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The identification and longitudinal assessment of traumatic brain injury presents several
challenges. Because these injuries can have subtle effects, efforts to find quantitative
physiological measures that can be used to characterize traumatic brain injury are receiv-
ing increased attention. The results of this research must be considered with care. Six
reasons for cautious assessment are outlined in this paper. None of the issues raised here
are new. They are standard elements in the technical literature that describes the math-
ematical analysis of clinical data. The purpose of this paper is to draw attention to these
issues because they need to be considered when clinicians evaluate the usefulness of
this research. In some instances these points are demonstrated by simulation studies of
diagnostic processes. We take as an additional objective the explicit presentation of the
mathematical methods used to reach these conclusions.This material is in the appendices.
The following points are made: (1) A statistically significant separation of a clinical population
from a control population does not ensure a successful diagnostic procedure. (2) Adding
more variables to a diagnostic discrimination can, in some instances, actually reduce clas-
sification accuracy. (3) A high sensitivity and specificity in a TBI versus control population
classification does not ensure diagnostic successes when the method is applied in a more
general neuropsychiatric population. (4) Evaluation of treatment effectiveness must recog-
nize that high variability is a pronounced characteristic of an injured central nervous system
and that results can be confounded by either disease progression or spontaneous recovery.
A large pre-treatment versus post-treatment effect size does not, of itself, establish a suc-
cessful treatment. (5) A procedure for discriminating between treatment responders and
non-responders requires, minimally, a two phase investigation.This procedure must include
a mechanism to discriminate between treatment responders, placebo responders, and
spontaneous recovery. (6) A search for prodromes of neuropsychiatric disorders following
traumatic brain injury can be implemented with these procedures.

Keywords: neuropsychiatric diagnosis, statistical errors, research design, Mahalanobis distance, statistical
variability, treatment effects

INTRODUCTION
We consider here statistical issues that are associated with four
processes encountered in clinical studies. They are diagnosis,
longitudinal assessment of treatment, evaluation of treatment
effectiveness, and the identification of prodromes of psychiatric
illness. An emphasis is placed on traumatic brain injury, but the
conclusions generalize to other disorders. In mathematical terms
diagnosis is a classification process. In diagnosis we ask: given
a specific patient and a set of measurements obtained from that
individual, what is the probability of that individual’s membership
in previously identified and characterized populations, including
a group of appropriately matched healthy controls? At present
the specification of clinical populations follows conventional diag-
nostic structures, major depressive disorder, PTSD, schizophrenia,
and the like. Neuropsychiatric diagnosis is now undergoing a
reassessment (1–3). We want to make an essential point. Though

diagnostic criteria may change, the statistical issues that must be
addressed in their implementation remain the same.

Longitudinal assessment and the evaluation of treatment effec-
tiveness is a classification problem in the limited sense that it
involves calculations of the probability that the patient is a member
of an appropriately matched healthy control group, which should
increase longitudinally, and calculation of the probability that the
patient is a member of the clinical group identified in diagno-
sis, which should decrease during the course of treatment. The
calculation of these membership probabilities provides a global
assessment, but assessment of treatment adherence, consistency of
treatment, inter-rater reliability, and examination of appropriately
constructed controls arms must complement these calculations.
Some of these issues are considered in the nine questions addressed
in Section “Evaluation of Treatment Effectiveness must Recog-
nize that High Variability is a Pronounced Characteristic of an
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Injured Central Nervous System and that Results can be Con-
founded by Either Disease Progression or Spontaneous Recovery.
A Large Pre-Treatment Versus Post-Treatment Effect Size does not
of Itself Establish a Successful Treatment.”

The statistical implementation of diagnosis and the statistical
assessment of treatment effectiveness have important differences.
In principle, the assessment of treatment effectiveness can be made
with a single calculation: probability of membership in the control
group. This can be done in the absence of a diagnosis. A statistically
based diagnosis is based on the maximum membership probability
determined across a large number of clinical groups. The diagnos-
tic process can fail if the measures lack between group-specificity.
Longitudinal assessment can fail if the measures have low test-
retest reliability. The operational difficulties of this approach to
diagnosis and treatment evaluation should not be underestimated.

As a specific example, we will present this discussion in terms of
classification between a control population and a TBI population
where it is to be understood that this is done without prejudice
as to the defining specification of the clinical group and without
returning to a discussion of the logical validity of treating TBI as a
diagnostic category (4). As noted in the abstract, we recognize that
none of the ideas presented here are new. Our purpose is to state
them, to support them with simulations of diagnostic processes,
and to present concisely the essential mathematical material in
appendices.

A STATISTICALLY SIGNIFICANT SEPARATION OF A CLINICAL
POPULATION FROM A CONTROL POPULATION DOES NOT
ENSURE A SUCCESSFUL DIAGNOSTIC PROCEDURE
We consider here the simplest case, a two group discrimination
between-Group A, the control population, and Group B, the TBI
population. A collection of diagnostic measures is taken from each
participant. Candidate measures include plasma and CSF bio-
markers, results from neuropsychological evaluations, measures
of autonomic nervous system function derived from heart rate
variability assessments, quantitative EEG measures, measures of
cognitive event related potentials, eye tracking results, and bal-
ance studies. For the present analysis we assume that the measures
are continuous variables. It is possible to generalize the analy-
sis to incorporate nominal and ordinal variables (5). The same
qualitative conclusions are found in this expanded analysis.

The first question to be addressed is: using this set of measures
can we show that Group A (Control) is different from Group B
(TBI) and what is our confidence in that separation? This is most
commonly accomplished by calculating PSAME (GA, GB) with a
multivariate F-test. It is generally supposed that a small value of
PSAME indicates that the two groups are not the same. While this is
usually an operationally valid interpretation, it is not strictly speak-
ing correct. A small value of p does not prove that two groups are
not the same but rather that it is unlikely that they are the same.
The usual misinterpretation of p-values is that a large p value
(especially a value near one) is evidence for the null hypothesis.
This isn’t the case since under the null hypothesis all p-values are
equally likely (under the null they’re uniformly distributed). This
is why we can use a small value of p to reject the null hypothe-
sis, but we cannot use a large value to accept the null hypothesis.
Murdoch et al. (6) stress that p-values are random variables. As

a general observation p-values should only be used as evidence
against a null hypothesis. The details of the calculation and a tech-
nical statement of the interpretation of PSAME (GA, GB) are given
in Section “Calculation of PSAME (GA, GB)” in Appendix.

A more serious misinterpretation of PSAME is encountered
when it is suggested that a small value of PSAME as determined
in an F-test demonstrates that the measures used in the calcu-
lation can be used to diagnose TBI. This is not the case. Let
PERROR (GA, GB) be the error rate observed when the measures
are used to classify a specific individual between Group A and
Group B. A procedure for establishing a theoretical estimate of
assignment error, PERROR− FORMULA is given in Section “Calcula-
tion of PERROR− FORMULA (GA, GB)” in Appendix. We stress that
the theoretical PERROR− FORMULA can be a serious underestimate
of the true error rate, PERROR− EMPIRICAL. This issue is addressed
presently.

Simply put, PSAME 6= PERROR, and in some cases PERROR�

PSAME. An example is shown in the diagram (Figure 1). In
this case there was a single discriminating variable. Two nor-
mal distributions were generated computationally, where N A

and N B, the number of members in each group, is 500
for both distributions. The mean values and standard devia-
tions of the two distributions were µA= 3.2117, σA= 14.8328,
µB=−3.1433, and σB= 14.8255. Using the formulas given in
the appendices it was found that PSAME= 2.1096× 10−11 while
PERROR− FORMULA= 0.4078. It should be remembered that the
expected error rate in a random assignment between two groups
is 0.5. Thus the classifier is performing only marginally better than
random assignment even though PSAME≈ 10−11.

Theoretical classification error rates must be considered with
care. The formula for PERROR can give a serious underestimate
of the true classification error rate. Empirically determined error
rates give a better test of diagnostic reliability. A discussion of

FIGURE 1 | P SAME 6=P ERROR. Two normal distributions: µA =3.2117,
σA =14.8328 (in blue), µB =−3.1433, (in red) σB = 14.8255, NA =NB =500.
Given assumptions that the distributions are normal and that an optimal
Bayesian classifier is used to classify individual elements,
P SAME =2.1096× 10−11 and P ERROR−FORMULA =0.4078.
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empirical estimates of classification error must be preceded by
a specification of the procedure used to classify individual par-
ticipants between-groups. Three methods that can be used with
continuous variables are presented in Section “Three Classifiers
for Continuous Measures” in Appendix: classification by mini-
mum Mahalanobis distance, classification by maximum Bayesian
likelihood, and classification with a quadratic classifier, where it
is shown that classification by maximum Bayesian likelihood is
equivalent to classification by a quadratic classifier.

Given these classification criteria, it is possible to construct sys-
tematic empirical procedures for estimating classification error
rates [(7, 8) Chapter 22, Section 8; (5) Chapter 7, Section 10).
As previously noted the equation for PERROR− FORMULA (GA, GB)
given in Section “Calculation of PERROR− FORMULA (GA, GB)” in
Appendix is the best available estimate of dichotomous classifica-
tion error when only group means and covariances are available,
but it can seriously underestimate true error rates. The k-fold
cross validation and the out-of-sample validation tests provide an
empirical estimate.

There is a distinction between the k-fold cross validation
and an out-of-sample validation (8). This technical distinc-
tion is presented in Section “Simulation Studies Comparing
PERROR− EMPIRICAL and PERROR− FORMULA” in Appendix. The
essential point is the following: in both the k-fold cross validation
and the out-of-sample validation, the elements to be classified
are not used in the construction of the classifier. This is critical
to the validity of the assessment. Within-sample testing, where
an element that is classified is also used in the construction of
the classifier, can give a serious underestimate of the true error
rate. This is especially likely to occur if group population num-
bers are low. Wasserman [(8), p. 363] gives an example that
emphasizes this distinction. Similarly, Watanabe et al. (9) have
published an example comparing PERROR− FORMULA calculated
from the equation and four different empirical determinations of
classification error. Two of the empirical determinations inappro-
priately used the element to be classified in the classifier. They
gave artifactually low error rates (7.7 and 0%). The legitimate
empirical classification that did not use the elements that were
classified in the classifier gave much higher error rates (85 and
69%). The theoretical PERROR− FORMULA calculated using the for-
mula in Section “Calculation of PERROR− FORMULA (GA, GB)” in
Appendix was 15.7%.

We wish to draw attention to the difference in the
error rate predicted using the previously presented formula,

PERROR− FORMULA, and error rate determined in k-fold cal-
culations, PERROR− EMPIRICAL. While PERROR− FORMULA= 0.157,
PERROR− EMPIRICAL varies between 0.46 and 0.85 (see Table 1
above). PERROR− FORMULA does, however, have a great advan-
tage. It’s easy to calculate. This is especially true of univari-
ate discriminations. In the case of a single variable classifier,
PERROR− FORMULA can be calculated with just means and stan-
dard deviations. These data are typically included in published
reports. In contrast, calculations of PERROR− EMPIRICAL require
access to the full participant-by-participant data set. If it can
be shown that the more reliable PERROR− EMPIRICAL is always
greater than or approximately equal to the readily calculated
PERROR− FORMULA, then a large value of PERROR− FORMULA cal-
culated using publically accessible published results can be used
to dismiss spurious claims of candidate classifiers. This possibility
leads to the following motivating question. Is PERROR− EMPIRICAL

always greater than or approximately equal to PERROR− FORMULA,
where PERROR− EMPIRICAL is determined by a k-fold cross valida-
tion? This question is addressed in the simulation studies presented
in Section “Simulation Studies Comparing PERROR− EMPIRICAL

and PERROR− FORMULA” in Appendix. The calculations reported
there suggest that the reliable empirically determined classification
error rate is either approximately equal to or greater than the easily
calculated formula-based estimate of classification error. It follows
that calculations of PERROR− FORMULA using published values of
means and standard deviations can effectively challenge claims of
effective diagnostic classification. Operationally, if the easily cal-
culated PERROR− FORMULA is large, then an effective classification
will most probably be impossible.

ADDING MORE VARIABLES TO A DIAGNOSTIC
DISCRIMINATION CAN, IN SOME INSTANCES, ACTUALLY
REDUCE CLASSIFICATION ACCURACY
It is commonly supposed that adding a variable to a multivariate
classifier will improve classification performance. In our context,
it is supposed that adding a clinical measure will improve diagnos-
tic accuracy. Is this indeed the case? The theoretical and practical
answers to this question are different. Theoretically, if all variables
are known, that is means and covariances are known exactly, then
adding a variable will not degrade the classifier. There is one qual-
ification to this theoretical statement. If two variables are exactly
correlated, then the covariance matrix is singular. Inverting the
covariance matrix, which is required to calculate the Mahalanobis
distance, is impossible and the classification fails.

Table 1 | EEG classification error rates.

Condition Error rate

of random

assignment

(%)

Error rate minimum

Mahalanobis distance

within-sample

classification (%)

Error rate maximum

Bayesian likelihood

within-sample

classification (%)

Error rate minimum

Mahalanobis distance

k -fold

classification (%)

Error rate maximum

Bayesian likelihood

k -fold

classification (%)

Eyes open 50 7.7 0 85 69

Eyes closed 50 0 0 46 46

The formula determined error rate is 15.7%, a serious underestimate of the true error rate. When the element to be classified is used in the construction of the

classifier, this is the within sample error rate, the calculated error rate is again significantly smaller than the error rate determined by a k-fold classification. k-fold

classification tests provide a test of classifier performance in actual practice [Modified from Watanabe et al. (9)].
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The practical answer to the question “Can adding a variable
hurt?” is more complex. If the added variable is highly, but not
exactly, correlated with a variable already in the discrimination,
then the covariance matrix is near-singular. Inverting the near-
singular matrix introduces numerical errors that can actually result
in worse classification performance. A second potential problem
created by introducing a large number of variables is the creation of
false correlations. This is analogous to over-fitting a model. Exam-
ples are given in Hastie et al. [(5), pp. 245 and 247). Including all
available measures is, therefore, not necessarily the best course.

Backward elimination is based on RA,B, the coefficient of deter-
mination between-Group A and Group B. It is the fraction of total
between-group variance that can be accounted for with a given
set of measures [(10), p. 96, see “Coefficient of Determination” in
Appendix). The example of backward elimination presented here
(Figure 2) is from the previously described study of Watanabe et al.
(9). In this study multichannel EEGs were obtained in two condi-
tions, eyes closed, no task, and eyes open, no task. Ten measures cal-
culated from each multichannel signal were used to construct the
first version of the classifier. RA,B, DA,B, the between-group Maha-
lanobis distance and the theoretical PERROR− FORMULA were cal-
culated using all 10 variables. The coefficient of determination was
then calculated using the 10 possible combinations of 9 variables.
The variable that made the smallest contribution to the coefficient
of determination (equivalently the smallest contribution to the
Mahalanobis distance) was eliminated from the discrimination.
The process was repeated sequentially. With each iteration the vari-
able making the smallest contribution to the variance is removed.

The effect on RA,B, DA,B, and PERROR− FORMULA is shown in
the diagram. As would be expected RA,B and DA,B decrease and
PERROR− FORMULA increases as variables are eliminated.

It might be supposed that the empirically determined classifi-
cation error rate, where classification is based on the minimum
Mahalanobis distance, would also increase as variables are elim-
inated. The error rate of an N -fold cross validation is shown in
the next diagram (Figure 3). It is seen that the error rate actually
decreases as variables are eliminated in a backward elimination.
The discriminating measures are highly correlated. The covariance
matrix is extremely ill-conditioned. Inverting the matrix causes
numerical errors that more than equal any discriminatory power
that might be conferred by the addition of a highly correlated
covariate.

The results in this diagram were obtained using the LU decom-
position to invert the covariance matrix. The LU decomposition
is a generically applicable procedure for inverting a matrix. It
does not exploit the structure of a covariance matrix (positive
semidefinite and symmetric). An inversion procedure utilizing
these properties was derived in Watanabe et al. (9) and was also
applied to this classifier. Due to the very high correlations between
measures, there was no significant improvement.

A second model selection procedure, sequential correlation
deletion (9), was used with the same data, and the results are
also shown in the diagram. The process began by observing
high correlations between complexity and redundancy measures.
Three redundancy measures were eliminated and the correspond-
ing complexity measures were retained. The process continued

FIGURE 2 | Sensitivity of discrimination and backward elimination:The
between-group Mahalanobis distance DA,B, the coefficient of
determination RA,B, and the theoretical probability of error in a pairwise

classification, P ERROR−FORMULA are plotted as a function of the number of
measures eliminated from the discrimination. At each step the least
significant variable was removed. From Watanabe et al. (9).
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FIGURE 3 | Error rate in a k -fold cross validation as a function of the
number of variables eliminated from the classifier. The elimination
sequence in the upper trace (denoted by circles) was determined by a
backward elimination. The elimination sequence of the lower trace
(triangles) was determined in a sequential correlation deletion. From
Watanabe et al. (9).

by retaining measures that had a high coefficient of determina-
tion and eliminating measures that were highly correlated but had
smaller coefficients of determination. This procedure was unsys-
tematic but nonetheless more effective in reducing the empirical
N -fold classification error.

A HIGH SENSITIVITY AND SPECIFICITY IN A TBI VERSUS
CONTROL POPULATION CLASSIFICATION DOES NOT ENSURE
DIAGNOSTIC SUCCESS WHEN THE METHOD IS APPLIED IN A
MORE GENERAL NEUROPSYCHIATRIC POPULATION
Sensitivity and specificity are regarded as being the dispositive
measures of a diagnostic process. Quantitative definitions are given
in Section “Sensitivity and Specificity” in Appendix. Stated quali-
tatively, sensitivity is the test’s ability to correctly detect a condition
when it is present. Specificity is the test’s ability to give a negative
result when the condition is absent. In the present context, high
sensitivity means that if a patient has sustained a TBI, he or she will
be identified as TBI positive. A high value of specificity indicates
that the test result will be negative if the patient did not sustain
a TBI.

Reports of high specificity in the identification of TBI must be
interpreted with care. This is particularly true if the assessment
is based on psychophysiological measures (heart rate variability,
quantitative EEG, event related potentials, eye tracking). A multi-
variate diagnostic procedure may have a high value of specificity
in a carefully constructed clinical study that included a group of
healthy controls and a group of TBI patients selected to exclude
comorbid neuropsychiatric conditions. The test’s specificity might
well be lost in practical applications assessing a less restricted
patient population. Measures of EEG/MEG coherence and syn-
chronization provide an instructive example. These measures can
be altered following a TBI (11, 12), but they can also be altered in
other disorders. General reviews of coherence and synchronization
changes in neuropsychiatric disorders are given in Herrmann and

Demiralp (13), Schnitzler and Gross (14), and Uhlhaas and Singer
(15). Specific examples include AD/HD (16), alcohol abuse (17),
alexithymia (18), autism (19), bipolar disorders (20), dementia
(17, 21), hallucinations (22), HIV dementia (23), migraine (24),
multiple sclerosis (17),Parkinson’s disease (25),PTSD (26,27),and
schizophrenia (28). Similar indications of a lack of specificity can
be observed with other psychophysiological measures. Heart rate
variability is altered in anxiety (29), chronic fatigue syndrome (30),
depression (31), pain (32), panic disorder (33), Parkinson’s disease
(34), PTSD (35), schizophrenia (36), and TBI (37). These citations
are representative examples drawn from a larger literature. Small
world models can be used to quantify CNS functional connectivity
revealed by MEG and high density EEG recordings. Altered small
world parameters are seen following traumatic brain injury (38,
39), but also in schizophrenia (40), dementia of Alzheimer’s type
(41), epilepsy (42), and in patients with CNS tumors (43). Thus, as
in previous examples, small world measures are sensitive to CNS
pathology but are non-specific.

If an assessment of a typical neuropsychiatric population is
based on psychophysiological measures, specificity will probably
be lost. It is possible, however, that a good statistical separa-
tion could be obtained between patients and controls. Given our
present understanding we may be able to establish that something
is wrong because the probability of membership in the control
group is low, but we can’t say what is wrong because we can’t dis-
criminate between TBI, depression or bipolar disorder. Therefore
the report of high control/TBI specificity in a clinical study can be
of limited utility in clinical practice.

EVALUATION OF TREATMENT EFFECTIVENESS MUST
RECOGNIZE THAT HIGH VARIABILITY IS A PRONOUNCED
CHARACTERISTIC OF AN INJURED CENTRAL NERVOUS
SYSTEM AND THAT RESULTS CAN BE CONFOUNDED BY
EITHER DISEASE PROGRESSION OR SPONTANEOUS
RECOVERY. A LARGE PRE-TREATMENT VERSUS
POST-TREATMENT EFFECT SIZE DOES NOT OF ITSELF
ESTABLISH A SUCCESSFUL TREATMENT
When considering the responses to treatment a distinction must
be made between the evaluation of between-group differences and
the evaluation of changes within a given individual. We consider
first between-group assessments. Evaluation of group responses
to treatment raise several challenges that are particularly severe in
the case of traumatic brain injury. Consider the simplest case. As
before, it is supposed that a set of measures is obtained from all
participants. Using the procedures outlined in Section “Calcula-
tion of PSAME (GA, GB)” in Appendix it is possible to compute
the between-group distances between sets of measure vectors. The
distance between the pre- and post-treatment measures should
increase in response to treatment, and the separation between
the TBI population and the healthy control population should
decrease in response to treatment. The classical measure of treat-
ment, the effect size, quantifies between-group separation for
the special case of a single outcome measure. Three commonly
employed measures of effect size, Cohen’s d, Glass’s ∆, and Hedge’s
g, are presented in Section “Calculation of Single-Variable Effect
Size”in Appendix where it is seen that Hedges’g is the Mahalanobis
distance for Z = 1. But is this enough? In the case of traumatic
brain injury studies, straight forward measurement of pre- to
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post-treatment effect size and its multivariate generalizations is
often not adequate. Limitations encountered when effect size is
the sole metric of treatment response are considered at the end
of this section. Several complicating issues need to be consid-
ered first: high intra-individual longitudinal variation, continued
disease progression and spontaneous recovery.

INTRA-INDIVIDUAL VARIABILITY
A high degree of variability is a long known characteristic of
an injured central nervous system [(44) reprinted 1958, (45)].
Results from longitudinal neuropsychological testing of trau-
matic brain injury patients provide quantitative examples. In a
study with 12 participants (six patients and six controls), Bleiberg
et al. (46) measured within-day and across-day neuropsycholog-
ical performance. Tests were administered 30 times over 4 days.
Control subjects showed consistent improvement due to learning
effects. Patients showed “erratic and inconsistent performance.”
The patients presented mild to moderate TBI at the time of injury.
They were 12–30 months post-injury and all had made an excel-
lent recovery as evidenced by a return to pre-injury vocational
and social status. Bleiberg et al. report, however, that “Inconsistent
performance was observed even in those subjects with TBI whose
initial performance was equal to or better than that of control sub-
jects.” Similarly, Cole et al. (47) conducted a test-retest reliability
study of four neurocognitive assessment tools: Automated Neu-
ropsychological Assessment Metrics (ANAM4), CNS-Vital Signs,
CogState, and Immediate Post-Concussion Assessment and Cog-
nitive Test (ImPACT). Participants deemed to have inadequate
effort during one or both testing sessions, as assessed by the
instrument’s scoring algorithm, were removed from the analysis.
Test-retest reliability was quantified with the intraclass correlation
coefficient. Cole et al. concluded that the test-retest reliability of
all four tools was “lower than desired for clinical decision mak-
ing.” Several factors can contribute to this variability. One is the
previously mentioned intrinsic variability of the injured central
nervous system. Failure to make an adequate effort is also fre-
quently cited (48). Inadequate effort may be of neurological origin
and may be intermittent, or it may be the result of malingering.
There is a substantial literature describing procedures to detect
malingering in neuropsychological testing (49–52) that can be
applied to this analysis. Whatever the cause, the complications
of high intra-individual variability must not be ignored.

DISEASE PROGRESSION
TBI patients can, in some instances, experience continuing dete-
rioration over an extended post-injury period. Diffuse axonal
injury following traumatic brain injury provides a pertinent exam-
ple. Diffuse axonal injury is TBI-induced scattered destruction of
white matter tracts. It was first described by Lindenberg et al. (53)
and by Strich (54). Disconnection of axons at the time of injury
(primary axotomy) is relatively rare (55). More typically, diffuse
axonal injury is a progressive process that develops after injury
(56–60). In rats, progressive loss of brain tissue and deterioration
of cognitive performance can continue for a year following injury
(58, 61, 62). As a cautionary observation, Maxwell et al. (63) note
that animal models do not reproduce exactly the time course of
injury that occurs in humans. Nonetheless, they conclude that

“axonal change is, probably, more widespread and occurs over a
longer post-traumatic time in the injured brain than had pre-
viously been appreciated.” The observations in animal models
are consistent with human studies that show progressive radio-
logical alteration following traumatic brain injury (64–68). These
results are also consistent with clinical experience which has identi-
fied delayed onset neuropsychiatric disorders following traumatic
brain injury. These disorders include psychosis (69–71), depres-
sion (72–76), and post-traumatic stress disorder (72, 73, 77, 78). It
follows that the possibility of progressive post-injury deterioration
must be incorporated in the statistical design of clinical studies of
traumatic brain injury.

SPONTANEOUS RECOVERY
Conversely, other patients may present a recovery that would
have occurred in the absence of treatment. Spontaneous recov-
ery often occurs following mild traumatic brain injury (79) and is
also commonly observed in other neuropsychiatric disorders, for
example depression. Posternak and Miller (80) conducted a meta-
analysis of the course of untreated depression using studies that
included a waitlist control group. In the short term (2–20 weeks)
depressive symptoms decreased by 10–15% without treatment,
and approximately 20% of untreated participants presented a
spontaneous remission. In a subsequent study, Posternak et al.
(81) found a lower limit median duration of untreated depression
of approximately 23 weeks.

To summarize, high intrinsic variability and the potential
for significant post-injury deterioration or spontaneous recov-
ery during a clinical trial place exceptional demands for statistical
safeguards when working with this patient population. Several
procedures for assessing change have been proposed. The Reli-
able Change Index (82) determines the statistical significance of
change based on a comparison of the difference between initial
and retest scores obtained from a reference group. Chelune et al.
(83) published a variant of the Reliable Change Index that includes
a correction for practice effects which is particularly important if
the results of neuropsychological tests are being used as outcome
measures. This correction, however, assumes that individuals will
present the same practice effect irrespective of the initial score (84).
The simple regression model of McSweeny et al. (85) endeavors to
correct for both practice effects and regression to the mean. A mul-
tiple regression model (86) incorporates additional factors such as
age education and intellectual ability. We require a statistical pro-
cedure that incorporates elements from these earlier methods and
generalizes them to incorporate data from longitudinal control
groups.

We consider here the development of statistical procedures for
conducting an investigation of a single form of treatment and defer
consideration of more complicated comparative studies with mul-
tiple treatment arms. Increased confidence in the results will be
obtained if the design includes a healthy control group and a wait-
list control group that meets the same inclusion/exclusion criteria
as the treatment group. As will be shown, data from the wait-
list group will be used to quantify changes due to spontaneous
recovery or continued disease progression that can occur in the
absence of treatment. Data from the healthy control group pro-
vide a specification of treatment objectives. The greatest simplicity
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of interpretation is obtained if all participants are assessed at two
time points, at an initial TI prior to treatment and a final TF

following treatment. The time interval between initial and final
measurements should be the same for the treatment group and
for the two control groups. The second measurement for the
healthy control group, which is presumably clinically stable during
this interval, is valuable because familiarization with the assess-
ment procedure, for example familiarization with an EEG lab, can
affect psychophysiological results and practice effects can distort
the results of neuropsychological tests. An expanded design can
include a placebo control group. Placebo controls are considered
in the next section. There are six sets of measure vectors.

GTI the set of measure vectors obtained from the treatment group
at the initiation of treatment,
GTF the set of measure vectors obtained from the treatment group
at the conclusion of treatment,
GHI the set of measure vectors obtained in the first evaluation of
healthy controls,
GHF the set of measure vectors obtained in the second evaluation
of healthy controls,
GWI the set of measure vectors obtained in the first evaluation of
the waitlist control group,
GWF the set of measure vectors obtained in the second evaluation
of the waitlist control group.

The time intervals between the initial and final assessments
are the same for all groups. The between-group Mahalanobis
distances and the corresponding PSAME (GA, GB) can be calcu-
lated using the procedures in Section “Calculation of PSAME (GA,
GB)” in Appendix. A treatment study is investigated by examining
between-group Mahalanobis distances and their corresponding
probabilities. The analysis begins by addressing the nine essential
questions in Table 2.

IS THERE AN ADEQUATE PRE-TREATMENT SEPARATION BETWEEN THE
CLINICAL POPULATION AND THE HEALTHY CONTROLS?
The first step in the investigation is a model selection process
that can identify the set of variables that discriminates between

Table 2 | Questions addressed in analysis of treatment effectiveness.

1. Is there an adequate pre-treatment separation between the clinical

population and the healthy controls?

2. Is the waitlist control group appropriately constructed?

3. Is the waitlist control group stable during the duration of the trial?

4. If there is a change in the waitlist control group, is it the result of

continuing deterioration?

5. If there is a change in the waitlist control group, is it the result of

spontaneous recovery?

6. Does the treatment group change during the trial?

7. If there is a change in the treatment group, is it due to continuing

deterioration?

8. If there is a change in the treatment group is it due to spontaneous

recovery?

9. Is there a positive response to treatment?

healthy and clinical populations. This is a critical step. As shown
in section “Adding More Variables to a Diagnostic Discrimination
Can, in Some Instances, Actually Reduce Classification Accuracy”
and in Myers (87), Hastie et al. (5) and Zhao and Yu (114),
inappropriate model selection can result in the unnecessary failure
to construct an effective classifier. Several procedures can be con-
sidered. The essential requirement is to remove highly correlated
variables that can degrade between-group discrimination. In this
presentation D(GX, GY) denotes a Mahalanobis distance. Maha-
lanobis distances are calculated using the procedure outlined in
“Three Classifiers for Continuous Measures” in Appendix. If there
is not a significant pre-treatment separation between these groups,
as quantified by D(GHI, GTI), and a correspondingly small value
of PSAME (GHI, GTI), then the model selection process must be
reviewed and the possibility of introducing other measures must
be considered.

IS THE WAITLIST CONTROL GROUP APPROPRIATELY CONSTRUCTED?
D(GWI, GTI) is the Mahalanobis distance between the waitlist con-
trol group and the treatment group at initial assessment. The
waitlist group and the treatment group meet the same inclu-
sion/exclusion criteria. They should be indistinguishable. D(GWI,
GTI) should be small or approximately zero. This gives criterion
for testing the acceptability of the waitlist control group.

IS THE WAITLIST CONTROL GROUP STABLE DURING THE DURATION OF
THE TRIAL?
Mahalanobis distance D(GWI, GWF) quantifies change in the wait-
list control group. In the absence of spontaneous recovery or
continued deterioration, D(GWI, GWF) should be small. This pro-
vides a mechanism for investigating change in the absence of
treatment, but an examination of D(GWI, GWF) alone does not
identify possible changes in measures due to practice effects in
neuropsychological tests or changes in physiological variables that
result from increased comfortableness with EEG, MEG, or fMRI
recording procedures in the second evaluation. Changes in the
waitlist control group are assessed by addressing the next two
questions.

IF THERE IS A CHANGE IN THE WAITLIST CONTROL GROUP, IS IT THE
RESULT OF CONTINUING DETERIORATION?
If the participants in the waitlist control group present continu-
ing deterioration during the trial period, then D(GWI, GWF) can
be large. Additionally, the separation between the waitlist control
group and the healthy control group will increase giving D(GWF,
GHF) > D(GWI, GHI).

IF THERE IS A CHANGE IN THE WAITLIST CONTROL GROUP, IS IT THE
RESULT OF SPONTANEOUS RECOVERY?
If the waitlist control group presents recovery in the absence of
treatment, then D(GWI, GWF) will be large, but in contrast with
the preceding case, the separation between the waitlist control
group and the healthy control group will decrease giving D(GWI,
GHI) > D(GWF, GHF).

DOES THE TREATMENT GROUP CHANGE DURING THE TRIAL?
D(GTI, GTF) is the pre-treatment versus post-treatment Maha-
lanobis distance. This is the multidimensional generalization of
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effect size (see “Calculation of Single-Variable Effect Size” in
Appendix). In a successful treatment D(GTI, GTF) should be large
and thus PSAME (GTI, GTF) will be small. A large value of D(GTI,
GTF) does not, however, establish a successful treatment. D(GTI,
GTF) could have increased because of continued deterioration or
spontaneous recovery. This motivates the next two questions.

IF THERE IS A CHANGE IN THE TREATMENT GROUP, IS IT DUE TO
CONTINUING DETERIORATION?
If a large value of D(GTI, GTF) is due to continuing deterioration,
we would expect the separation between the treatment group and
the healthy control group to increase giving D(GTF, GHF) > D(GTI,
GHI).

IF THERE IS A CHANGE IN THE TREATMENT GROUP, IS IT DUE TO
SPONTANEOUS RECOVERY?
If recovery has occurred, then D(GTI, GTF) is large and the sep-
aration between the treatment group and the control group will
decrease giving D(GTF, GHF) < D(GTI, GHI). In the case of spon-
taneous recovery, as outlined above, a similar outcome would have
been seen in the waitlist control group. In the limiting case of the
complete absence of a treatment effect, the treatment group, and
the waitlist control group should be statistically indistinguishable
at the end of the trial giving a small value of D(GTF, GWF). This
emphasizes the importance of a waitlist control group.

IS THERE A POSITIVE RESPONSE TO TREATMENT?
The post-treatment separation between the treatment group and
the waitlist control group at the second assessment is given by
D(GTF, GWF). It should increase in response to effective treatment
in the absence of spontaneous recovery. To the degree that any
one measure can assess treatment outcome it is D(GTF, GWF) and
its corresponding PSAME(GTF, GWF). This is because this measure
incorporates both the response to treatment and the effects of trial
duration in the absence of treatment.

We suggest that answering these nine basic questions is the
essential first step in the analysis process, but we also recognize
that this is only the first step. If the answers to these questions
suggest a positive response to treatment, then a detailed analysis
of sources of variance is warranted.

LONGITUDINAL MONITORING OF AN INDIVIDUAL’S RESPONSE TO
TREATMENT
The calculations outlined thus far quantify between-group treat-
ment responses. They are essential when validating the effec-
tiveness of treatment. They do not, however, provide guidance
concerning the progress of an individual patient. Let xPatient be
the vector of measures obtained from a patient. As argued in
Section “A High Sensitivity and Specificity in a TBI Versus Con-
trol Population Classification does not Ensure Diagnostic Success
when the Method is Applied in a More General Neuropsychi-
atric Population,” the non-specificity of many clinical measures,
particularly psychophysiological variables, will probably prevent
a diagnostic classification between different clinical groups. The
longitudinal calculation of the probability that the patient is a
member of the healthy control group, P(xPatient|GHealthy), using
methods described in“Three Classifiers for Continuous Measures”

in Appendix might, however, provide a useful clinical measure.
P(xPatient|GHealthy) should increase during the course of a suc-
cessful treatment. Optimism in this regard must be tempered by
recalling the high session-to-session variability in CNS measures
seen in some clinical populations. When a calculation is based on
measures obtained from a single individual rather than on aggre-
gate measures obtained from a population, this variability may
make it impossible to use P(xPatient|GHealthy) as a longitudinal
measure. Further experience is required to evaluate the utility of
P(xPatient|GHealthy) in clinical practice.

Treatment response is often expressed in terms of effect size, and
it is therefore helpful to show how effect sizes relate to the proba-
bility measures presented here. Effect sizes are defined in Section
“Calculation of Single-Variable Effect Size” in Appendix. These
definitions should be compared to the definition of Mahalanobis
distance (see “Calculation of PSAME (GA, GB)” in Appendix). It
is seen that the between-group Mahalanobis distance for the spe-
cial case of a single outcome measure (Z = 1) is the same as the
Hedge’s g definition of effect size. It is also the same as the Cohen’s
d definition when the number of members in each group is the
same (N A=N B). This identifies the first limitation of effect size as
a measure of treatment. By definition, effect sizes consider only the
Z = 1 case. Effect size cannot provide an assessment when several
variables are used.

There is a further limitation of effect size that is not commonly
recognized. Consider the equations for PSAME (GA, GB), which we
informally interpret in the context of treatment as the probabil-
ity that Group A (pre-treatment) and Group B (post-treatment)
are the same. These equations contain an explicit dependence on
the number of members in each group, N A and N B. Depend-
ing on N A and N B, the same value of effect size, equivalently the
same value of Mahalanobis distance, can give very different val-
ues of PSAME (GA, GB). Examples are shown in Figure 4 where
PSAME (GA, GB) was calculated as a function of effect size for
different population sizes. In these calculations N A=N B. It is
seen that the same value of effect size can result in very different

FIGURE 4 | P SAME (GA, GB) as a function of effect size. P SAME (GA, GB) was
calculated as a function of effect size (equivalently the one-dimensional
Mahalanobis distance) for different group sizes. In all calculations, the
number of members in each group was the same, NA =NB. The populations
are NA =NB =10 (top curve), 20, 50, 100, 200, 500 (bottom curve).

Frontiers in Neurology | Neurotrauma November 2013 | Volume 4 | Article 177 | 8

http://www.frontiersin.org/Neurotrauma
http://www.frontiersin.org/Neurotrauma/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rapp et al. Statistical issues in TBI clinical studies

between-group separations. Consider the case where effect size is
0.6. If N A=N B= 20, then PSAME= 0.065. If N A=N B= 30, then
PSAME= 0.020 and PSAME= 0.003 if N A=N B= 50. An effect size
of 0.6 gives a strong indication of a positive effect, but only if there
are 30 participants in each group, where we stress that this requires
a total of 60 participants the study. Caution must be exercised even
with an effect size of 0.6 if there are fewer than 40 participants in
the study.

A PROCEDURE FOR DISCRIMINATING BETWEEN
TREATMENT RESPONDERS AND NON-RESPONDERS
REQUIRES, MINIMALLY, A TWO PHASE INVESTIGATION.
THIS PROCEDURE MUST INCLUDE A MECHANISM TO
DISCRIMINATE BETWEEN TREATMENT RESPONDERS,
PLACEBO RESPONDERS AND SPONTANEOUS RECOVERY
The analysis outlined in the previous section may be unacceptably
simplistic. The treatment group may have two distinct outcome
populations, a group that responds positively to treatment and
a possibly larger group of non-responders. Similarly, the wait-
list control group may have subpopulations that spontaneously
recover, continue to deteriorate or are stable. The possibility of dis-
tinct subpopulations in the treatment group is particularly impor-
tant. When all participants in the treatment group are included in
the analysis, D(GTF, GWF) may be small, but this may obscure a
very real positive clinical response in a subpopulation. While we
cannot select through outcomes after the fact to get the results
that we want, it is also important to avoid losing a treatment that
could be significantly helpful to an appropriately selected popu-
lation. Achieving this in a statistically responsible way requires a
two phase investigation.

The Phase One investigation proceeds as outlined in the previ-
ous section. The criteria which will be used to distinguish between
responders and non-responders should be established before this
investigation is initiated. The seemingly simple process of identify-
ing responders versus non-responders can be complex. How many
measures should be used to make this determination? Incorpora-
tion of multiple outcome measures in a clinical trial can have
significant and sometimes unanticipated consequences (88). Our
emphasis here is not meeting statistical criteria required for reg-
ulatory clearance as was considered in Offen et al. but rather the
identification of vectors of neuropsychological and psychophys-
iological variables that can separate populations. Let GRI be the
pre-treatment measure vectors obtained prior to treatment from
the patients who proved to be treatment responders. Let GNRI

be the pre-treatment measure vectors that were from the non-
responders. If Mahalanobis distance D(GRI, GNRI) is large, then
the coefficient of determination (see “Coefficient of Determina-
tion” in Appendix) can be used to identify pre-treatment variables
that separate responders and non-responders. These variables can
then be used to construct a Phase Two investigation with patients
who did not participate in the Phase One study and who meet
responder criteria. If the first phase did indeed identify charac-
teristics of responders, then the second study should have a high
treatment response.

It is possible that the Phase One study simply identified indi-
viduals who were likely to experience a spontaneous recovery. This
possibility can be investigated by comparing the characteristics of

Phase One treatment responders with those members of the Phase
One waitlist control group who recovered. If the measures that
identify treatment responders are the same as the measures that
characterize waitlist responders, then an argument can be made
for a spontaneous recovery effect.

Further insights can be gained by including a placebo treat-
ment group in the Phase One study, because this can clarify the
distinction between a drug response and a drug effect (89). A drug
response is a change that occurs after administering the drug. The
drug effect is the portion of the response due to pharmacolog-
ical action. It is the difference between the drug response and
the placebo response. Similarly there is a distinction between a
placebo response (the change that occurs after administration of
the placebo) and the placebo effect which corrects for sponta-
neous recovery and regression to the mean (90). Determination
of placebo effect therefore requires both a placebo treated group
and a waitlist control group. If the identifying variables of active
treatment responders and the identifying variables of waitlist and
placebo responders are the same, then an argument can again
be made for placebo recovery. It would, however, be a matter of
interest, particularly in tests of psychotropics, to determine if the
pre-treatment characteristics of placebo responders are different
from the characteristics of responders in the active treatment and
waitlist groups.

In summary, this two phase protocol can be used in an
effort to identify subgroups in patient populations: (a) treatment
responders versus non-responders, (b) patients who will recover
spontaneously versus those who will not recover spontaneously,
(c) patients who will deteriorate in the absence of treatment versus
patients who will be clinically stable in the absence of treatment,
and (d) placebo responders versus placebo non-responders.

A SEARCH FOR PRODROMES OF DELAYED ONSET
NEUROPSYCHIATRIC DISORDERS FOLLOWING TRAUMATIC
BRAIN INJURY CAN BE IMPLEMENTED WITH THESE
PROCEDURES
A report published by the National Research Council and Institute
of Medicine (91) defines a prodrome as “an early non-specific set
of symptoms that indicates the onset of a disease before specific
diagnosable symptoms occur.” A prodrome is not a risk factor.
It is a manifestation of the disease itself. Costello and Angold
(92) elaborate on this definition and noted that a prodromes
may be non-specific “fever, malaise, headache and anorexia can
be non-specific prodromes of infectious illness.” They continue
“In summary, a prodrome is a premonitory manifestation of the
disease. It is not a characteristic of the individual or their environ-
ment or a causal agent of the disease. A prodromal symptom may
or may not continue to be manifest once the full disease appears.
Conversely, the same disease may or may not manifest prodromal
symptoms in different episodes.”

The search for prodromes of psychiatric illnesses has become a
matter of intense interest. This activity follows from the recogni-
tion of the developmental nature of psychopathology.“. . . Second,
psychiatry is beginning, at last, to take seriously the developmen-
tal nature of psychopathology. A recent national epidemiological
study of adults in the United States reported that ‘Half of all life-
time cases start by age 14 and three fourths by age 24 years’ (93).
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This is a misestimate, caused by relying on retrospective recall by
adults of their lifetime history of mental illness. Prospective studies
beginning in childhood set the onset of most psychiatric disorders
(apart from the dementias) in the first two decades of life (94,
95).” A neurodevelopmental etiology is important in this context
because it suggests that prodromes may exist (96).

From a statistical point of view, the post-TBI population is a
particularly promising population in a search for psychiatric pro-
dromes because there is a high incidence of post-injury onset of
psychiatric disorders. Rapp et al. (97) have reviewed the litera-
ture and found significantly increased incidences of depression,
PTSD, generalized anxiety disorder, sleep disorders, and psychosis
following traumatic brain injury. It is to be recognized, however,
that the prodromes of, for example, depression following TBI may
not be applicable in the general population since different patho-
physiological mechanisms may be responsible. Nonetheless, it is
an important population in its own right and given high incidence
rates a good place to begin the search for prodromes of psychiatric
disorders.

The statistical procedures outlined in previous sections can be
used to search for prodromes of post-injury psychiatric illness.
The process begins by collecting a set of measure vectors from
TBI patients in the immediate post-injury period. These individ-
uals are then followed longitudinally and two sets of participants,
those positive for the disorder and those who do not present the
disorder, are identified. PSAME (see “Calculation of PSAME (GA,
GB)” in Appendix) is then calculated. If there is a statistically sig-
nificant separation between these two sets, a systematic search
for an optimal set of predictor variables can be performed with
the coefficient of determination (see “Coefficient of Determina-
tion” in Appendix). It should be noted that the non-specificity
of psychophysiological measures that are known to be altered in
psychiatric illnesses may preclude finding prodromes for specific
disorders. It may be that the best that can be achieved is an identi-
fication of individuals likely to present clinically in the absence of
a prediction of the specific presentation, but this would still be of
significant value.

DISCUSSION
Broadly stated, the four goals of laboratory medicine are diagnosis,
longitudinal monitoring of treatment response or disease progres-
sion, detection of prodromes, and postmortem identification of
the cause of demise. All of these objectives are, at core, classifi-
cation problems. This contribution has considered the first three
objectives with a focus on traumatic brain injury. As observed
earlier, traumatic brain injury presents particularly demanding
assessment challenges. Six conclusions have been developed in this
paper.

It was shown that a statistically significant separation of a
clinical population and an appropriately matched healthy com-
parison group does not ensure a successful diagnostic procedure.
It is necessary but not sufficient. While this is well established in
the technical literature, it is not always recognized in the clinical
community.

The post-TBI population is clinically heterogeneous. Different
injury events can initiate different pathophysiological processes. It
therefore follows that there will never be a single test for traumatic

brain injury. A multidimensional assessment is required. The
incorporation of additional measures into a multivariate discrim-
ination must, however, be undertaken with care. Contrary to
common understanding, adding variables to a classifier can in
some instances degrade performance. We provided an example of
an EEG classifier where the error rate decreased from 65% (actu-
ally worse that chance) to 27% as measures were eliminated from
the discrimination.

Reports of diagnostic sensitivity and specificity must also be
considered with care. Assessment procedures, for example neu-
ropsychological evaluations and psychophysiological measures
such as heart rate variability and event related potentials, may
be sensitive to CNS pathology, but the emerging literature indi-
cates that they are non-specific. While a set of measures may be
able to distinguish between healthy controls and TBI patients in a
carefully constructed clinical trial, these measures alone may well
not be able to distinguish between traumatic brain injury, bipolar
disorder or major depressive disorder. Since the clinical response
will be very different, this lack of specificity is not merely an acade-
mic consideration. That said, this does not constitute an argument
against neuropsychological and psychophysiological assessments
in neuropsychiatry. Measurement of body temperature provides
a valuable example. Body temperature is a non-specific clinical
measure but it is nonetheless a central element in any clinical eval-
uation. Measures of CNS coherence, synchronization, causal path-
ways, and network geometry are known to be non-specific but will,
we suggest, become increasingly important in neuropsychiatric
practice.

A study of treatment effectiveness must be responsive to the
high degree of intra-individual longitudinal variability of bio-
logical measures obtained in neuropsychiatric populations. This,
we have argued, is particularly true of TBI patients. Systematic
test-retest reliability studies are essential. Additionally, the high
incidence of spontaneous recovery from neuropsychiatric disor-
ders, including TBI, establishes the importance of waitlist control
groups. While a waitlist control group is methodologically valu-
able, it is also recognized that utilizing a waitlist group can raise
important ethical questions (98, 99). The waitlist can be detrimen-
tal. Depending on the clinical presentation and the duration of the
delay, significant deterioration can occur. Devilly and McFarlane
(100) suggested performing comparisons with existing waitlist
control data, but this possibility is limited to studies that have com-
mon inclusion/exclusion criteria and common outcome measures.
As in all research involving human participants, ideal statisti-
cal design must be subordinated to considerations of responsible
clinical behavior.

The heterogeneity of these clinical populations also suggests
that for any given treatment there may be responder and non-
responder subgroups in the intake populations. The respon-
der subgroup may be small and a treatment that might be
highly effective for that group may be lost in aggregate statis-
tics. But we cannot post-facto sort through outcomes looking
for the results that we want to see and declare a success. Posi-
tive response could be the result of a placebo effect or sponta-
neous recovery. At a minimum, a two phase study is required
where the characteristics of responders are identified in the first
phase. These characteristics are then used as inclusion/exclusion
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criteria for a second study which should show a high posi-
tive response rate. This second study should include a placebo
treatment arm.

A virtue of a statistical analysis of treatment response is the
potential for characterizing partial recovery. P(xPatient|GHealthy)

can be computed in the absence of a diagnosis and provides a
global assessment of an individual’s response to treatment. If a
diagnosis has been made, the probability of membership in the
patient’s diagnosis group will hopefully decrease but typically it
will remain non-zero. Assessments made in reference to a single
diagnostic group must be understood with care because symp-
toms can be present in the definition of more than one diagnostic
group. For example, symptoms present in post concussion syn-
drome are also found in PTSD, depression and, most pertinently,
in healthy control populations. A review of the endorsement fre-
quency of post concussion symptoms in populations that do not
have a history of TBI found that in some studies endorsement
rates in healthy controls were equal to or greater than endorsement
frequencies in populations with a history of mild TBI (101).

A further complication must be recognized. Neuropsychiatric
disorders are not single factor entities. The Potter et al. (102) study
of post concussion symptoms found three subscales. Similarly, the
Beck Depression Index identifies three subscales (103, 104), and
the Pittsburgh Sleep Quality Index has seven subscales (105). Sta-
tistical results indicating partial recovery may reflect a very positive
response on some subscales and not on others. A naïve statistical
analysis that does not recognize this possibility will not capture
these clinically important findings.

A great deal of attention is now being directed to the search
for prodromes of neuropsychiatric disorders. We have shown that
this can be constructed as a classification problem that utilizes the
results of a longitudinal study.

It has been suggested that imaging studies, genomic investiga-
tions, plasma biomarker data, neuropsychological evaluations, and
psychophysiological measures can be combined to construct quan-
titatively informed treatments specific to the individual patient.
The utility of these measures in making between-group discrim-
inations, for example, evaluating treatment effect size, is estab-
lished. Our assessment of the utility of these measures for guiding
individual treatment is more guarded. The heterogeneity of the
populations, low specificity and low test-retest reliability of these
measures argues against unrestrained optimism about their value
at the individual rather than group level. When essential and often
neglected statistical safeguards are introduced, previously reported
positive results are found to be unsubstantiated. While progress in
the longitudinal quantitative assessment of individual patients can
certainly be made, statistical caution must be exercised.

ACKNOWLEDGMENTS
We would like to acknowledge support from the Uniformed Ser-
vices University, The US Marine Corps Systems Command, and
the Defense Medical Research and the Development Program. The
opinions and assertions contained herein are the private opinions
of the authors and are not to be construed as official or reflecting
the views of the United States Department of Defense.

REFERENCES
1. Cuthbert B, Insel T. The data of diagnosis: new approaches to

psychiatric classification. Psychiatry (2010) 73(4):311–4. doi:10.1521/psyc.
2010.73.4.311

2. Sanislow CA, Pine DS, Quinn KJ, Kozak MJ, Garvey MA, Heinssen RK, et al.
Developing constructs for psychopathology research: research domain criteria.
J Abnorm Psychol (2010) 119(4):631–9. doi:10.1037/a0020909

3. Smith CT, Oltmanns TF. Scientific advances in the diagnosis of psychopathol-
ogy: introduction to the special section. Psychol Assess (2009) 21(3):241–2.
doi:10.1037/a0016919

4. Rapp PE, Curley KC. Is a diagnosis of “mild traumatic brain injury” a cat-
egory mistake? J Trauma Acute Care Surgery (2012) 73(2 Suppl 1):S13–23.
doi:10.1097/TA.0b013e318260604b

5. Hastie T, Tibshirani R, Friedman J. Elements of Statistical Learning. 2nd ed.
New York: Springer (2009).

6. Murdoch DJ, Tsai Y-L, Adcock J. P-values are random variables. Am Stat (2008)
62(3):242–5. doi:10.1198/000313008X332421

7. Arlot S, Celisse A. A survey of cross-validation procedures for model selection.
Stat Surveys (2010) 4:40–79. doi:10.1214/09-SS054

8. Wasserman L. All of Statistics: A Concise Course in Statistical Inference. New
York: Springer (2010).

9. Watanabe TAA, Cellucci CJ, Kohegyi E, Bashore TR, Josiassen RC, Green-
baun NN, et al. The algorithmic complexity of multichannel EEGs is sensitive
to changes in behavior. Psychophysiology (2003) 40:77–97. doi:10.1111/1469-
8986.00009

10. Flury B,Riedwyl H. Multivariate Statistics. A Practical Approach. London: Chap-
man and Hall (1988).

11. Thatcher RW, North DM, Curtin RT, Walker RA, Birer CJ, Gomez JF, et al. An
EEG severity index of traumatic brain injury. J Neuropsychiatry Clin Neurosci
(2001) 13(1):77–87. doi:10.1176/appi.neuropsych.13.1.77

12. Slewa-Younan S, Green AM, Baguley IJ, Felminham KL, Haig AR, Gordon
E. Is ‘gamma’ (40 Hz) synchronous activity disturbed in patients with trau-
matic brain injury? Neurophysiol Clin (2002) 113:1640–6. doi:10.1016/S1388-
2457(02)00239-0

13. Herrmann CS, Demiralp T. Human EEG gamma oscillations in neuropsy-
chiatric disorders. Neurophysiol Clin (2005) 116(12):2719–33. doi:10.1016/j.
clinph.2005.07.007

14. Schnitzler A, Gross J. Normal and pathological oscillatory communication in
the brain. Nat Rev Neurosci (2005) 6(4):285–96. doi:10.1038/nrn1650

15. Uhlhaas PJ, Singer W. Neural synchrony in brain disorders: relevance for
cognitive dysfunctions and pathophysiology. Neuron (2006) 52(1):155–68.
doi:10.1016/j.neuron.2006.09.020

16. Barry RJ, Clarke AR, McCarthy R, Selikowitz M, Johnstone SJ, Hsu C-I,
et al. Age and gender effects in EEG coherence: II. Boys with attention
deficit/hyperactivity disorder. Neurophysiol Clin (2005) 116:977–84. doi:10.
1016/j.clinph.2004.10.002

17. Georgopoulos AP, Karageorgiou E, Leuthold AC, Lewis SM, Lynch JK, Alonso
AA, et al. Synchronous neural interactions assessed by magnetoencephalog-
raphy: a functional biomarker for brain disorders. J Neural Eng (2007)
4(4):349–55. doi:10.1088/1741-2560/4/4/001

18. Matsumoto A, Ichikawa Y, Kanayama N, Ohira H, Iidaka T. Gamma band
activity and its synchronization reflect the dysfunctional emotional processing
in alexithymic persons. Psychophysiology (2006) 43(6):533–40. doi:10.1111/j.
1469-8986.2006.00461.x

19. Orekhova EV, Stroganova TA, Nygren G, Tsetlin MM, Posikera IW, Gillberg
C, et al. Excess of high frequency electroencephalogram oscillations in boys
with autism. Biol Psychiatry (2007) 62:1022–9. doi:10.1016/j.biopsych.2006.
12.029

20. O’Donnell ML, Creamer M, Pattison P, Atkin C. Psychiatric morbidity follow-
ing injury. Am J Psychiatry (2004) 161(3):507–14. doi:10.1176/appi.ajp.161.3.
507

21. Stam CJ, van der Made Y, Pijnenburg YAI, Sheltens P. EEG synchronization in
mild cognitive impairment and Alzheimer’s disease. Acta Neurol Scand (2003)
108:90–6. doi:10.1034/j.1600-0404.2003.02067.x

22. Baldeweg T, Spence S, Hirsch SR, Bruzelier J. Gamma-band electroencephalo-
graphic oscillations in a patient with somatic hallucinations. Lancet (1998)
352:620–1. doi:10.1016/S0140-6736(05)79575-1

www.frontiersin.org November 2013 | Volume 4 | Article 177 | 11

http://dx.doi.org/10.1521/psyc.2010.73.4.311
http://dx.doi.org/10.1521/psyc.2010.73.4.311
http://dx.doi.org/10.1037/a0020909
http://dx.doi.org/10.1037/a0016919
http://dx.doi.org/10.1097/TA.0b013e318260604b
http://dx.doi.org/10.1198/000313008X332421
http://dx.doi.org/10.1214/09-SS054
http://dx.doi.org/10.1111/1469-8986.00009
http://dx.doi.org/10.1111/1469-8986.00009
http://dx.doi.org/10.1176/appi.neuropsych.13.1.77
http://dx.doi.org/10.1016/S1388-2457(02)00239-0
http://dx.doi.org/10.1016/S1388-2457(02)00239-0
http://dx.doi.org/10.1016/j.clinph.2005.07.007
http://dx.doi.org/10.1016/j.clinph.2005.07.007
http://dx.doi.org/10.1038/nrn1650
http://dx.doi.org/10.1016/j.neuron.2006.09.020
http://dx.doi.org/10.1016/j.clinph.2004.10.002
http://dx.doi.org/10.1016/j.clinph.2004.10.002
http://dx.doi.org/10.1088/1741-2560/4/4/001
http://dx.doi.org/10.1111/j.1469-8986.2006.00461.x
http://dx.doi.org/10.1111/j.1469-8986.2006.00461.x
http://dx.doi.org/10.1016/j.biopsych.2006.12.029
http://dx.doi.org/10.1016/j.biopsych.2006.12.029
http://dx.doi.org/10.1176/appi.ajp.161.3.507
http://dx.doi.org/10.1176/appi.ajp.161.3.507
http://dx.doi.org/10.1034/j.1600-0404.2003.02067.x
http://dx.doi.org/10.1016/S0140-6736(05)79575-1
http://www.frontiersin.org
http://www.frontiersin.org/Neurotrauma/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rapp et al. Statistical issues in TBI clinical studies

23. Fletcher DJ, Raz J, Fein G. Intra-hemispheric alpha coherence decreases with
increasing cognitive impairment in HIV patients. Electroencephalogr Clin Neu-
rophysiol (1997) 102(4):286–94. doi:10.1016/S0013-4694(96)96071-X

24. Angelini L, de Tommaso M, Guido M, Hu K, Ivanov PC, Marinazzo D, et al.
Steady state visual evoked potentials and phase synchronization in migraine
patients. Phys Rev Lett (2004) 93(3):038103. doi:10.1103/PhysRevLett.93.
038103

25. Akbari A, Gharibzadeh S. β oscillations as the cause of both hyper- and hypoki-
netic symptoms of movement disorders. J Neuropsychiatry Clin Neurosci (2009)
21(3):352. doi:10.1176/appi.neuropsych.21.3.352

26. Kolassa I-T, Wienbruch C, Neuner F, Schauer M, Ruf M, Odenwald M, et al.
Altered oscillatory brain dynamics after repeated traumatic stress. BMC Psy-
chiatry (2007) 7:56. doi:10.1186/1471-244X-7-56

27. Georgopoulos AP, Tan H-RM, Lewis SM, Leuthold AC, Winskowski AM,
Lynch JK, et al. The synchronous neural interactions test as a functional
neuromarker for post-traumatic stress disorder (PTSD): a robust classi-
fication method based on the bootstrap. J Neural Eng (2010) 7:016011.
doi:10.1088/1741-2560/7/1/016011

28. Basar-Eroglu C, Schmidt-Fehr C, Mathes B, Zimmermann J, Brand A. Are
oscillatory brain responses generally reduced in schizophrenia during long
sustained attentional processing? Int J Psychophysiol (2009) 71:75–83. doi:10.
1016/j.ijpsycho.2008.07.004

29. Friedman BH. An autonomic flexibility-neurovisceral integration model
of anxiety and cardiac tone. Biol Psychol (2007) 74:185–99. doi:10.1016/j.
biopsycho.2005.08.009

30. Yamamoto Y, LaManca JJ, Natelson BH. A measure of heart rate variability is
sensitive to orthostatic challenge in women with chronic fatigue syndrome.
Exp Biol Med (2003) 228(2):167–74.

31. Jindal RD, Keshavan MS. Heart rate variability in patients with depression.
Arch Gen Psychiatry (2008) 64:611–2. doi:10.1001/archpsyc.64.5.611

32. Storella RJ, Shi Y, O’Connor DM, Pharo GH, Abrams JJ, Levitt H. Relief of
chronic pain may be accompanied by an increase in a measure of heart rate vari-
ability. Anesth Analg (1999) 89(2):448–50. doi:10.1097/00000539-199908000-
00037

33. Klein E, Cnaani E, Harel T, Braun S, Ben-Haim SA. Altered heart rate
variability in panic disorder patients. Biol Psychiatry (1995) 37(1):18–24.
doi:10.1016/0006-3223(94)00130-U

34. Kallio M, Suominen K, Bianchi AM, Mäkikallio T, Haapaniemi T, Astafiev S,
et al. Comparison of heart rate variability analysis methods in patients with
Parkinson’s disease. Med Biol Eng Comput (2002) 40(4):408–14. doi:10.1007/
BF02345073

35. van der Kolk BA. Clinical implications of neuroscience research in PTSD. Ann
NY Acad Sci (2006) 1071:277–93. doi:10.1196/annals.1364.022

36. Castro M, Vigo D, Chu E, Fahrer R, de Achával D, Costanzo E, et al. Heart rate
variability response to mental arithmetic stress is abnormal in first-degree rel-
atives of individuals with schizophrenia. Schizophr Res (2009) 109(1):134–40.
doi:10.1016/j.schres.2008.12.026

37. Baguley IJ, Heriseanu RE, Felmingham KL, Cameron ID. Dysautonomia and
heart rate variability following severe traumatic brain injury. Brain Injury
(2006) 20:437–44. doi:10.1080/02699050600664715

38. Castellanos NP, Leyva I, Buldú JM, Bajo R, Paúl N, Cuesta P, et al.
Principles of recovery from traumatic brain injury: reorganization of func-
tional networks. Neuroimage (2011) 55(3):1189–99. doi:10.1016/j.neuroimage.
2010.12.046

39. Castellanos NP, Bajo R, Cuesta P, Villacorta-Atienza JA, Paúl N, Garcia-Prieto J,
et al. Alteration and reorganization of functional networks: a new perspective
in brain injury study. Front Hum Neurosci (2011) 5:90. doi:10.3389/fnhum.
2011.00090

40. Rubinov M, Knock SA, Stam CJ, Micheloyannis S, Harris AWF, Williams LM,
et al. Small world properties of nonlinear brain activity in schizophrenia. Hum
Brain Mapp (2009) 30:403–16. doi:10.1002/hbm.20517

41. Stam CJ, Jones BF, Nolte G, Breakspear M, Scheltens PH. Small-world net-
works and functional connectivity in Alzheimer’s disease. Cereb Cortex (2007)
17:92–9. doi:10.1093/cercor/bhj127

42. van Dellen E, Douw L, Baayen JC, Heimans JJ, Ponten SC, Vandertop WB, et al.
Long-term effects of temporal lobe epilepsy on local neural networks: a graph
theoretical analysis of corticography recordings. PLoS One (2009) 4(11):e8081.
doi:10.1371/journal.pone.0008081

43. Bartolomei F, Bosma I, Klein M, Baayen JC, Reijneveld JC, Postma TJ, et al. Dis-
tributed functional connectivity in brain tumour patients: evaluation by graph
analysis and synchronization matrices. Neurophysiol Clin (2006) 117:2039–49.
doi:10.1016/j.clinph.2006.05.018

44. Hughlings-Jackson J. On some implications of dissolution of the nervous sys-
tem. In: Taylor JJ editor. Selected Writings of John Hughlings. (Vol. 2), New York:
Hodder and Stoughton (1882). p. 29–45.

45. Head H. Aphasia and Kindred Disorders of Speech. Cambridge: Cambridge Uni-
versity Press (1926).

46. Bleiberg J, Garmoe WS, Halpern EL, Reeves DL, Nadler JD. Consistency of
within-day and across-day performance after mild brain injury. Neuropsychia-
try Neuropsychyol Behav Neurol (1997) 10(4):247–53.

47. Cole WR, Arrieux JP, Schwab K, Ivins BJ, Qashu FM, Lewis SC. Test-
retest reliability of four computerized neurocognitive assessment tools in an
active duty military population. Arch Clin Neuropsychol (2013) 28(7):732–42.
doi:10.1093/arclin/act040

48. Vickery CD, Berry DTR, Inman TH, Harris MJ, Orey SA. Detection of
inadequate effort on neuropsychological testing: a meta-analytic review of
selected procedures. Arch Clin Neuropsychol (2001) 16:45–73. doi:10.1016/
S0887-6177(99)00058-X

49. Boone KB editor. Assessment of Feigned Cognitive Impairment: A Neurospycho-
logical Perspective. Mahwah, NJ: Guilford Press (2007).

50. Bordini EJ, Chaknis MM, Ekman-Turner RM, Perna RB. Advances and issues
in the diagnostic differential of malingering versus brain injury. NeuroRehabil-
itation (2002) 17:93–104.

51. Larrabee GJ editor. Assessment of Malingered Neuropsychological Deficits. New
York: Oxford University Press (2007).

52. Morgan JE, Sweet JJ editors. Neuropsychology of Malingering Casebook. New
York: Psychology Press (2008).

53. Lindenberg R, Fisher RS, Durlach SH. Lesions of the corpus callosum following
blunt mechanical trauma to the head. Am J Pathol (1955) 31:297–317.

54. Strich SJ. Diffuse degeneration of cerebral white matter in severe dementia
following head injury. J Neurol Neurosurgery Psychiatry (1956) 19:163–85.
doi:10.1136/jnnp.19.3.163

55. Smith DH, Meaney DF, Shull WH. Diffuse axonal injury in head trauma. J Head
Trauma Rehabil (2003) 18(4):307–16. doi:10.1097/00001199-200307000-
00003

56. Adams JH, Graham DI, Murray LS, Scott G. Diffuse axonal injury due to non-
missile head injury in humans: an analysis of 45 cases. Ann Neurol (1982)
12:557–63. doi:10.1002/ana.410120610

57. Christman CW, Grady MS, Walker SA, Holloway KL, Povlishock JT. Ultra-
structural studies of diffuse axonal injuries in humans. J Neurotrauma (1994)
11:173–86. doi:10.1089/neu.1994.11.173

58. Pierce JES, Smith DH, Trojanowski JQ, McIntosh TK. Enduring cognitive, neu-
robehavioral and histopathological changes persist for up to one year following
severe experimental brain injury in rats. Neuroscience (1998) 87(2):359–69.
doi:10.1016/S0306-4522(98)00142-0

59. Povlishock JT. Pathophysiology of neural injury: therapeutic opportunities and
challenges. Clin Neurosurg (2000) 46:113–26.

60. Iwata A, Chen XH, McIntosh TK, Brown KD, Smith D. Long-term accumu-
lation of amyloid-beta in axons following brain trauma without persistent
upregulation of amyloid precursor protein genes. J Neuropathol Exp Neurol
(2002) 61:1056–68.

61. Smith DH, Chen XH, Pierce JE, Wolf JA, Trojanowski JQ, Graham DI, et al.
Progressive atrophy and neuron death for one year following brain trauma in
the rat. J Neurotrauma (1997) 4:715–27. doi:10.1089/neu.1997.14.715

62. Dixon CE, Kochanek PM, Yan HQ, Schiding JK, Griffith RG, Baum E, et al.
One-year study of spatial memory performance, brain morphology and cholin-
ergic markers after moderate controlled cortical impact in rats. J Neurotrauma
(1999) 16(2):109–22. doi:10.1089/neu.1999.16.109

63. Maxwell WL, Povlishock JT, Graham DL. A mechanistic analysis of nondisrup-
tive axonal injury: a review. J Neutotrauma (1997) 14(7):419–40. doi:10.1089/
neu.1997.14.419

64. Shanmuganathan K, Gullapalli RP, Mirvis SE, Roys S, Murthy P. Whole-brain
apparent diffusion coefficient in traumatic brain injury: correlation with Glas-
gow coma scale. Am J Neuroradiol (2004) 25:539–44.

65. Ross DE, Ochs AL, Seabaugh JM, DeMark MF, Shrader CR, Marwitz JH, et al.
Progressive brain atrophy in patients with chronic neuropsychiatric symptoms

Frontiers in Neurology | Neurotrauma November 2013 | Volume 4 | Article 177 | 12

http://dx.doi.org/10.1016/S0013-4694(96)96071-X
http://dx.doi.org/10.1103/PhysRevLett.93.038103
http://dx.doi.org/10.1103/PhysRevLett.93.038103
http://dx.doi.org/10.1176/appi.neuropsych.21.3.352
http://dx.doi.org/10.1186/1471-244X-7-56
http://dx.doi.org/10.1088/1741-2560/7/1/016011
http://dx.doi.org/10.1016/j.ijpsycho.2008.07.004
http://dx.doi.org/10.1016/j.ijpsycho.2008.07.004
http://dx.doi.org/10.1016/j.biopsycho.2005.08.009
http://dx.doi.org/10.1016/j.biopsycho.2005.08.009
http://dx.doi.org/10.1001/archpsyc.64.5.611
http://dx.doi.org/10.1097/00000539-199908000-00037
http://dx.doi.org/10.1097/00000539-199908000-00037
http://dx.doi.org/10.1016/0006-3223(94)00130-U
http://dx.doi.org/10.1007/BF02345073
http://dx.doi.org/10.1007/BF02345073
http://dx.doi.org/10.1196/annals.1364.022
http://dx.doi.org/10.1016/j.schres.2008.12.026
http://dx.doi.org/10.1080/02699050600664715
http://dx.doi.org/10.1016/j.neuroimage.2010.12.046
http://dx.doi.org/10.1016/j.neuroimage.2010.12.046
http://dx.doi.org/10.3389/fnhum.2011.00090
http://dx.doi.org/10.3389/fnhum.2011.00090
http://dx.doi.org/10.1002/hbm.20517
http://dx.doi.org/10.1093/cercor/bhj127
http://dx.doi.org/10.1371/journal.pone.0008081
http://dx.doi.org/10.1016/j.clinph.2006.05.018
http://dx.doi.org/10.1093/arclin/act040
http://dx.doi.org/10.1016/S0887-6177(99)00058-X
http://dx.doi.org/10.1016/S0887-6177(99)00058-X
http://dx.doi.org/10.1136/jnnp.19.3.163
http://dx.doi.org/10.1097/00001199-200307000-00003
http://dx.doi.org/10.1097/00001199-200307000-00003
http://dx.doi.org/10.1002/ana.410120610
http://dx.doi.org/10.1089/neu.1994.11.173
http://dx.doi.org/10.1016/S0306-4522(98)00142-0
http://dx.doi.org/10.1089/neu.1997.14.715
http://dx.doi.org/10.1089/neu.1999.16.109
http://dx.doi.org/10.1089/neu.1997.14.419
http://dx.doi.org/10.1089/neu.1997.14.419
http://www.frontiersin.org/Neurotrauma
http://www.frontiersin.org/Neurotrauma/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rapp et al. Statistical issues in TBI clinical studies

after mild traumatic brain injury: a preliminary study. Brain Injury (2012)
26(12):1500–9. doi:10.3109/02699052.2012.694570

66. McKee AC, Cantu RC, Nowinski CJ, Hedley-White T, Gavett BE, Budson AE,
et al. Chronic traumatic encephaologapthy in athletes: progressive tauopathy
after repetitive head injury. J Neuropathol Exp Neurol (2009) 68(7):709–35.
doi:10.1097/nen.0b013e3181a9d503

67. MacKenzie JD, Siddiqi F, Babb JS, Bagley LJ, Mannon LJ, Sinson GP, et al. Brain
atrophy in mild or moderate traumatic brain injury: a longitudinal quantitative
analysis. AJNR Am J Neuroradiol (2002) 23:1509–15.

68. Cohen BA, Inglese M, Rusinek H, Babb JS, Grossman RI, Gonen O. Proton
MR spectroscopy and MRI-volumetry in mild traumatic brain injury. Am J
Neuroradiol (2007) 28:907–13.

69. Fujii D, Ahmed I. Psychosis secondary to traumatic brain injury. Neuropsychi-
atry, Neuropsychol Behav Neurol (1996) 9:133–8.

70. Fujii D, Ahmed I. Risk factors in psychosis secondary to traumatic brain injury.
J Neuropsychiatry Clin Neurosci (2001) 13:61–9. doi:10.1176/appi.neuropsych.
13.1.61

71. Sachdev P, Smith PS, Cathcart S. Schizophrenia-like psychosis following trau-
matic brain injury: a chart-based descriptive and case-control study. Psychol
Med (2001) 31:231–9. doi:10.1017/S0033291701003336

72. Brenner LA, Homaifar BY, Adler LE, Wolfman JH, Kemp J. Suicidality and
veterans with a history of traumatic brain injury: precipitating events, pro-
tective factors and prevention strategies. Rehabil Psychol (2009) 54(4):390–7.
doi:10.1037/a0017802

73. Grieger TA,Cozza SJ, Ursano RJ, Hoge C,Martinez PE,Engel CC,et al. Posttrau-
matic stress disorder and depression in battle-injured soldiers. Am J Psychiatry
(2006) 163:1777–83. doi:10.1176/appi.ajp.163.10.1777

74. Jorge RE, Robinson RG, Arndt SV, Forrester AW, Geisler F, Starkstein SE. Com-
parison between acute and delayed-onset depression following traumatic brain
injury. J Neuropsychiatry Clin Neurosci (1993) 5:43–9.

75. Jorge RE, Robinson RG, Moser D, Tateno A, Crespo-Facorro B, Arndt S.
Major depression following traumatic brain injury. Arch Gen Psychiatry (2004)
61:42–50. doi:10.1001/archpsyc.61.1.42

76. Milliken CS, Auchterlonie JL, Hoge CW. Longitudinal assessment of men-
tal health problems among active and reserve component soldiers return-
ing from the Iraq war. JAMA J Am Med Assoc (2007) 298(18):2141–8.
doi:10.1001/jama.298.18.2141

77. Andrews B, Brewin CR, Philpott R, Stewart L. Delayed-onset posttraumatic
stress disorder: a systematic review of the evidence. Am J Psychiatry (2007)
164:1319–26. doi:10.1176/appi.ajp.2007.06091491

78. Gray MJ, Bolton EE, Litz BT. A longitudinal analysis of PTSD symptom course:
delayed-onset PTSD in Somalia peacekeepers. J Consult Clin Psychol (2004)
72(5):909–13. doi:10.1037/0022-006X.72.5.909

79. Carroll LJ, Cassidy JD, Peloso PM, Borg J, von Holost H, Holm L, et al. Prog-
nosis for mild traumatic brain injury: results of the WHO collaborating cen-
tre task force on mild traumatic brain injury. J Rehabil Med (2004) 36(Suppl
43):84–105. doi:10.1080/16501960410023660

80. Posternak MA, Miller I. Untreated short-term course of major depression: a
meta-analysis of outcomes from studies using wait-list control groups. J Affect
Disord (2001) 66:139–46. doi:10.1016/S0165-0327(00)00304-9

81. Posternak MA, Solomon DA, Leon AC, Mueller TI, Shen MT, Endicott J, et
al. The naturalistic course of unipolar major depression in the absence of
somatic therapy. J Nerv Ment Dis (2006) 194(5):324–9. doi:10.1097/01.nmd.
0000217820.33841.53

82. Jacobson NS, Traux P. Clinical significance: a statistical approach to defining
meaningful change in psychotherapy research. J Consult Clin Psychol (1991)
59(1):12–9. doi:10.1037/0022-006X.59.1.12

83. Chelune GJ, Naugle RI, Luders H, Sedlack J, Awad IA. Individual change after
epilepsy surgery: practice effects and base rate information. Neuropsychology
(1993) 7:41–52. doi:10.1037/0894-4105.7.1.41

84. Sawrie SM. Analysis of cognitive change: a commentary on Keith, et al. (2002).
Neuropsychology (2002) 16(3):429–31. doi:10.1037/0894-4105.16.3.429

85. McSweeny AJ, Naugle RI, Chelune GJ, Luders H. T scores for change: an illustra-
tion of a regression approach to depicting change in clinical neuropsychology.
Clin Neuropsychol (1993) 7:300–12. doi:10.1080/13854049308401901

86. Temkin NR, Heaton RK, Grant I, Dikmen SS. Detecting significant change
in neuropsychological test performance: a comparison of four models. J Int
Neuropsychol Soc (1999) 5:357–69. doi:10.1017/S1355617799544068

87. Myers RH. Classical and Modern Rgression with Applcations. 2nd ed. Boston:
PWS-Kent Publishing (1990).

88. Offen W, Chuang-Stein C, Dmitrienko A, Littman G, Maca J, Meyerson L, et
al. Multiple co-primary endpoints: medical and statistical solutions. A report
from the multiple endpoints expert team of the Pharmaceutical Research and
Manufacturers Assocation of America. Drug Inf J (2007) 41:31–46.

89. Kirsh I, Sapirstein G. Listening to Prozac but hearing placebo: a meta-analysis
of antidepressant medication. Prevent Treat (1998) 1:2a.

90. Huedo-Medina TB, Kirsch I, Middlemass J, Klonizakis M, Siriwardena AN.
Effectiveness of non-benzodiazepine hypnotics in the treatment of adult
insomnia: meta-analysis of data submitted to the Food and Drug Adminis-
tration. Br Med J (2012) 345:e8343. doi:10.1136/bmj.e8343

91. O’Connell ME, Boat T, Warner KE, editors. Preventing mental, emotional and
behavioral disorders among young people: progress and possibilities. National
Research Council and Institute of Medicine. Washington, DC: National Acad-
emy Press (2009).

92. Costello EJ, Angold A. Developmental transitions to psychopathology: are
there prodromes of substance use disorder? J Child Psychol Psychiatry (2010)
51(4):526–32. doi:10.1111/j.1469-7610.2010.02221.x

93. Kessler RC, Berglund P, Demler O, Jin R, Merikangas KR, Walters EE. Lifetime
prevalence and age-of-onset distributions of DSM-IV disorders in the National
Comorbidity Survey Replication. Arch Gen Psychiatry (2005) 62(6):593–602.
doi:10.1001/archpsyc.62.6.593

94. Jaffee SR, Harrington H, Cohen P, Moffitt TE. Cumulative prevelance of psychi-
atric disorder in youths. J Am Acad Child Adolesc Psychiatry (2005) 44(5):406–7.
doi:10.1097/01.chi.0000155317.38265.61

95. Costello EJ. Grand challenges in child and neurodevelopmental psychiatry.
Front Psychiatry (2010) 1:14. doi:10.3389/fpsyt.2010.00014

96. Leckman JF, Yazgan MY. Editorial: developmental transitions to psychopathol-
ogy: from genomics and epigenomics to social policy. J Child Psychol Psychiatry
(2010) 51(4):333–40. doi:10.1111/j.1469-7610.2010.02226.x

97. Rapp PE, Rosenberg BM, Keyser DO, Nathan D, Toruno KM, Cellucci CJ, et
al. Patient characterization protocols for psychophysiological studies of trau-
matic brain injury and post-TBI psychiatric disorders. Front Neurol (2013)
4:91. doi:10.3389/fneur.2013.00091

98. Elliott SA, Brown JS. What are we doing to waiting list controls? Behav Res Ther
(2002) 40(9):1047–52. doi:10.1016/S0005-7967(01)00082-1

99. Hart T, Fann JR, Novack TA. The dilemma of the control condition in
experience-based cognitive and behavioural treatment research. Neuropsychol
Rehabil (2008) 18(1):1–21. doi:10.1080/09602010601082359

100. Devilly GJ, McFarlane AC. When waitlists are not feasible nothing is a thing
that does not need to be done. J Consult Clin Psychol (2009) 77(6):1159–68.
doi:10.1037/a0016878

101. McCrea MA. Traumatic Brain Injury and Postconcussion Syndrome. Oxford:
Oxford university Press (2008).

102. Potter S, Leigh E, Wade D, Fleminger S. The rivermead post concussion
symptoms questionaire: a confirmatory factor analysis. J Neurol (2006)
253(12):1603–14. doi:10.1007/s00415-006-0275-z

103. Beck AT, Steer RA, Brown GK. Beck Depression Inventory. II. Manual. San Anto-
nio, TX: Psychological Corporation (1996).

104. Rowland SM, Lam CS, Leahy B. Use of the Beck Depression Inventory-II (BDI-
II) with persons with traumatic brain injury: analysis of factorial structure.
Brain Injury (2005) 19(2):77–83. doi:10.1080/02699050410001719988

105. Buysse DJ, Reynolds CF, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh
sleep quality index: a new instrument for psychiatric practice and research.
Psychiatry Res (1989) 28:193–213. doi:10.1016/0165-1781(89)90047-4

106. Johnson RA, Wichern DW. Applied Multivariate Statistical Analysis. Saddle
River, NJ: Prentice Hall (2002).

107. Panel on Discriminant Analysis, Classification and Clustering. Discriminant
Analysis and Clustering. National Research Council. Washington, DC: National
Academy Press (1988).

108. McLachlan GJ. Discriminant Analysis and Statistical Pattern Recognition. New
York, NY: John Wiley and Sons (1992).

109. Portney LG, Watkins MP. Foundations of Clinical Research. Applications to Prac-
tice. 3rd ed. Upper Saddle River, NJ: Prentice Hall Health (2008).

110. Ellis PD. The Essential Guide to Effect Sizes: An Introduction to Statistical Power,
Meta-Analysis and the Interpretation of Research Results. Cambridge: Cam-
bridge University Press (2010).

www.frontiersin.org November 2013 | Volume 4 | Article 177 | 13

http://dx.doi.org/10.3109/02699052.2012.694570
http://dx.doi.org/10.1097/nen.0b013e3181a9d503
http://dx.doi.org/10.1176/appi.neuropsych.13.1.61
http://dx.doi.org/10.1176/appi.neuropsych.13.1.61
http://dx.doi.org/10.1017/S0033291701003336
http://dx.doi.org/10.1037/a0017802
http://dx.doi.org/10.1176/appi.ajp.163.10.1777
http://dx.doi.org/10.1001/archpsyc.61.1.42
http://dx.doi.org/10.1001/jama.298.18.2141
http://dx.doi.org/10.1176/appi.ajp.2007.06091491
http://dx.doi.org/10.1037/0022-006X.72.5.909
http://dx.doi.org/10.1080/16501960410023660
http://dx.doi.org/10.1016/S0165-0327(00)00304-9
http://dx.doi.org/10.1097/01.nmd.0000217820.33841.53
http://dx.doi.org/10.1097/01.nmd.0000217820.33841.53
http://dx.doi.org/10.1037/0022-006X.59.1.12
http://dx.doi.org/10.1037/0894-4105.7.1.41
http://dx.doi.org/10.1037/0894-4105.16.3.429
http://dx.doi.org/10.1080/13854049308401901
http://dx.doi.org/10.1017/S1355617799544068
http://dx.doi.org/10.1136/bmj.e8343
http://dx.doi.org/10.1111/j.1469-7610.2010.02221.x
http://dx.doi.org/10.1001/archpsyc.62.6.593
http://dx.doi.org/10.1097/01.chi.0000155317.38265.61
http://dx.doi.org/10.3389/fpsyt.2010.00014
http://dx.doi.org/10.1111/j.1469-7610.2010.02226.x
http://dx.doi.org/10.3389/fneur.2013.00091
http://dx.doi.org/10.1016/S0005-7967(01)00082-1
http://dx.doi.org/10.1080/09602010601082359
http://dx.doi.org/10.1037/a0016878
http://dx.doi.org/10.1007/s00415-006-0275-z
http://dx.doi.org/10.1080/02699050410001719988
http://dx.doi.org/10.1016/0165-1781(89)90047-4
http://www.frontiersin.org
http://www.frontiersin.org/Neurotrauma/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rapp et al. Statistical issues in TBI clinical studies

111. Cohen J. Power Spectral Analysis in the Behavioral Sciences. 2nd ed. Hillsdale,
NJ: Lawrence Erlbaum (1988).

112. Glass GV, McGaw B, Smith ML. Meta-Analysis in Social Research. Beverly Hills,
CA: Sage Press (1981).

113. Hedges LV. Distribution theory for Glass’s estimator of effect size and related
estimators. J Ed Stats (1981) 6(2):106–28.

114. Zhao P,Yu B. On model selection consistency of Lasso. J Mach Learn Res (2006)
7:2541–63.

Conflict of Interest Statement: The authors declare that the research was conducted
in the absence of any commercial or financial relationships that could be construed
as a potential conflict of interest.

Received: 19 July 2013; accepted: 23 October 2013; published online: 19 November
2013.
Citation: Rapp PE, Cellucci CJ, Keyser DO, Gilpin AMK and Darmon DM
(2013) Statistical issues in TBI clinical studies. Front. Neurol. 4:177. doi:
10.3389/fneur.2013.00177
This article was submitted to Neurotrauma, a section of the journal Frontiers in Neu-
rology.
Copyright © 2013 Rapp, Cellucci, Keyser , Gilpin and Darmon. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) or licensor are credited and that the original publication in this
journal is cited, in accordance with accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Neurology | Neurotrauma November 2013 | Volume 4 | Article 177 | 14

http://dx.doi.org/10.3389/fneur.2013.00177
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neurotrauma
http://www.frontiersin.org/Neurotrauma/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rapp et al. Statistical issues in TBI clinical studies

APPENDIX
A. CALCULATION OF P SAME (GA, GB)
Applied Multivariate Statistics [Johnson and Wichern (106), p.
210]. Panel on Discriminant Analysis, Classification and Cluster-
ing [(107), p. 38].

Assumptions used in the derivation of PSAME (GA, GB)
a. The two populations given the class label, both Group A and

Group B, are multivariate normal,
b. the population covariance matrices are the same,
c. N A+N B > Z + 1, where Z is the number of variables in the

discrimination (the dimension of the measure vector).

For Group A let µ̂
A
= (µ̂A1, µ̂A2, · · · µ̂AZ) denote the vector

of sample mean values.

µ̂Ai =
1

NA

NA∑
m=1

Xi(m)

where x i(m) is the m-th value of discriminating variable i in Group
A. (σ̂2

A)i, j is element (i, j) of the Group A sample covariance matrix.

(
σ̂2

A

)
i,j =

1

NA − 1

NA∑
m=1

(
xi (m)− µ̂Ai

) (
xj(m)− µ̂Aj

)
∑

A denotes the Z ×Z matrix of elements (σ̂2
A)i,j , and

∑
−1
A

denotes its inverse. These quantities are defined analogously for
Group B. (σ̂2

A,B)
i,j

is element (i, j) of the between-group sample

covariance matrix.

(σ̂2
A,B)

i,j
=

(NA − 1)(σ̂2
A)i,j + (NB − 1)(σ̂2

B)i,j

NA + NB − 2∑
A,B denotes the matrix formed by these elements, and

∑
−1
A,B

denotes its inverse. The between-group Mahalanobis distance is
given by

D2
A,B =


µ̂A1 − µ̂B1

µ̂A2 − µ̂B2
...

µ̂AZ − µ̂BZ


T ∑−1

A,B


µ̂A1 − µ̂B1

µ̂A2 − µ̂B2
...

µ̂AZ − µ̂BZ


For the special case where the discrimination is based on a single

variable (Z = 1 in our notation), the expression for Mahalanobis
distance is given by

D2
A,B =

(µ̂A − µ̂B)
2

σ̂2
A,B

σ̂2
A,B =

(NA − 1)σ̂2
A + (NB − 1)σ̂2

B

NA + NB − 2

µ̂A is the Group A sample mean for this single variable and σ̂A is
the sample standard deviation of that mean. µ̂B and σ̂B are defined
analogously.

PSAME (GA, GB) is given by an F-test

PSAME(GA, GB) = I ν2
ν2+ν1F

(ν2

2
,
ν1

2

)
ν1=Z, the number of discriminating variables, and

ν2=N A+N B−Z − 1.

F =
NANB(NA + NB − Z − 1)D2

A,B

(NA + NB)(NA + NB − 2)Z

I X(a, b) is the incomplete β function.

Ix(a, b) =
1

B(a, b)

x∫
0

t a−1(1− t )b−1dt

and B(a, b) is the β function.

B(a,b) =

1∫
0

t a−1(1− t )b−1dt

PSAME is seen to be monotone decreasing with Mahalanobis dis-
tance. From the numerator of F it is seen that N A+N B > Z + 1
is a requirement of the analysis.

Interpretation of PSAME

PSAME is only meaningful in the context of a two group com-
parison. PSAME is the probability under the null hypothesis
(µ

A
= µ

B
) that an observed Mahalanobis distance will be at

least as large as the value of D2
A,B used to calculate PSAME. Oper-

ationally, a large value of the Mahalanobis distance results in a
small value of PSAME which is evidence against the null hypoth-
esis and which therefore suggests that µ

A
6= µ

B
. As a general

observation, p-values should only be used as evidence against a
null hypothesis. A presentation of the statistically valid under-
standing of p-values as random variables is given in Murdoch
et al. (6).

Elements of
∑

A and
∑

B the Group A and Group B covari-
ance matrices, are used in the calculation of the between-group
covariance matrix

∑
A,B which is then used to calculate D2

A,B. Since
potentially different group-specific covariance matrices are used
to calculate D2

A,B, the rationale for an assumption of equal group
covariance matrices cited above may be unclear. This assumption
follows from the use of a Wishart distribution, which requires
equal covariances, to derive the expression for PSAME. That is, the
assumption of equal covariances is not necessary to compute D2

A,B
but to derive the expression for the probability. The requirement
of equal covariances is not typically observed in practice. There-
fore, though it is not usually emphasized, PSAME is a best available
approximation.

B. CALCULATION OF P ERROR− FORMULA (GA, GB)
Johnson and Wichern [(106), p. 598] Applied Multivariate Statis-
tics. Wasserman (8) All of Statistics (Theorem 22.5).
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Assumptions used in the derivation of PERROR− FORMULA (GA, GB)
a. The two populations given the class label are multivariate

normal.
b. The population covariance matrices are the same.
c. The means and covariances are known. In the present context,

“known” indicates that the numerical estimates of means and
covariances used in the calculations are assumed to be exact.

d. The prior probability of observing either class 1/2.

Interpretation of PERROR− FORMULA (GA, GB)
PERROR is only meaningful in a two group classification. It is an
estimate of the error rate obtained in a dichotomous Group A ver-
sus Group B classification. This is the optimal Bayes classifier and
is the best available prediction of classification error if only means
and covariances are known. As discussed in the text, it can be a
serious underestimate of the true error rate.

Using the previously stated expression for D2
A,B,

PERROR− FORMULA (GA, GB) is given by:

PERROR−FORMULA(GA, GB) = 1−Φ


√

D2
A,B

2

 = Φ

−
√

D2
A,B

2


Φ(x) is the cumulative normal distribution

Φ(x) =
1
√

2π

x∫
−∞

e−u2/2du =
1

2

[
1+ erf

(
x
√

2

)]

Where erf(x) is the error function

erf (x) =
2
√

π

x∫
0

e−t 2
dt

For the case of unequal priors, the expression for
PERROR− FORMULA (GA, GB) becomes

PERROR−FORMULA = pAΦ

−1

2

√
D2

A,B +
1√

D2
A,B

loge

(
pB

pA

)
+ pBΦ

−1

2

√
D2

A,B −
1√

D2
A,B

loge

(
pB

pA

)
where pA and pB are prior probabilities. We emphasize that in
the derivation the logarithm was used to remove exponents in the
density function and is the natural logarithm.

C. THREE CLASSIFIERS FOR CONTINUOUS MEASURES
Classification using minimum Mahalanobis distance and
PABS(xTEST, GA)

For classification problems involving an arbitrary number of
groups, it is possible to classify measure vectors based on the mini-
mum Mahalanobis distance. Let xTEST be the vector of Z measures

obtained from a single individual. In a clinical study this could be
the set of results obtained from a patient.

xTEST = (x1−Test, x2−Test, · · · · · · xZ−Test)

The Mahalanobis distance between xTEST and Group A is
given by

D2
Test,A=


x1−Test − µ̂A1

x2−Test − µ̂A2
...

xZ−Test − µ̂AZ


T ∑−1

A


x1−Test − µ̂A1

x2−Test − µ̂A2
...

xZ−Test − µ̂AZ


µ̂Ai is the mean value of the i-th measure calculated from the
members of Group A.

∑
A is the previously specified Group A

covariance matrix, and
∑
−1
A is its inverse. Measure vector xTEST

is classified into Group J if

D2
Test, J=min{D2

Test, I, I = 1, 2, ..., K }

This provides a classification but does not give an estimate of
the probability that xTEST is a member of Group J. This is provided
by PABS. The assumptions underlying the calculation of PABS are
the same as those underlying the calculation of PSAME. In the case
of PABS one of the two populations has a single member [(10),
p. 136]. Therefore, it is necessary to assume that the population
of Group A is multivariate normal, but since this is a hypothesis
test, it is not necessary to assume that means and covariances are
known exactly.

Assumption in the derivation of PABS(xTest|GA)

The population given the class label is multivariate normal.
Because PABS(xTest|GA) is calculated separately for each group,
I = 1, 2, . . . K, it is not necessary to assume the group covariances
are equal.

Interpretation of PABS(x Test|GI)

PABS must be interpreted with care. This is the a priori marginal
probability. A small value is evidence that the individual is not
likely to be a member of that group but a large value should
not be used as evidence that an individual is from that group.
Given the dependence of PABS on Mahalanobis distance, this is the
same assignment as that obtained with the minimum Mahalanobis
distance, but we now have a sense of how likely that membership is.

PABS(xTEST|GA) = I ν2
ν2+ν1F

(ν2

2
,
ν1

2

)
where v1=Z, the number of discriminating variables, and
v2=N A−Z where N A is the number of members in Group A.
For the case when N B= 1, F is given by

F =
NA(NA − Z )

(N 2
A − 1)Z

D2
TEST,A

It is seen that this is equivalent to PSAME (GA, GB) for the
special case N B= 1 and µ̂

B
= xTEST. Given the dependence of

PABS on Mahalanobis distance, classification by maximum PABS is
equivalent to classification by minimum Mahalanobis distance.
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Classification using Bayesian maximum likelihood
PBAYES(xTEST, GA)

McLachlan (108) p. 53.
The Bayes classifier can accommodate unequal prior proba-

bilities. Let p
′

M denote the prior probability of membership in
Group M.

Assumptions in the derivation of PBAYES

The populations given class labels are multivariate normal. It is not
necessary to assume that covariances are equal or that the prior
probabilities are equal.

Interpretation of PBAYES

xTEST is classified to the group that has the largest value of PBAYES.
The group-specific density estimate of xTEST in Group A is

fA(xTEST) =
1

(2π)Z/2
|ΣA|

1/2
exp

−
1

2


x1−TEST − µ̂A1

x2−TEST − µ̂A2
...

xZ−TEST − µ̂AZ


T

∑−1

A


x1−TEST − µ̂A1

x2−TEST − µ̂A2
...

xZ−TEST − µ̂AZ




where
∑

A is the Group A covariance matrix, |·| indicates the deter-
minant, and Σ−1

A is the inverse covariance matrix. Using Bayes’
theorem, the posterior probability of xTEST is

PBAYES(xTEST|GA) =
p
′

AfA(xTEST)

K∑
M=1

p
′

MfM(xTEST)

K is the number of distinct groups in the classification problem,
p
′

M is the prior probability of membership in the Group M, and p
′

A
is prior probability of membership in Group A. xTEST is classified
into the group giving the largest values of PBAYES.

Classification using quadratic classifiers
Classification by maximum Bayes likelihood is equivalent to
classification by a quadratic classifier.

loge{(2π)Z/2p
′

AfA(xTEST)} = −
1

2
loge |ΣA|

−
1

2


x1−TEST − µ̂A1

x2−TEST − µ̂A2
...

xZ−TEST − µ̂AZ


T ∑−1

A


x1−TEST − µ̂A1

x2−TEST − µ̂A2
...

xZ−TEST − µ̂AZ

+ loge p
′

A

The right hand side expression is the quadratic discriminant
function, denoted byQ(xTEST, A). xTEST is classified into the group
giving the greatest value of that function. The assumptions of the
quadratic classifier are therefore the same as the Bayes classifier.
The populations are multivariate normal, but an assumption of
equal covariances is not required.

D. SIMULATION STUDIES COMPARING P ERROR− EMPIRICAL AND
P ERROR− FORMULA

As presented in Calculation of PERROR− FORMULA (GA, GB), the
error rate in a two group classification can be estimated by
a formula. We denote this estimate by PERROR− FORMULA. The
error rate can also be determined empirically. This is denoted by
PERROR− EMPIRICAL. There is more than one procedure for obtain-
ing an empirical estimate of classification error. Two commonly
used methods are the k-fold cross validation and the out-of-
sample validation. In the case of an out-of-sample validation, the
training sets are specified and the classifier is constructed once.
Additional elements of known group membership that are not
present in the training sets are then classified. The classifier is
unchanged throughout the validation process. In the case of a k-
fold cross validation, elements are withdrawn from the existing
sample, the classifier is constructed in their absence and the with-
drawn elements are classified using the classifier. The process is
repeated. The withdrawn elements are restored to the classifier,
a different set of k elements are withdrawn and these elements
are classified with a reconstructed classifier. k-fold cross valida-
tion requires specification of the parameter k. In part this choice
turns on the computational resources available. An N -fold clas-
sification, k =N, where each element of the classifier is removed
and classified is the definitive implementation of a k-fold cross
validation. In addition to accuracy, the k-fold cross has another
virtue over formula determined error rates. PERROR− FORMULA

(GA, GB) provides an error estimate for two group classifica-
tions. A k-fold cross validation can be used to assess classifica-
tions across an arbitrary number of groups provided that the
removed measure vectors are randomly drawn from all groups
in the classification.

Is PERROR− EMPIRICAL always greater than or approximately
equal to PERROR− FORMULA, where PERROR− EMPIRICAL is deter-
mined by a k-fold cross validation? This question was investigated
by a series of simulation studies. When evaluating the results
of these simulations a technical point concerning the validity
of PERROR− FORMULA should be considered. These studies will
be favorable to PERROR− FORMULA because the data were gener-
ated in conditions where PERROR− FORMULA holds; that is, the
data really are near-Gaussian (108). Thus in the limit of more
and more data, the sample means and covariances will con-
verge on true means and covariances, and PERROR− FORMULA

becomes an almost exact error rate. This produces agreement
between the formula-predicted error rates and the empirically
determined error rates for large data sets. In a real world
application where the true distributions are not Gaussian, the
hypotheses used in the derivation of PERROR− FORMULA do not
hold and PERROR− FORMULA gives a worse estimate. These sim-
ulations therefore make PERROR− FORMULA look better than it
really is. If PERROR− FORMULA is an underestimate in simula-
tions, its accuracy in real world applications is probably even
worse.

The first simulation results were obtained in a one-dimensional
discrimination using the one-dimensional expressions for Maha-
lanobis distance and joint covariance shown in Calculation of
PSAME (GA, GB). Normally distributed data sets were generated
computationally with means approximately equal to 3.5 and−3.5
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and with standard deviations for both distributions approximately
equal to 15. Population numbers N A and N B were the same in each
simulation. The empirical error rate was determined in a k-fold
cross validation. One thousand simulations were performed for
each set of N A and N B values. The results are displayed in the
table. F E > F denotes the fraction of cases where the empirical esti-
mate of error was greater than the estimate computed from the
formula. The results are summarized in Table A1.

As would be expected the value of PSAME averaged over 1,000
simulations is monotone decreasing with N A and N B and is
large when the population numbers are small. In the case of this
one-dimensional discrimination, the exhaustive k =N cross val-
idation classification error rates and the formula estimated error
rates are in substantial agreement for N A=N B≥ 50. The aver-
age normalized difference between the two values ranges from
20.8% for N A=N B= 10 to 6.5% for N A=N B= 50, and to 1.8%
for N A=N B= 500 (The normalized difference is the difference
between the empirically determined error rate and the formula
determined error rate divided by their average. The normalized
difference is determined in each of the 1,000 simulations. The
average normalized difference is reported here). It is seen that
even in the case of small values of N A and N B the empirically
determined error rate is approximately the same or larger than
PERROR− FORMULA.

A greater divergence between PERROR− FORMULA and
PERROR− EMPIRICAL was seen in a two dimensional classification.
In the two dimensional simulations, two procedures were used for
calculating PERROR− FORMULA. In one version, PERROR− FORMULA

is calculated in the absence of exact knowledge of the under-
lying distributions. It is calculated using an approximation of

Table A1 | Classification error rate in a univariate simulation..

NA, NB <PSAME> <PERROR−FORMULA> <PERROR−EMPIRICAL> F E > F

10 0.35659 0.37104 0.44250 0.712

20 0.25619 0.39337 0.42218 0.642

30 0.17765 0.39831 0.41356 0.607

40 0.13235 0.40107 0.41074 0.587

50 0.10093 0.40320 0.41194 0.569

100 0.02239 0.40685 0.40989 0.548

150 0.00501 0.40762 0.40957 0.533

200 0.00121 0.40793 0.40941 0.534

250 0.00023 0.40799 0.40927 0.537

300 0.00005 0.40815 0.40884 0.517

350 0.6×10−5 0.40801 0.40854 0.517

400 0.2×10−5 0.40835 0.40876 0.515

450 0.4×106 0.40831 0.40853 0.513

500 0.1×10−6 0.40829 0.40860 0.507

NA =NB is the number of members in each group. <PSAME> is the average of

p-values obtained in an F-test. <PERROR−FORMULA> is the average predicted classifica-

tion error rate given the assumption of normal distributions and equal covariances.

<PERROR−EMPIRICAL> is the classification error rate determined in a k-fold cross val-

idation. FE > F is the fraction of cases where the empirical estimate of error was

greater than the estimate computed from the formula. Averages were obtained

from 1,000 simulations for each NA =NB pair.

the distributions’ mean values and covariance matrices calcu-
lated using the available sampled data. This is designated by
PERROR− FORMULA− SAMPLE (This was not done in the pre-
viously reported one-dimensional simulations.). In the other
version, PERROR− FORMULA is calculated using the exact spec-
ifications of the distributions from the parameters that were
used by the algorithm to generate the experimental distrib-
utions. This is designated as PERROR− FORMULA−OPTIMAL and
is only available in simulation studies. It can be shown that
this error estimate is optimal in the sense that a classifier
not built with the population values will perform less well
[(8), p. 352, Theorem 22.5]. For practical purposes in studies
using observed data, PERROR− FORMULA−OPTIMAL is not available,
and judgments must be based on PERROR− FORMULA− SAMPLE.
In the two dimensional classification simulations report
PERROR− EMPIRICAL > PERROR− FORMULA− SAMPLE in 94% of the
cases and PERROR− EMPIRICAL > PERROR− FORMULA−OPTIMAL in
54% of the cases.

The simulation in <2 and considers two bivariate normal
distributions.

Distribution A: µ
A
= (0, 0) and CovA= I 2× 2. µ

A
is the vector

of means, CovA is the within-group covariance matrix, and is I 2× 2

the two dimensional identity matrix.
Distribution B: µ

B
= (0.01,0.01) and CovB= I 2× 2

Construct training set {X } = {x 1, x 2, · · · · · · x 20}

At random choose Distribution A or Distribution B. Draw ran-
domly an element from the chosen distribution. This will be
x1 = <

2. Repeat this procedure 19 times; select either distrib-
ution in a random process and draw at random an element from
the selected distribution. The resulting set {X}, will have 20 ele-
ments with approximately 10 elements from Distribution A and
Distribution B.

Build the classifier
Find the mean of all x j ∈ {X} such that x j is an element of Dis-
tribution A. This vector of means is µ̂

A
where the superscript

indicates that the vector was determined by the data in {X}. Cal-
culate the covariance matrix ĈovAfrom those elements of {X} that
were drawn from Distribution A. Similarly calculate µ̂

B
and ĈovB.

The between-group covariance matrix is calculated from ĈovA and
ĈovB and the {X} population values N A and N B.

Compute PERROR− FORMULA−SAMPLE

The between-group Mahalanobis distance, D̂2
AB , is calculated from

µ̂
A

, ĈovA, µ̂
B

, ĈovB, N A, and N B. PERROR− FORMULA− SAMPLE is
calculated using the optimal error rate for unequal priors.

Compute PERROR− FORMULA−OPTIMAL

In this case, the between-group Mahalanobis distance is computed
using the known exact values of µ

A
, µ

B
, CovA, and CovB, and the

values of N A and N B established by the random draw that con-
structed {X}. PERROR− FORMULA−OPTIMAL is calculated using this
value of the Mahalanobis distance and the previous equation.

Calculate PERROR− EMPIRICAL

This is the cross validation error. Start with the 20 element set {X}.
In a random assignment, place each element of {X} in set S1, S2,
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. . .. or S5. Each element of {X} is assigned to only one set S. Thus
each set S contains four elements. Remove S1 from {X} to give
{X} − S1, this set has 16 elements. Construct the classifier with
{X} − S1 using the known identities of the elements in this set.
Classify all elements of S1 and determine the number of errors,
NE1, where 0≤NE1≤ 4. This process is repeated for sets S2, . . .,
S5 to determine NE2, . . ., NE5. Calculate PERROR− EMPIRICAL.

PERROR−EMPIRICAL =
N E1 + N E2 + · · · · · · + N E5

20

Using this procedure PERROR− EMPIRICAL was determined
1,000 times. In this simulation PERROR− EMPIRICAL >

PERROR− FORMULA− SAMPLE in 96% of the cases, and
PERROR− EMPIRICAL > PERROR− FORMULA−OPTIMAL in 54% of the
calculations. In the 4% of cases where PERROR− EMPIRICAL >

PERROR− FORMULA− SAMPLE, the two values differ by at most 8%
and on average by 3%.

As previously observed, in research with real world data
PERROR− FORMULA−OPTIMAL is inaccessible because it requires
exact knowledge of the distribution. Real world judgments must
be based on the relative magnitudes of PERROR− FORMULA− SAMPLE

which uses values calculated from a finite sample drawn from the
distribution. A simulation is not a theorem. Thus, simulations
cannot provide a definitive determination, but with this limita-
tion clearly in mind, the simulations suggest that in the case of
a two dimensional classification PERROR− EMPIRICAL, which is a
more reliable estimate of classification error, will be greater than
the more readily calculated PERROR− FORMULA− SAMPLE.

E. COEFFICIENT OF DETERMINATION
Flury and Riedwyl (10).

R2
A,B is the coefficient of determination between-Group A and

Group B. It is the fraction of between-group variance that can
be accounted for with these measures. As described in the text,
it is used to select model variables in a backward elimination
procedure.

R2
A,B=

NANBD2
A,B

(NA + NB)(NA + NB − 2)+ NANBD2
A,B

where D2
A,B is the between-group Mahalanobis distance.

F. SENSITIVITY AND SPECIFICITY
Definitions of the standard measures of a diagnostic system follow.
The notation follows that in Portney and Watkins (109).

N =Number of participants
A=Number of true positives
B=Number of false positives
C=Number of false negatives
D=Number of true negatives
Sensitivity=A/(A+C)
Specificity=D/(B+D)

Diagnostic accuracy= (A+D)/N
False positive Rate=B/(B+D)
False negative rate=C/(A+C)
Positive predictive value=A/(A+B)
Negative predictive value=D/(C +D)
Prevalence= (A+C)/N

G. CALCULATION OF SINGLE-VARIABLE EFFECT SIZE
The presentation here follows the detailed development in Ellis
(110). Effect sizes are measures of the difference in a variable
obtained in two groups normalized against a measure of the
variable’s standard deviation. The three commonly used defini-
tions differ in the specification of the normalization. Let µ̂A be the
sample mean of the variable obtained from members of Group A.
σ̂A is the sample standard deviation of that mean. µ̂B and σ̂B are
defined analogously for Group B. N A and N B are the number of
members in each group.

If the standard deviations of the two groups are approximately
equal, then a pooled standard deviation is used to calculate Cohen’s
d (111)

d = (µ̂A−µ̂B)/σ̂Pooled

σ̂Pooled =

[(
NA∑

m=1

(xA(m)− µ̂A)
2

+

NB∑
m=1

(xB(m)− µ̂B)
2

)
/(NA + NB − 2)

]1/2

A commonly used simplified version is

σ̂Pooled = {(σ̂
2
A + σ̂2

B)/2}
1/2

In cases where the homogeneity of variance assumption is vio-
lated, Glass et al. (112) recommended using the standard deviation
of the control group to compute ∆.

∆ = (µ̂A − µ̂B)/σ̂Control

where σ̂Control is either σ̂A or σ̂B.
If the two groups are of significantly different sizes, then Hedges

(113) recommended calculating the effect size using a weighted
pooled standard deviation.

g = (µ̂A−µ̂B)/σ̂Weighted

σ̂Weighted =

{
(NA−1)σ̂

2
A + (NB−1)σ̂

2
B

NA + NB − 2

}1/2

Hedges’ g is seen to be the special case of the between-group
Mahalanobis distance for the Z = 1 case. If N A=N B, which is the
case for treatment studies where all participants complete the trial,
then Hedges’ g is the same as Cohen’s d.
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