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INTRODUCTION

The menisci are semi-lunar wedge-shaped discs that are vital to load distribution, stability, and
lubrication of the knee (Fox et al., 2012). Due to the variety of stresses placed on these tissues, they
are often injured, both through trauma and degeneration. Due to the relative avascularity in the
tissue (Henning et al., 1987), it mostly lacks the capacity to self-heal, necessitating surgical
intervention, with nearly 500,000 arthroscopic meniscal procedures annually in the US alone (Kim
et al., 2011). Meniscectomy, or removal of the torn tissue, remains a leading treatment modality
(Abrams et al., 2013; DeFroda et al., 2020), as it provides symptomatic relief from catching and
locking; however, it predisposes the joint to long-term degeneration due to increased stresses
placed on the articular surfaces (McDermott and Amis, 2006; Wang et al., 2015). Meniscus
replacement options, such as allografts and scaffolds (Rodeo, 2001; Steadman and Rodkey, 2005;
Efe et al., 2012; Lee et al., 2012), certainly exist, but they are currently limited in their long-term
efficacy due to lacking formation and/or maintenance of functional meniscus tissue. For this
reason, meniscal suture repair to preserve the native tissue has become increasingly popular
(Beaufils and Pujol, 2017; Momaya, 2019), yet these procedures are only performed at a fraction of
the rate (10–15%) of meniscectomy.

The decision to perform meniscectomy versus suture repair is often predicated on the
region, geometry, and severity of the tear (Figure 1A). Furthermore, there are often many
patient-level and joint-level factors that influence a clinician’s decision-making process. For
example, degraded meniscal tissue in older patients may be treated more conservatively to
provide symptomatic relief as opposed to a younger patient with more acute tears, where the
goal would be to preserve the meniscus and its function. Other factors such as comorbidities
(e.g., cartilage wear, ligament status, alignment) may also factor into this decision. Even in a
relatively healthy patient, there are many complex and challenging tear types, such as posterior
root tears, that cannot simply be repaired. Here, we focus on acute tears within the body of the
meniscus, where a surgeon often decides between meniscectomy and suture repair. In this
subset, tears in the outer half of the meniscus, which is relatively more vascular (Henning et al.,
1987), are mostly repaired, since the vascular supply is thought to provide enough nutrients to
naturally bridge the tissue gap following suturing. However, since tears in the inner half
(almost devoid of vascularity) lack access to this blood supply, the torn tissue is typically
removed to alleviate symptoms (Henning et al., 1987; Mordecai, 2014), since suturing the torn
edges may not result in eventual tissue bridging. This inner vs. outer dogma of meniscus repair
has long governed mode of injury management; however, findings from the musculoskeletal
research field may challenge this philosophy as the sole player. The purpose of this opinion
article is to extend the impediments of meniscal repair beyond the traditional inner vs. outer
paradigm, suggesting the role of other factors: disruption of the circumferential network,
dense matrix as an obstruction to tissue joining, and other joint pathologies that may influence
repair quality.
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THE INNER VERSUS OUTER PARADIGM

The meniscus is often divided into zones along the radial axis,
perpendicular to the circumferential network (Figure 1B). Often,
the outer meniscus is deemed the red zone, as it contains vascular
structures that penetrate, from the meniscosynovial junction, into
the tissue. These vessels terminate in the middle third of the
meniscus, deemed the red-white zone, leaving the inner third to
half of the meniscus devoid of blood supply (termed the white
zone). Studies comparing inner to outer meniscus healing rates
are few in number (Cinque et al., 2019), perhaps since inner
meniscus tears have not historically been repaired. Thus, the
recent push to “save the meniscus” is complicated by the majority
of tears occurring in either the red-white or white zones (Terzidis
et al., 2006), limiting repair potential with suturing. Further
exacerbating this issue is that the posterior horn of the
meniscus appears to be most injured (Mansori et al., 2018;
Jackson et al., 2019), yet exhibits the lowest vascular
penetration (Crawford et al., 2020).

The role of vascularity in outer meniscal healing seems to rely
on a wound healing response from blood supply, as well as the
availability of stimulating growth factors, such as hypoxia
inducible factor-1 (HIF-1a) and vascular endothelial growth
factor (VEGF) (Lu et al., 2017). For this reason, a plethora of
basic science researchers have attempted to augment inner

meniscal repair using these vascular-derived factors. Meniscal
“perforations”, or surgical holes punctured from the inner-zone
meniscus tear outwards towards the periphery, have been
attempted preclinically and clinically (Zhongnan et al., 1988;
Cook and Fox, 2007), albeit with inconsistent improvement in
outcomes. Platelet-rich plasma and bone marrow aspirate have
both been widely utilized in conjunction with avascular meniscal
tears (Griffin et al., 2015; Muckenhirn et al., 2017; Kaminski et al.,
2018), further highlighting the propensity towards “recreating
vascularity” to enhance healing of inner meniscal tears. Certainly,
vascularity is a player in meniscal healing, but is it the only one?
Findings from the musculoskeletal field suggest that there may be
others involved, and these may need to be considered to advance
the meniscal repair field.

DISRUPTION OF CIRCUMFERENTIAL
COLLAGEN NETWORK

As mentioned previously, the menisci are semi-lunar
fibrocartilage tissues, and perhaps most important to their
function is their array of circumferentially-aligned collagen
fibers (Bullough et al., 1970; Fithian et al., 1990). This
organization enables the tissue to distribute loads in the knee
by generating circumferential hoop stresses (Lee et al., 2006).

FIGURE 1 | Meniscus Repair Impediments. (A) Meniscus tears are often classified based on location, orientation, and severity. Location is usually classified by
radial axis (inner, intermediate, outer) and circumferential axis (anterior, body, posterior). (B) Meniscus vascularity penetrates only partially into the meniscal body. (C)
Circumferential network disruption (radial tears) lead to loss of residual strain, resulting in altered mechano-sensing and potentially cellular apoptosis. (D) Dense
extracellular matrix can obstruct repair by limiting cell migration and matrix remodeling. Methods (e.g., growth factors) can improve migration and loosen matrix. (E)
Joint factors that influence meniscal repair include concomitant injuries (e.g., ACl, cartilage), inflammation, and varus/valgus loading.

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org March 2022 | Volume 10 | Article 8431662

Patel Other Factors in Meniscal Repair

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Meniscus tears occur in a variety of orientations relative to this
network; vertical and horizontal tears are parallel to the
circumferential arrangement, while radial tears are
perpendicular. Thus, radial tears disrupt the aligned collagen
network; disruption of similar networks in other aligned tissues,
such as tendon and annulus fibrosus, have been shown to be
especially problematic. For example, annulus fibrosus cells exhibit
aberrant behavior, including fibrotic phenotypic changes (alpha-
smooth muscle actin expression) and even apoptosis, following
removal of residual strains (Bonnevie et al., 2019). Similarly,
transection of tendons (e.g., rotator cuff (Osti et al., 2017))
perpendicular to the aligned axis leads to similar fibrotic and
apoptotic behavior (Egerbacher et al., 2008; Maeda et al., 2011;
Lundgreen et al., 2013; T. et al., 2020). Thus, it is expected that
radial meniscus tears may cause similar cellular changes
(Figure 1C), especially near the lesion site, altering their
capacity for healing. Of interest is that there seems to be a
trend towards more radial tears in the lateral meniscus
(Terzidis et al., 2006), which also exhibits a greater number of
white-zone tears than the medial meniscus, potentially
implicating circumferential network disruption, and not
avascularity alone, as a player in lower healing capacity of the
inner meniscus. Differences in the medial vs. lateral meniscus
could also be influential in a surgeon’s management; the lateral
meniscus displaces more during loading (Bylski-Austrow et al.,
1994) and less force is typically transmitted through the lateral
compartment (Zhao et al., 2007), meaning that circumferential
disruption could present a greater issue in the medial meniscus.
Clinical systematic reviews, and perhaps preclinical animal
studies (Bansal et al., 2020), that investigate the healing rates
of inner vs. outer zone radial tears, and inner vertical vs. inner
radial tears, would help to test this hypothesis.

DENSE EXTRACELLULAR MATRIX AS AN
OBSTRUCTOR TO HEALING

One of the greatest obstacles in the field of musculoskeletal repair
is the re-integration of wound edges. Frequently thought of in the
context of tissue engineering [scaffold-to-tissue integration;
(Moffat et al., 2009)], healing of meniscal tears requires two
edges of the meniscus to join back together. Suturing holds these
edges together initially, but long-term bridging of this gap will
require a combination of tissue deposition and remodeling along
the interface. A plethora of researchers have attempted to
improve meniscal repair healing with scaffolds [e.g., fibrin,
collagen, electrospun polymers (Scotti et al., 2009; González-
Fernández et al., 2016; Baek et al., 2019)] that are often
supplemented with cells (meniscal fibrochondrocytes, marrow
stromal cells) and factors (transforming growth factor-beta 3,
connective tissue growth factor) (He et al., 2011; Cucchiarini
et al., 2015; Sasaki et al., 2018), yet the overall shear strengths of
this repair interface are typically orders of magnitude lower than
the native meniscus, leaving it susceptible to re-tear. A potential
obstructor in this repair interface is the dense nature of native
meniscal tissue; the dense matrix limits cell migration to, and
eventual healing at, the tear site, and it may lack the capacity to

undergo active remodeling to integrate the two edges
(Figure 1D).

Many techniques have been employed to improve meniscus
cell migration to improve integrative repair. This is especially
important in older patients, as both cell motility and proliferation
decrease with age (Bartling et al., 2009; Qu et al., 2019), affecting
repair potential and efficacy. For example, resident meniscus cells
can be “activated” with electrical stimulation (Gunja et al., 2012;
Yuan et al., 2014), growth factor delivery (e.g., platelet derived
growth factor; (Qu et al., 2017)), or perhaps the addition of
exogenous cells/biologics [e.g., endothelial cells (Yuan et al.,
2015), platelets (Wong et al., 2017), hyaluronic acid
(Murakami et al., 2019)]. A portion of the field is also
studying a subpopulation of meniscal progenitor cells that
further aid in the process of regeneration (Muhammad et al.,
2014; Seol et al., 2017); thus, their migration and recruitment to
the site of injury using these techniques would be greatly
beneficial. Since the stiffest part of these cells is their nucleus,
nuclear softening is also a promising approach to improve
migration through the dense connective networks of the
meniscus (Heo et al., 2020). Rather than improving cell
recruitment by altering the cells, the matrix around the cell
could also be loosened via local digestion (Qu et al., 2013,
2015). Similar techniques have been employed in cartilage
repair (van de Breevaart Bravenboer et al., 2004; Seol et al.,
2014; Liebesny et al., 2019), showing that loosening the
network can not only enhance migration, but also improve the
ability of the two torn edges to merge back together. This latter
concept may be most important, as the dense meniscal network
experiences little to no remodeling (Våben et al., 2020), whereas
slightly degraded matrix can be remodeled more readily to
integrate the two edges.

OTHER JOINT FACTORS THAT INFLUENCE
HEALING

Perhaps the most obvious environmental factor that has been
implicated in meniscal healing potential is inflammation. The
release of pro-inflammatory cytokines (e.g., interleukin-1, tumor
necrosis factor-alpha) following soft tissue injury in the joint is
well-documented (Irie et al., 2003; Haslauer et al., 2014; Ogura
et al., 2016), both by the synovial/synovium cells and the injured
tissue itself. In the meniscus specifically, integrative repair of the
meniscus, both in vitro and in vivo, is reduced under inflamed
environments (Hennerbichler et al., 2007; Riera et al., 2011),
perhaps due to reduced proliferation and migration, and reduced
capacity for meniscus specific matrix deposition and remodeling.
Thus, intra-articular augmentation with, and perhaps even
localized delivery of, anti-inflammatory agents may present
promising improvements in repair success. Novel methods to
deliver these drugs include capsules, carriers, spheres, both at the
micro-scale and nano-scale to enhance retention, duration, and
activity of both anti-inflammatory and pro-regenerative cues
(Patel et al., 2019). Since both inflammation post-injury and
the reparative process occur on the order of weeks to months,
these prolonging attributes are especially helpful. Delaying
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meniscal repair procedures after injury, similar to what is done
with anterior cruciate ligament reconstruction (Inoue et al.,
2016), may help to delay repair until inflammation has
subsided, improving the integrative nature, and thus long-term
stability, of the repair.

Beyond the biological milieu within the joint, there are a
variety of biomechanical joint factors at play. First and foremost,
concomitant injuries, especially anterior cruciate ligament
injuries and reconstruction, place a large mechanical burden
on the meniscus (Dargel et al., 2007; Chen et al., 2017), and
restoration of these tissues and their function are paramount to
meniscal function and its ability to be repaired. This may also
include an open-wedge osteotomy to correct varus or valgus
malalignment (Jing et al., 2019; Rocha de Faria et al., 2021), to
alleviate loads that are placed on one compartment of the knee.
Furthermore, along the same lines, the rehabilitation timeline
needs to be precisely controlled (Cavanaugh and Killian, 2012;
Spang Iii et al., 2018); early overloading may cause re-tear before
adequate tissue has been deposited to bridge the tear.
Alternatively, since mechanical loading is beneficial to
meniscal cell activity and matrix deposition (McNulty et al.,
2010; Puetzer et al., 2012), a protocol that is too conservative
can prohibit the increased regenerative capacity provided by
loading. Timing prior to the procedure is also an important
biomechanical consideration. While waiting can calm
inflammation to enhance repair potential, it must be balanced
with the increased risk of other injuries that can occur in this

timeframe (Fok and Yau, 2013; Kolin et al., 2021; Prodromidis
et al., 2021).

CONCLUSION

The meniscal repair field has long cited the location along the
radial axis, indicative of vascular content, as the sole determinant
of treatment modality. I believe that other factors (circumferential
disruption, dense matrix obstruction, and joint factors) may be
just as influential to repair potential. Thus, the field would greatly
benefit from additional clinical studies and reviews to better track
outcomes with regards to these variables, which is fully possible
with the increasing performance of inner zone repairs. Additional
preclinical work, both in vitro and in vivo, will help to elucidate
the healing potential of various tear configurations, especially as
they relate to the alignment of collagen bundles, the relative
density of the matrix, and the environmental inflammatory state.
The recent shift to “save the meniscus” with repair techniques
would greatly benefit from consideration of these alternative
impediments to healing.
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