal—is in itself

impotent when it comes to minimizing ‘‘surprisal,’’ the ultimate function of

prediction error minimization. As Hohwy (2013, 85) nicely puts it, ‘‘perceptual

inference can make you perceive that you are hurtling towards the bottom of the

sea… but cannot do anything to change that disturbing sensory input.’’ It is only

through active inference that organisms can intervene upon their environments to

actively minimize surprising exchanges with them. Thus ‘‘perception plays a

secondary role in optimising action’’ (Friston and Stephan 2007, 418), just as many

advocates of embodied cognition have long argued (Engel et al. 2015; Glenberg

et al. 2013).

Perhaps most importantly, however, predictive processing accommodates the

hostility towards ‘‘reconstructive’’ accounts of perception expressed by those in the

EEEE tradition. As noted in Sect. 3.5, the world modelled by predictive brains is the

24 See Gladziejewski and Milkowski (2017) for an excellent overview and analysis.
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organism’s affective niche, the causal-probabilistic structure of the environment as

it bears upon the brain’s regulatory function and thus the organism’s physiological

integrity. This concept of an ‘‘affective niche’’ can accommodate metaphors like

‘‘enacting a world’’ and ‘‘world-making’’ in the enactivist tradition within a

thoroughly representationalist outlook on cognition. Indeed, as Barrett (2017b, 83)

puts it (characterising homeostasis as the maintenance of one’s ‘‘body budget’’):

‘‘from the perspective of your brain, anything in your affective niche could

potentially influence your body budget, and nothing else in the universe matters.

That means, in effect, that you construct the environment in which you live.’’

Nevertheless, at this point a potential objection raises its head. If the contents of

these generative models are as profoundly organism-relative as I have suggested,

what sense can be made of the structural resemblance that has been at the core of the

view advanced here? That is, is there any prospect of independently identifying

‘‘what stands on the other side’’ of this alleged resemblance relation?25 If not, one

might object that talk of re-presentation is not warranted: perhaps this thoroughly

pragmatic perspective on brain function should force us to ditch such reconstructive

talk in favour of a ‘‘performative’’ or ‘‘enactive’’ understanding of the mind.

Bruineberg et al. (2016, 15) suggest as much in their anti-representationalist

treatment of predictive processing: ‘‘if my brain is a scientist,’’ they argue, ‘‘it is a

crooked and fraudulent scientist.’’ Their worry is that cortical networks do not really

recapitulate the objective causal-probabilistic structure of the external environment:

they are ‘‘vehicles of world-making’’, not ‘‘world-mirroring devices’’ (Engel et al.

2015, 5).

There are two reasons this objection is misguided.

First, the fact that a model is not ‘‘neutrally specified’’ or ‘‘observer-

independent’’ (Anderson 2014) does not imply it is not a model. Advocates of

EEEE cognition often write as if the only kind of viable internal representations are

what Clark (2001) calls ‘‘objectivist representations,’’ namely perspective-indepen-

dent representations of the action-neutral environment of the sort familiar from

models of perception in classical cognitive science. This cannot be right, however.

Most if not all models in science are heavily idealised, partially distortive and

interest-relative (Giere 2004; Horst 2016). The question is whether the relevant

vehicle or vehicles are being exploited as a structural surrogate for another domain,

and we have seen excellent reason to suppose they are in the case of predictive

processing: predictive brains exploit cortical activity as a stand-in for the ambient

environment with which to anticipate its sensory effects and support viability-

preserving interventions.

Second, the organism-relativity defended here does not imply that the elements

of generative models are imagined. It is vastly implausible that brains could

generate time-pressured and adaptively valuable behaviour in hostile environments

without at least partially recovering the objective structure of such environments. As

Gibson (1979) himself stressed, ‘‘affordances’’ are not subjective. The point is rather

that the objective structure predictive brains do recover is interest-relative and

specified relative to the organism’s practical abilities for intervention. In Anderson’s

25 I thank an anonymous reviewer for pressing this point.
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(2014, 2016) ‘‘performative’’ theory of brain function, he writes that ‘‘because

perception is both active and in the service of action, much of the information to

which organism are attuned is not objective information of the sort one might need

for model-building, but rather relational information that is more immediately

useful for guiding action in the world’’ (Anderson 2016, 7). The contrast here is

simply confused, however: relational information—for example, the network of

complex dependence relationships between essential organismic variables, envi-

ronmental states and opportunities for intervention—is perfectly objective and

exactly the kind of information structural models are suited to represent.

The upshot of these considerations is that predictive processing can accommo-

date what is important in the third anti-representationalist challenge introduced in

Sect. 2 while nevertheless preserving its robustly representational status. Predictive

brains are not passive spectators: they are vehicles of pragmatic success, facilitating

self-organization through the construction and exploitation of structural stand-ins

for the organism’s affective niche.

4.4 Summary

If the foregoing arguments are along the right lines, Clark’s hopeful prophecy of a

satisfying peace in the representation wars of recent decades is warranted: by

nesting a compelling structural resemblance-based account of internal representa-

tion within a fundamentally pragmatic brain, predictive processing has the resources

to either embrace or avoid the most serious concerns raised by anti-representation-

alists without foregoing a fundamentally model-based approach to perception,

cognition and action. In one of the most sophisticated broadly anti-representation-

alist tracts in recent time, for example, Anderson (2014, 162) writes that his chief

objection to the postulation of internal representations ‘‘is that it comes freighted

with the baggage of reconstructive perception and the symbol systems hypothesis.’’

Predictive processing, however, comes with neither. In place of the formally

individuated symbol structures and syntax-sensitive operations characteristic of

classical cognitive science, it advances a cortically realised network of causal-

probabilistic maps. And in place of an image of minds as ‘‘mirrors of nature,’’ it

advances an action-oriented recapitulation of an organism’s idiosyncratic Umwelt—

a representation of the environment as it matters to the organism in facilitating the

ultimate kind of pragmatic coping.

5 Conclusion

Much more work needs to be done, of course. Many of the foregoing claims have

been schematic at best and would require substantial elaboration in a longer and

more extensive treatment. How does the probabilistic and Bayesian component fall

out of the structural resemblance interpretation of generative models, for

example?26 How can a model-based architecture as advanced by predictive

26 See Gladziejewski (2015) and Wiese (2016) for some tentative work in this area.
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processing accommodate the symbolic and propositional kinds of representation

with which we are familiar?27 What are the implications of the foregoing account

for our folk-psychological commitments to beliefs and desires and the semantic

characteristics we pre-theoretically attribute to such states? Further, I have said

nothing about many of the more philosophical dimensions that have characterised

the debate between representationalists and their opponents: the mind/world

relation, epistemic internalism, and Kantian projectivism, for example.28 Perhaps

most importantly, I have ignored all empirical questions concerning the explanatory

credentials of predictive processing, and it has recently received some impressive

and withering critiques (Colombo and Wright 2016; Klein 2016).

Nevertheless, I hope the present paper has advanced the fascinating contempo-

rary debate about the nature of internal representation within predictive processing,

and offered some additional support for the exciting prospect that it might herald a

unifying framework for the integration of important insights from intellectual

traditions commonly understood as rivals.
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