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A B S T R A C T

Objective: The distributed white matter network underlying language leads to difficulties in extracting clinically meaningful summaries of neural alterations leading
to language impairment. Here we determine the predictive ability of the structural connectome (SC), compared with global measures of white matter tract
microstructure and clinical data, to discriminate language impaired patients with temporal lobe epilepsy (TLE) from TLE patients without language impairment.
Methods: T1- and diffusion-MRI, clinical variables (CVs), and neuropsychological measures of naming and verbal fluency were available for 82 TLE patients.
Prediction of language impairment was performed using a robust tree-based classifier (XGBoost) for three models: (1) a CV-model which included demographic and
epilepsy-related clinical features, (2) an atlas-based tract-model, including four frontotemporal white matter association tracts implicated in language (i.e., the
bilateral arcuate fasciculus, inferior frontal occipital fasciculus, inferior longitudinal fasciculus, and uncinate fasciculus), and (3) a SC-model based on diffusion MRI.
For the association tracts, mean fractional anisotropy was calculated as a measure of white matter microstructure for each tract using a diffusion tensor atlas (i.e.,
AtlasTrack). The SC-model used measurement of cortical-cortical connections arising from a temporal lobe subnetwork derived using probabilistic tractography.
Dimensionality reduction of the SC was performed with principal components analysis (PCA). Each model was trained on 49 patients from one epilepsy center and
tested on 33 patients from a different center (i.e., an independent dataset). Randomization was performed to test the stability of the results.
Results: The SC-model yielded a greater area under the curve (AUC; .73) and accuracy (79%) compared to both the tract-model (AUC: .54, p< .001; accuracy: 70%,
p< .001) and the CV-model (AUC: .59, p< .001; accuracy: 64%, p< .001). Within the SC-model, lateral temporal connections had the highest importance to model
performance, including connections similar to language association tracts such as links between the superior temporal gyrus to pars opercularis. However, in addition
to these connections many additional connections that were widely distributed, bilateral and interhemispheric in nature were identified as contributing to SC-model
performance.
Conclusion: The SC revealed a white matter network contributing to language impairment that was widely distributed, bilateral, and lateral temporal in nature. The
distributed network underlying language may be why the SC-model has an advantage in identifying sub-components of the complex fiber networks most relevant for
aspects of language performance.

1. Introduction

Language impairment is observed in up to ~50% of patients with
temporal lobe epilepsy (TLE) (Balter et al, 2016; Reyes et al., 2019) and
is typically characterized by deficits in naming and verbal fluency
(Allone et al., 2017). Although TLE is an inherently heterogeneous
disorder characterized by an array of clinical and cognitive symptoms
(Bell et al., 2011), language impairments are most frequently studied in

patients with left TLE (LTLE) (Busch et al., 2005; Raspall et al., 2005;
Keary et al., 2007). However, there is now increasing awareness that
language impairments are also common in right TLE (RTLE)
(Hermann et al., 1997; Alessio et al., 2006; Bell et al., 2001). An early
age of seizure onset is associated with pre-surgical language impair-
ment (Lee et al., 2013; Oyegbile et al., 2004), but language function is
also affected by other clinical features such as education, handedness,
the presence of mesial temporal sclerosis (MTS), anti-epileptic drugs
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(AEDs), and seizure frequency (Stewart et al., 2014; Sass et al., 1992).
Amid this clinical variability, work on cognitive phenotypes
(Reyes et al., 2019; Hermann et al., 2007; Dabbs et al., 2009;
Rodríguez-Cruces et al., 2018) seeks to understand which commonal-
ities drive shared cognitive impairments across diverse patients with
TLE. The concept of cognitive phenotypes is based on the premise that
underlying neuro-biological similarities explain similar cognitive per-
formance across patients with distinct clinical profiles.

For language, the underlying neurobiological substrate likely in-
volves a distributed network of fronto-temporal-parietal regions
(Catani et al., 2005; Price, 2012; Poeppel et al., 2012). These inter-
connections rely on the integrity of perisylvian and extra-sylvian white
matter tracts, the disruption of which is a key contributor to language
impairment (Allone et al., 2017; Leyden et al., 2015). Integrity of this
neuroanatomical network has been most thoroughly studied in the
context of large white-matter bundles including the arcuate fasciculus
(ARC) (Upadhyay et al., 2008), inferior frontal occipital fasciculus
(IFOF) (Caverzasi et al., 2014), inferior longitudinal fasciculus (ILF)
(Ashtari, 2012), and uncinate fasciculus (UNC) (Hasan et al., 2009),
which are known to be affected in TLE (Leyden et al., 2015). However,
these large fiber bundles may not capture the entire language network
and further, they require generalized assumptions about neuronal ar-
chitecture across patients.

A comprehensive and individualized white matter approach invol-
ving a map of brain network connectivity is the structural connectome
(SC). The SC is a measure of region-to-region connection strengths
derived from each individual patient. This approach may enable a more
global and nuanced mapping of white matter networks compared to a
summary measure of microstructure derived from long-range white
matter bundles, an approach commonly used (Beaulieu, 2014). Recent
work on SCs in TLE (Bernhardt et al., 2015) and in other syndromes
(Shen et al., 2017) emphasizes the importance of whole-brain con-
nectomes for understanding cognitive co-morbidities in different clin-
ical syndromes and has linked subtle network alterations to language
impairments (Sporns et al., 2005; Kim et al., 2014). In TLE, SCs have
shown promise in predicting seizure outcomes (Bonilha et al., 2015;
Taylor et al., 2018; Gleichgerrcht et al., 2018) as well as for under-
standing the relationship between network architecture and naming
impairment in patients with LTLE (Munsell et al., 2019). Specifically,
Munsell et al. identified a distributed, bilateral white matter network of
regions contributing to naming performance, even in a cohort of left
TLE patients who were all left-dominant for language. These data
highlight the distributed nature of the language network and the pos-
sible utility of a SC framework for probing this network.

In this study, we evaluate the performance of the SC, white matter
association tracts, and clinical variables for correctly classifying TLE
patients as language impaired versus non-impaired. We extend previous
research by including a more heterogenous population of TLE patients
and a more comprehensive evaluation of language performance.
Furthermore, we test the robustness of our model on an independent
dataset and compare SC performance to that of conventional models
(i.e., clinical variables and global tract-based measures). We hypothe-
sized that the SC would lead to better classification performance, pro-
viding an improved understanding of the topology of neuronal net-
works associated with language performance in TLE.

2. Methods

2.1. Subjects

This study was approved by the Institutional Review Boards at the
University of California, San Diego (UCSD) and University of California,
San Francisco (UCSF). All participants provided informed consent ac-
cording to the Declaration of Helsinki. Patients were recruited through
referral from the UCSD or UCSF Epilepsy Centers and were all under-
going pre-surgical evaluations. Inclusion criteria for patients included

(1) a TLE diagnosis, (2) age 18 or older, and (3) no dual pathology or
mass lesion (i.e., tumors, vascular malformations, focal cortical dys-
plasia, or other visible lesions on MRI) which could distort white matter
anatomy on MRI. Eighty-two patients with medically refractory TLE
met inclusion criteria (N = 49 from UCSD; N = 33 from UCSF). TLE
diagnosis and side of seizure onset were determined by a board-certi-
fied neurologist with expertise in epileptology, in accordance with the
criteria defined by the International League Against Epilepsy
(Kwan et al., 2010), based on scalp and/or intracranial video-EEG
telemetry, seizure semiology, and neuroimaging evaluation. The pre-
sence of MTS was determined by inspection of MRI images by a board-
certified neuroradiologist with expertise in epilepsy. MRI findings
suggested the presence of ipsilateral MTS in 39 patients. Hemispheric
language dominance was determined by functional MRI (fMRI), in-
tracarotid amobarbital procedure (IAP), or magnetoencephalography
(MEG) and was available for 77% of the sample. Out of the remaining
19 patients with no language laterality information, 5 patients had right
TLE and underwent a right ATL or right laser ablation and did not re-
ceive a WADA. The remaining patients (n = 13) who have not had
language lateralization testing have not had surgery or completed the
full surgical workup. For classification of language impairment, neu-
ropsychological data were collected from 61 healthy control subjects
for the study that were sex- and age-matched to the patient population.
Healthy controls were excluded if they self-reported any history of
neurological or psychiatric conditions.

2.2. Neuropsychological testing

Tests of language ability (i.e., auditory naming, visual naming and
semantic fluency) were obtained as part of a comprehensive neu-
ropsychological evaluation. Language tests included the Boston Naming
Test (BNT) (Kaplan et al., 2001), Auditory Naming Test (ANT)
(Hamberger and Seidel, 2003), and Category Fluency (CF) subtest of the
Delis-Kaplan Executive Function System (DKEFS) (Delis et al., 2001).
Naming and semantic fluency were evaluated because they are the most
commonly impaired aspects of language in TLE (Hermann et al., 1999;
Martin et al., 1990). Conversely, language comprehension and reading
are not frequently impaired in TLE (Drane and Pedersen, 2019). For
each test, patients’ raw scores were converted into z-scores based on the
distribution of healthy controls. Patients were classified as “language
impaired” if they had at least two out of the three tests with a z-score of
-1.5 or lower or at least one test with a z-score of -2 and the remaining
tests with a z-score of -1. A similar approach has been used to define
impairment in mild cognitive impairment (Jak et al., 2009), Alzheimer's
(Albert et al., 2011), and Parkinson's (Litvan et al., 2012). Requiring
more than one test in the same cognitive domain (i.e., language) pro-
tects against over-classification of impairment due to empirical evi-
dence that abnormal performance on a single test is often observed in
healthy individuals due to intra-individual variability (Binder et al.,
2009). This approach yields more stable diagnoses over time and it
approximates the clinical-decision making process, as clinicians typi-
cally examine multiple scores within a domain (Jak et al., 2009). Fi-
nally, this methodology has proven useful in previous TLE studies of
cognitive impairment (Reyes et al., 2019; Kaestner et al., 2019).

In total, ~60% of TLE patients were classified as language impaired
(Language Impaired; TLE-LI); All other patients were classified as “not
impaired” (Non-Language Impaired; TLE-NLI). Naming impairment was
common across all patients in our TLE-LI group, with every patient
impaired on at least one of the naming tests (BNT: 86% impaired in
TLE-LI, ANT: 88%). CF deficits were observed in 45% of patients. In the
TLE-NLI group, 24% were impaired on the BNT only, 12% on the ANT
only, and 9% of CF only. Thus, impairments were not considered per-
vasive enough to meet our “impairment criteria,” with a greater con-
cern for false positives (Edmonds et al., 2015; Edmonds et al., 2016;
Bondi et al., 2014).

An estimate of nonverbal IQ (WASI Perceptual Reasoning Index)
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(Wechsler, 1999) was obtained to evaluate whether the groups differed
in nonverbal cognitive ability. Self-reported symptoms of depression
and anxiety were also obtained with the Beck Depression Inventory-II
(BDI-II) (Beck et al., 1996) and Beck Anxiety Inventory (BAI)
(Beck et al., 1988), respectively, to determine whether mood state
differed between the groups. For both the BDI-II and the BAI, higher
scores represent greater depressive and anxiety symptoms, respectively.

2.3. Image acquisition

Brain imaging for all patients was performed on a General Electric
Discovery MR750 3T scanner with an 8-channel phased-array head coil
at the Center for Functional MRI at UCSD or the Surbeck Laboratory for
Advanced Imaging at UCSF. Image acquisitions were identical at both
centers and included a conventional three-plane localizer, GE calibra-
tion scan, a T1- weighted 3D structural scan (TR = 8.08 ms,
TE = 3.16 ms, TI = 600 ms, flip angle = 8°, FOV = 256 mm, ma-
trix = 256 × 192, slice thickness = 1 mm isotropic), and a single-shot
pulsed-field gradient spin-echo EPI sequence (TE/TR = 96 ms/17 s;
FOV = 24 cm, matrix = 128 × 128 × 48; axial). Diffusion-weighted
images (DWIs) were acquired with b = 0 and b = 1000 mm2/s with 30
diffusion gradient directions. Two additional b = 0 volumes were ac-
quired with either forward or reverse phase-encode polarity for use in
nonlinear B0 correction.

2.4. Image processing

2.4.1. Structural MRI processing
Images were corrected for spatial sensitivity inhomogeneities and

for non-linear warping caused by non-uniform fields created by the
gradient coils (Jovicich et al., 2006). The cortical surface was re-
constructed and parcellated using FreeSurfer, 5.3.0 (Dale et al., 1999).
Visual inspection was performed on all images to identify topological
defects, which were subsequently edited using established software
guidelines.

2.4.2. DTI processing
Preprocessing of the diffusion data included corrections for distor-

tions due to magnetic susceptibility (B0), eddy currents, and gradient
nonlinearities, head motion correction and registration to the T1-
weighted structural image. For B0 distortion correction, a reverse gra-
dient method was used (Holland et al., 2010). A detailed description of
the image processing is provided elsewhere (McDonald et al., 2014).
DTI-derived fractional anisotropy (FA) was calculated based on a tensor
fit to the b = 1000 data.

2.4.3. Fiber tract calculations
Fiber tract values were derived using a probabilistic diffusion tensor

atlas (i.e., AtlasTrack). For tract illustration see Fig. 1A. Because patients
with anatomically deforming lesions were excluded from this study, an
atlas approach was justified. AtlasTrack is a fully automated method for
labeling fiber tracts in individual subjects based on diffusion-weighted
images, T1-weighted images, and a probabilistic atlas of fiber tract lo-
cations and orientations. An important feature of AtlasTrack is the use of
fiber orientation information from the diffusion images to refine tract
probability estimates. This individualizes the fiber tract ROIs for each
subject and minimizes the contribution from regions that exhibit diffu-
sion orientations inconsistent with the consensus fiber orientation in-
formation contained in the atlas. AtlasTrack has been validated in both
healthy controls and patients with TLE, and has been shown to be sen-
sitive to microstructural changes in TLE in previous studies (Hagler et al.,
2009). For each subject, the T1-weighted structural images were non-
linearly registered to a common space and the respective diffusion tensor
orientation estimates were compared to the atlas. This resulted in a map
of the relative probability that a voxel belongs to a particular tract given
its location and similarity of diffusion orientation. Voxels identified with

Freesurfer 5.3.0 as cerebrospinal fluid or gray matter were excluded from
the fiber regions of interest (ROIs). Average FA was calculated for each
fiber ROI and weighted by fiber probability, so that voxels with low
probability of belonging to a given fiber contributed minimally to
average values. FA was chosen due to the highly anisotropic nature of the
long-range association tracts selected for this study and our previous
work on cognitive networks in TLE (Kaestner et al., 2019; Reyes et al.,
2019). As a post-hoc investigation, we tested whether adding MD mea-
sures to FA significantly changed model performance and found no sig-
nificant differences (see Supplementary Table 1). A full description of the
atlas and detailed steps used to create the atlas are provided in Hagler
et al. (Hagler et al., 2009). Specific tracts included in the current analyses
are the right and left ARC, IFOF, UNC, and ILF (Fig. 1A).

2.4.4. Structural connectome generation
The FMRIB Diffusion Toolbox (FDT), which is part of the FMRIB

Software Library (FSL), was used for local diffusion modeling and
performing the connectome-based tractography (Behrens et al., 2003;
Behrens et al., 2007). This method differs from the output of AtlasTrack
because it theoretically captures more individualized patterns of local
fiber tract connections that may not be included in the white matter
atlas (i.e., those that are not part of pre-defined large white matter
bundles). Probabilistic tractography was performed to calculate con-
nection strength values between cortical regions corresponding to those
from a modified version of Freesurfer's Desikan-Killiany (DK) atlas

Fig. 1. Neuroanatomical measures of white matter. (A) Illustration on an
average brain of the 4 association tracts used: (1) arcuate fasciculus (blue), (2)
inferior frontal occipital fasciculus (orange), (3) inferior longitudinal fasciculus
(purple), and (4) uncinate fasciculus (yellow). (B) An illustration on an average
brain of the ROIs which are interconnected to form the structural connectome.
Note that each connection must include at least one ROI in the temporal lobe.
(C) Average brain displaying the region-region connections used in this study.
On the right is an example connectivity matrix with the temporal lobe used in
this study highlighted.
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(Fig. 1B). The cortical ROIs were obtained using Freesurfer's automatic
parcellation process applied to each patient's T1-weighted image. These
connection strength values were then compiled into 2-D symmetric
n × n matrices to yield brain connectomes for each patient.

Probabilistic fiber tracking was performed using FDT (Behrens et al.,
2003; Behrens et al., 2007). A GPU-accelerated implementation of
FDT's BEDPOSTX was run to estimate the diffusion parameters at each
voxel of the DWIs (Hernández et al., 2013). Probabilistic tractography
was then performed using FDT's PROBTRACKX2 with the following
parameters: 5000 samples, 2000 steps per sample, 0.5 mm step length,
0.2 curvature threshold, loop checking enabled on paths. Path dis-
tributions were also corrected for the inherent linear bias towards
longer pathways in tractography algorithms (Hagmann et al., 2007).
PROBTRACKX2 generates connectivity distributions from user-speci-
fied seed regions, in which voxels in the output brain image have values
representing the number of streamlines (i.e., connection strength va-
lues) passing through them from the specified seed region. A full de-
scription of FDT's tractography implementation can be found elsewhere
(Behrens et al., 2003; Behrens et al., 2007)

The cortical seed regions (i.e., ROIs) fed to PROBTRACKX2 were
acquired from Freesurfer's automatic cortical parcellation process ap-
plied to T1-weighted images (Dale et al., 1999). The initial parcellation
was performed with the DK (Desikan et al., 2006) atlas, which was
modified to create more fine-grained ROIs. The following DK ROIs were
split orthogonally to the long axis of the parcellation: middle temporal,
superior temporal, inferior temporal, fusiform, postcentral, precentral,
middle frontal, and superior frontal. The resulting atlas contained 98 ROIs
(49 for each hemisphere). This number of ROIs is in line with the re-
commendations of studies which show that as the number of ROIs in-
crease, connectomes become sparse with less reproducible data
(Bonilha et al., 2015; Prčkovska et al., 2016). Choosing broad, func-
tionally agnostic ROIs corresponds with the regional investigation of
epilepsy across much of the existing literature allowing us to investigate
broad circuits and avoid false-negative results.

The cortical parcellations were transformed from Freesurfer's con-
formed space to each subject's diffusion space using an affine trans-
formation performed with FSL's FLIRT. To create a 98 × 98 symmetric
connectivity matrix, the connectivity between each pair of source and
destination ROIs were averaged. These connectivity values were also
normalized by the sum of the number of voxels of the source and des-
tination ROIs to account for differences in head size between subjects.

In summary, the structural connectivity means the number of prob-
abilistic streamlines reaching ROI A when ROI B was seeded, averaged
with the opposite direction, divided by the number of voxels in ROIs A
and B, and corrected by the distance travelled by the fibers. After ob-
taining the connectivity matrices, the analysis was restricted to con-
nections including at least one ROI in the left or right temporal lobes
(Fig. 1C). This temporal lobe subnetwork was selected for analysis be-
cause TLE has been shown to affect connectivity both within the tem-
poral lobe and between temporal and extratemporal regions
(Besson et al., 2014).

2.5. Language impairment prediction models

XGBoost (Bernhardt et al., 2015) (v0.81), a type of decision tree
algorithm (Chen and Guestrin, 2016), was selected for classification.
Similar to other such decision tree models as random forest, XGBoost
constructs many shallow trees (i.e., weak learners) that each, by
themselves, do not provide optimal classification results. However, by
assembling these weak learners, good classification performance is
achieved. XGBoost is theoretically more robust than other decision tree
algorithms to potential outliers that may exist in relatively small da-
tasets. XGBoost also improves upon the random forest algorithm by
using gradient boosting to minimize the training error, thereby focusing
on the mistakes made by the previous trees and correcting the internal
model to account for these outliers. Furthermore, XGBoost introduces
regularization terms, which protect against overfitting to the training
data by making the model more conservative and simpler. Hyperpara-
meter optimization involves systematically tuning the internal para-
meters of the machine learning model to arrive at a set of parameters
that yield maximum model performance. Hyperparameter optimization
was performed to tune the performance of each individual model.

We tested each language prediction model by training an XGBoost
classifier on UCSD patients (i.e., training set) and testing the model on
UCSF patients (i.e., testing set), as the data from the second institution
functioned as an external, independent dataset. Three XGBoost models
were created for comparison: clinical variables (CV-model), tract-based
(Tract-model), and structural connectome (SC-model). The framework
is displayed in Fig. 2.

CV-model: The following clinical variables were included in our
model: age, education, sex, handedness, MTS status, side of seizure

Fig. 2. Diagram of the models used in this study. (A) The
connectomes were split into a training group from UCSD and a
testing group from UCSF (i.e., an independent dataset). The
normalization and PCA calculations were calculated on the
training dataset and then applied to the testing dataset. (B)
XGBoost was trained on 3 different sets of features: the clinical
variables, association tracts, and the structural connectome.
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onset, age of onset, number of current AEDs, and seizure frequency
(calculated as the total number of focal seizures with impaired
awareness and generalized seizures per month).
Tract-model: The following right and left hemisphere temporal lobe
fiber tracts were selected due to evidence of their disruption in TLE
(Shen et al., 2017) and likely involvement in language processing:
ARC, IFOF, ILF, and UNC.
SC-model: To reduce the high-dimensional nature of the SC (i.e., the
SC had 4753 connections per subject), we applied principal com-
ponent analysis (PCA) to lower the number of connections used as
features in the model. PCA finds the directions in which the ob-
servations have the most variance and thus, best differentiate the
data. These directions are known as the principal components (PCs)
that can then be used in the model. The number of PCs that yielded
maximum accuracy was assessed through hyperparameter optimi-
zation; it was found that having 40 PCs maximized accuracy of the
connectome model. These 40 features represent <1% of the original
4753 features, a sizeable reduction.

2.6. Neuroanatomical interpretation of PCA

After assessing model performance, we sought to connect the im-
portant PCs back to overall white matter architecture. Mathematically,
PCs are computed as linear combinations of the original features. A
weight matrix for the PCs was extracted and the connections con-
tributing to each PC were ranked. We took both a PC-centric approach
and a Connection-centric approach to test whether our results were
invariant to the method employed. The PC-centric approach identified
the distribution of top-ranked connections that made up each important
PC. For this, we took the top 1% of connections contributing to each
important PC. In the Connection-centric approach, we examined the top
connections across the important PCs by summing each connection's
weight across all the important PCs and identifying the top 1% of
connections. To understand the distribution of the identified connec-
tions from both of these approaches we identified the proportion of
connections involving a set of regions across the brain. The brain was
split into lateral temporal, ventromedial temporal, lateral frontal, in-
ferior parietal, and superior frontoparietal cortex. Importantly, because
we were using a temporal subnetwork, each connection contained at
least one connection from the temporal lobe.

2.7. Statistical analysis

Analysis of variance (ANOVA) and Fisher's exact test were used to
test for differences in demographic and clinical variables among the
TLE-LI and TLE-NLI patients in the training and testing sets.
Performance of each model was evaluated with receiver operating
characteristic (ROC) curves, area under the ROC curve (AUC), accuracy,
sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV). The thresholds for the predictions were chosen
based on the point on the ROC curve that yielded maximum accuracy.
Significant differences in model performance were assessed by creating
95% confidence intervals with 1000 bootstrapped samples by leaving 2
random patients out of the training dataset.

3. Results

3.1. Patient demographics and clinical variables

Table 1 shows the clinical group data for the four subgroups in this
study (training TLE-LI and TLE-NLI as well as testing TLE-LI and TLE-
NLI). There were differences in education [F(3,79) = 3.736, p= 0.01]
among the groups. Pairwise comparisons revealed higher education in
the training TLE-NLI group relative to the testing TLE-LI group
(p < .01). No other characteristics reached significance. Additionally,
we tested if the number of patients on zonisamide/topiramate differed

between groups and found that it did not (p > .05). Side of seizure
onset approached significance (Fisher's Exact Test: 10.897, p = .06).
Whereas the testing TLE-NLI was split 50% LTLE and 50% RTLE, the
training TLE-NLI was 29% LTLE and 71% RTLE. However, a large
portion of TLE-LI had RTLE onset in both the training (36%) and testing
dataset (29%). A measure of nonverbal ability, the WASI Perceptual
Reasoning Index, revealed no significant differences across groups
(p> .05). In addition, the language-impaired and non-impaired groups
did not differ in BDI-II [F(3,79) = 1.73, p= .16], BAI [F(3,77) = 0.79,
p = .50], or in language laterality (Fisher's Exact = 1.89, p = .45).

3.2. Model performances

ROC curves for the three models are displayed in Fig. 3A, with the
AUC for each model in Fig. 3B. The SC-model had a higher AUC (.73)
compared to the CV-model (.59) and the Tract-model (.54). Next, we
compared each model's optimal performance by identifying prediction
thresholds based on the point on the ROC curve that yielded maximum
accuracy. These additional model performance metrics are displayed in
Table 2. The SC-model outperformed the other models across most of
these metrics. For accuracy, the SC-model performed the best (79%),
followed by the Tract-model (70%), with the CV-model having the
poorest performance (64%). Across the other measures, the SC-model
was also generally the highest; Tract- and CV-models had similar per-
formances.

Randomization testing was performed to test the stability of model
performances using 1000 replications (Table 3). This approach con-
firmed the previous results. AUC remained superior for the SC-model
(73% +/- 2%), which was significantly higher than the Tract-model
(54% +/- 3%; p < .001) and the CV-model (59% +/- 3%; p< .001).
Similarly, accuracy remained superior for the SC-model (79% +/- 3%)
which was significantly higher than the Tract-model (63% +/- 3%;
p < .001) and the CV-model (65% +/- 2%; p < .001).

3.3. Feature importance from each model

Fig. 4 displays the main features that contributed to each model's
performance, with the feature importance calculated by sklearn
(Pedregosa et al., 2011). This value ranges from 0 (no importance) to 1
and sums to 1 across features within each model. For the CV-model, 8 of
the 9 features contributed to the model, with only handedness making
no measurable contribution. The features varied from .02 to .28 and in
order are: patient age, seizure frequency, age of onset, education, sex,
side of seizure onset, number of AEDs, and MTS status. For the Tract-
model all 8 tracts contributed to model performance, ranging from .08
to .18. The top 2 tracts were both left hemisphere tracts, the left IFO
and the ARC. However, overall, the distribution of tract importance was
distributed fairly evenly between the left and right hemisphere tracts.
For the SC-model only 9 out of the 40 PCs contributed to model per-
formance. Qualitatively this broke down into two groups, a high con-
tribution group of 4 PCs (HCG; importance range: .12-.32) and a low
contribution group of 5 PCs (all importance: .04).

Next we sought to understand the anatomical distribution of the PCs.
The PC-centric approach (Fig. 5), described in the methods, focused on
understanding which connections made the most contribution to each
individual important PC. We examined both the HCG PCs (i.e., only the
top 4 PCs) and an “all contributing PCs” group (ACG; i.e., all nine con-
tributing PCs). The largest percentage of important connections arose
from the lateral temporal (HCG: 39%, ACG: 38%) compared to the
ventromedial temporal (HCG: 21%, ACG: 24%) regions bilaterally. Of the
temporal-to-extratemporal connections, the temporal to lateral frontal
(HCG: 12%, ACG: 14%) and the temporal to superior frontoparietal
cortex (HCG: 14%, ACG: 13%) had a higher number of connections
contributing to model performance. The remaining two regions, the
temporal to parietal (HCG: 9%, ACG: 6%) and temporal to occipital
(HCG: 5%, ACG: 5%), had fewer contributions. Due to the bilateral
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nature of the tract-model feature importance, we also assessed how in-
terconnected the hemispheres were in the SC-model. Both the HCG and
ACG had greater left-left connectivity (intrahemispheric; HCG: 41%,
ACG: 33%) compared to right-right connectivity (intrahemispheric; HCG:
29%, ACG: 27%). Interestingly, both groups also had a high number of
left-right connections (interhemispheric; HCG: 31%, ACG: 40%).

The connection-centric approach broadly replicated the findings
from the PC-centric approach. This approach focused on summing

connection contribution across important PCs to understand which in-
dividual connections contributed the most these PCs. Again, the lateral
temporal connections that contributed to model performance (HCG:
51%, ACG: 47%) were more numerous than the ventromedial temporal
connections (HCG: 13%, ACG: 23%). Interestingly, the left-left con-
nections were greater in this connection-centric approach than in the
PC-centric approach. Left-left connections (HCG: 78%, ACG: 56%) were
once again more numerous than right-right connections (HCG: 7%,
ACG: 19%). There were fewer left-right connections (HCG: 15%, ACG:
26%). Finally, to visually illustrate the fiber connections which con-
tributed the most to the important PCs, Fig. 6 displays the fiber tracts on
an average brain from the top three region-region connections.

4. Discussion

Here we present evidence that structural networks derived from
diffusion MRI provide superior prediction of language impairment in
TLE compared to clinical features, and may serve as a stronger

Table 1
Demographics and clinical variables

Training data (UCSD) Testing data (UCSF)
Language impaired No impairment Language impaired No impairment ANOVA p-value

N 28 21 21 12
Age (years) 38.2 (15.0) 38.4 (13.1) 29.2 (10.6) 33.3 (10.8) 2.503 .07
Education (Years) 13.4 (2.2) 14.8 (2.3) 12.7 (1.8) 13.8 (1.9) 3.736 .011

Age of Onset 18.2 (12.4) 26. 2 (17.0) 17.1 (13.6) 23.3 (12.3) 1.985 .12
Duration (years) 20.0 (17.8) 12.2 (14.2) 12.1 (10.6) 10.0 (8.0) 2.200 .10
Number of AEDs 2.4 (1.0) 2.2 (0.7) 2.3(1.0) 2.3 (1.2) .163 .92
Seizure frequency 9.5 (19.5) 10.8 (22.0) 11.0 (19.1) 3.9 (3.9) .433 .73
BDI-II 15.1 (9.5) 17.8 (13.2) 13.0 (6.9) 10.4 (6.2) 1.73 .16
BAI 16.3 (12.7) 16.7 (13.1) 12.8 (9.0) 11.8 (8.7) 0.79 .50

Fisher's Exact p-value
Sex: M/F 11/17 9/12 10/11 6/6 .644 .91
Handedness: L/R/A 2/25/1 2/19/0 3/17/1 0/12/0 3.573 .18
MTS: Yes/No 14/14 9/12 11/10 5/7 .679 .90
Onset Side: L/R/Bilateral 14/10/4 6/15/0 13/6/2 6/6/0 10.897 .06
Language Side: L/R/B 16/4/1 10/2/2 9/4/4 9/0/2 1.89 .45
Neuropsychological Tests ANCOVA* p-value
BNT T-score 29.7 (8.6) 39.7 (10.0) 32.9 (9.4) 47.8 (10.5) 12.76 <.001
BNT Raw score 41.4 (9.6) 51.7 (5.6) 40.9 (9.9) 55.3 (2.5)
ANT T-score 34.6 (12.2) 55.8 (10.9) 33.7 (14.1) 53.9 (4.89) 20.13 <.001
D-KEFS CF T-score 40.5 (7.2) 49.6 (9.8) 41.4 (13.4) 49.7 (8.9) 4.09 .010
Perceptual Reasoning IQ# 97.1 (17.5) 104.3 (12.9) 88.8 (15.6) 97.6 (14.8) 1.78 .16

TLE: temporal lobe epilepsy; F: females; M: males; L: left; R: right; A: ambidextrous; MTS: mesial temporal sclerosis; AEDs: antiepileptic drugs; standard deviations are
presented inside the parentheses; BDI-II: Beck Depression Inventory-II; BAI: Beck Anxiety Inventory; BNT: Boston Naming Test; ANT: Auditory Naming Test;

1 Pairwise comparisons revealed higher education in the training TLE-NLI group relative to the testing TLE-LI group.
⁎ ANCOVA controlling for education.
# Two-subtest IQ based on performance on WASI Matrix Reasoning and Block Design Subtests.

Fig. 3. ROC curves and Area Under the Curve comparing model performance when discriminating TLE-LI from TLE-NLI. (A) The ROC curves associated with 3
XGBoost models. (B) The area under the curve associated with each ROC curve.

Table 2
Model performances when trained on UCSD data and tested on UCSF data.

AUC Accuracy Sensitivity Specificity PPV NPV

Clinical Variables 0.59 0.64 0.86 0.25 0.67 0.50
Tracts 0.54 0.70 0.95 0.25 0.69 0.75
Connectomes 0.73 0.79 0.86 0.67 0.82 0.73

PPV: positive predictive value; NPV: negative predictive value; AUC: area under
the ROC curve.
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biomarker of language impairment than measures of global micro-
structure derived from white matter tracts. White matter damage is a
contributing factor to cognitive impairment in TLE (Leyden et al., 2015)
and other syndromes (Shen et al., 2017). We purport that a network-
based approach measuring cortical-cortical connections, such as the SC,
may enable a more precise understanding of the specific micro-
structural alterations that lead to language impairment in TLE. The
temporal connections highlighted by the SC temporal-subnetwork ap-
proach are widely distributed and bilateral, but with a majority arising
from lateral as opposed to ventromedial temporal lobe regions. These
findings are supported by a previous SC study with a more homogenous
group of patients (i.e., all LTLE patients who were left-hemisphere

dominant for language (Munsell et al., 2019)), suggesting that this
pattern is not specific to our particular TLE sample. We add to this
literature by demonstrating that a network-based SC approach may
capture the extent of the language network better than either clinical
features or global measures of white matter tract integrity.

4.1. Clinical predictors of language impairment in TLE

Language impairment in TLE has been classically associated with
left-hemisphere seizure onsets and therefore has been most extensively
studied in LTLE (Busch et al., 2005; Raspall et al., 2005; Keary et al.,
2007). However, recent studies examining patients with RTLE have
identified a high proportion of patients with language impairment
(Hermann et al., 1997; Alessio et al., 2006; Bell et al., 2001) and a

Table 3
Model performances when trained on UCSD in a 1000-fold leave-2-out approach and tested on UCSF.

AUC Accuracy Sensitivity Specificity PPV NPV

Clinical Variables 0.59 +/- 0.03 0.65 +/- 0.02 0.82 +/- 0.10 0.36 +/-0 15 0.69 +/- 0.04 0.54 +/- 0.12
Tracts 0.54 +/- 0.03 0.63 +/- 0.03 0.83 +/- 0.10 0.29 +/- 0.18 0.68 +/- 0.04 0.48 +/- 0.08
Connectomes 0.73 +/- 0.02# 0.79 +/- 0.03# 0.92 +/- 0.06 0.57 +/- 0.09# 0.79 +/- 0.03 0.82 +/- 0.11#

AUC: area under the ROC curve; PPV: positive predictive value; NPV: negative predictive value;
# = Connectome significantly better than Tracts and Clinical Variables.
+/- = Standard deviation on 1000 bootstrapped samples.

Fig. 4. Feature importance plots in each model. (A) Feature importance for the
clinical model. (B) Feature importance for the tract model. (C) Feature im-
portance for structural connectome model. Note that of the 40 PCs included in
the model, only 9 PCs made a contribution.

Fig. 5. Top white matter connections contributing to structural connectome
performance. Distribution of connections (edges) in each of the color-coded
regions (displayed brain is unilateral but connections were counted bilaterally)
emphasizing a lateral temporal focus.
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number of studies have found indistinguishable levels of language im-
pairment in patients with RTLE versus LTLE (Ogden-Epker and
Cullum, 2001; Langfitt and Rausch, 1996; Cherlow and
Serafetinides, 1976; Stafiniak et al., 1990). In this paper, 33% of pa-
tients with RTLE and 55% of those with LTLE fell into the language
impaired group. Thus, side-of-seizure onset had relatively low im-
portance in the clinical model. This highlights the need to consider
language impairment in patients with RTLE rather than exclude these
patients from studies addressing pre-surgical language function. Al-
though we believe that a bilateral white matter network contributes to
language, it is likely that language impairment in our RTLE patients
also suggests the presence of bilateral temporal lobe pathology
(Seidenberg et al., 2005; Kaaden et al., 2011; Hermann et al., 2002).

Clinical features beyond side of seizure onset have been shown to
affect the organization of the language network (Stewart et al., 2014;
Sass et al., 1992). Our model identified most of the clinical features as
having some contribution to model performance. An early age of sei-
zure onset in particular has been shown to increase the likelihood of
disrupted language function (Lee et al., 2013; Hermann et al., 2002)
and was found to be one of the most important features in the clinical
model. This is most likely due to disruption of white matter by seizures
during critical stages of language development (Seidenberg et al., 2005;
Kaaden et al., 2011; Hermann et al., 2002). It is of note that age and
seizure frequency were the two top features contributing to the clinical
model. Seizure frequency, like age of seizure onset, may provide clues
as to the extent of underlying network disruption. Regarding age, the
measures of language included in our study require speeded lexical
production and retrieval, both of which are known to be influenced by
age (Albert et al., 1988). Collectively, the language impaired and non-
impaired patients proved to have a high degree of overlap in their

clinical/demographic characteristics, which resulted in modest perfor-
mance of the clinical model. We purport that these clinical variables
provide clues as to the likelihood of language impairment, whereas
measures of white matter microstructure provide a more direct measure
of the integrity and topology of the underlying language network.

4.2. The importance of white matter measures for understanding language
impairment

Given the heterogeneity of the clinical features, an alternative ap-
proach to explaining shared cognitive deficits (i.e., cognitive pheno-
types) is to identify shared neurobiological abnormalities underlying
these deficits. Indeed, across imaging modalities neurobiological com-
monalities are found for cognitive phenotypes. Using language im-
pairment in TLE as an example, the lateral temporal lobe was found to
have increased white matter path length (Reyes et al., 2019) and lower
functional activations (Kaestner et al., 2019). Here we focus on white
matter as its disruption, and therefore cognitive disruption, may be
driven by poor development of (or damage to) white matter tracts in
patients (Seidenberg et al., 2005; Kaaden et al., 2011; Hermann et al.,
2002).

There are many methods of characterizing white matter integrity,
and determining the clinical usefulness of various measures is an on-
going goal. Perhaps the most common approach is to derive a single
measure of microstructural integrity for white matter bundles, here
represented by the tract-model, and relating it to cognitive ability
(Leyden et al., 2015). An alternative approach, here represented by the
SC-model, focuses on individualized network patterns (Munsell et al.,
2017), measured as pairwise gray matter connections that may not be
captured in the large association tracts. In this study, the tract-model
performed with high sensitivity but low specificity for detecting lan-
guage impairment in TLE. This is in line with our previous study on
language impairment (Kaestner et al., 2019), which revealed wide-
spread damage of fiber bundles which did not differ significantly be-
tween language impaired and non-impaired individuals. This pattern
implies widespread damage to white matter in TLE, and raises the
concern that a summary measure of tract integrity is insufficient for
isolating pathology associated with language impairment. Future ef-
forts may focus on identifying subsections of fiber bundles associated
with particular cognitive operations. Efforts at this more precise sub-
dividing of fiber bundles have indeed shown promise (Voets et al.,
2017; Duffau, 2015).

The SC-model had a significantly higher overall accuracy and ROC
performance driven mainly by a higher specificity (i.e., excluding pa-
tients who are not language impaired). Anatomically, the SC-model
replicated the lateral temporal lobe as the most important region in
identifying language impairment in TLE. Although our SC identified
widespread connections that are not included in our association tracts,
it is noteworthy that two of the top three connections identified as
contributing to the PCs appear to approximate the ARC and UNC (see
Fig. 6). The ARC (Upadhyay et al., 2008) and UNC (Lu et al., 2002)
have both been associated with naming performance (McDonald et al.,
2008) and with semantic fluency (Wang et al., 2010). Thus, our SC
approach appears to both capture white matter association tracts
known to be important to language, while also including less obvious
and/or understood connections that may also be critical for language
performance.

4.3. The complex and bilateral nature of language networks in epilepsy

Due to the long duration of epilepsy suffered by many patients with
TLE, (re)organization of the language network is of keen interest for
understanding pre-surgical language function, language dominance,
and estimating risk for post-surgical language decline (Balter et al.,
2016). Language lateralization is typically evaluated functionally, with
either IAP or fMRI, both of which aim to categorize language trinarily

Fig. 6. Top 3 connections identified as contributing to the structural con-
nectome PCs. Illustration of connection lines between the 3 ROIs which con-
tributed to the 9 important PCs in the structural connectome. All 3 connections
were left-left.
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as either left-dominant, right-dominant, or bilateral (Binder, 2011;
Janecek et al., 2013). This is the approach generally followed in clinical
practice and there is evidence that this approach holds utility for pre-
dicting postoperative language decline (Szaflarski et al., 2017). How-
ever, studies using fMRI have demonstrated that this trinary categor-
ization of language is oversimplified, with some studies positing up to
15 different patterns of possible language organization in TLE
(Berl et al., 2014) and there is evidence that the prediction of post-
operative language outcome is contingent on the amount of tissue re-
sected displaying pre-surgical fMRI-activation (You et al., 2019). Stu-
dies of healthy controls find that while in the overall population
language is more left- than right-hemisphere dominant, there exists a
continuum of laterality rather than discrete categories (Knecht et al.,
2002). Even in patients categorized as left-dominant for language, the
right-hemisphere structural networks are important; in a recent DTI
study using graph theory measures, a bilateral distribution of nodes was
found to explain 60% of the variance in naming performance
(Munsell et al., 2019). This is supported by fMRI data implicating dis-
tributed bilateral networks associated with language regions in both
resting state (Doucet et al., 2017) and language task-derived
(Trimmel et al., 2018) networks. Measures of broadly distributed, bi-
lateral functional global networks also have predictive power for post-
surgical outcome (Audrain et al., 2018). In the present study using a
heterogeneous TLE sample, we found bilateral connections contributing
to SC-model and tract-model performance; in the SC-model this in-
cluded not only left-left connections (which predominated) but also
right-right and inter-hemispheric connections.

However, following right temporal lobectomies, only ~5% of pa-
tients display a significant decline in naming (Busch et al., 2018). This
suggests that the right-sided nodes and connections in patients with
typical (i.e., left hemisphere) language dominance are likely con-
tributing but not essential, at least for language functions typically
tested post-surgically. Understanding right-sided language contribu-
tions in TLE is complicated by the uncertainty of patient-by-patient re-
organization in many studies. As the field continues to advance in un-
derstanding the additional connections beyond the left perisylvian
network contributing to language, it will be important to consider the
interplay between functional and anatomical measures of connectivity
in the context of a bi-hemispheric network approach (Chu et al., 2018).
Recent studies have begun to bridge the relationship between func-
tional and anatomical organization of the language network in TLE
(Osipowicz et al., 2016; Chang et al., 2017). For example, TLE patients
with a rightward shift in language activations on fMRI have been shown
to be more likely to have preserved language if they also show a
rightward asymmetry in integrity of the ARC (Chang et al., 2017). In
navigating the transition from trinary to continuum thinking, the SC
approach, and functional connectivity approaches, can further exploit
the complexity of the language network and begin to move toward
individualized patterns rather than discrete categories.

4.4. Limitations and future directions

Although the overall performance of the SC-model was significantly
higher than the alternative models, performance still can be improved.
Machine learning approaches are powerful tools for understanding the
unseen patterns in data but require many examples in the training data.
Although our sample size of 82 patients is higher than in many previous
machine learning and connectome studies in TLE, and we took pre-
cautions to avoid overfitting, the accumulation of larger amounts of
neuroimaging data will be necessary to ensure the generalizability of
our findings. Large-scale efforts such as ENIGMA-Epilepsy may afford
this opportunity (Whelan et al., 2018). Similarly, though most machine
learning efforts focus on a single institution, we used a model trained on
one institutions’ data and tested on another. Future studies will need to
continue expanding to additional institutions to ensure broad general-
izability.

Here we classified patients as language impaired if they were im-
paired on any two of three language measures of naming and fluency.
However, these three measures are unlikely to have completely over-
lapping neuro-anatomical substrates, potentially creating confusion in
the model. However, individual language tasks can be non-specific and
may capture deficits outside the language network, which could also
obscure the relevant networks. For example, although the vast majority
of language impaired individuals in our study were impaired on both
visual and auditory naming (providing greater confidence of a naming
deficit), there may be a subset of RTLE patients that are impaired on
BNT due to a visual object recognition rather than language impairment
(Drane et al., 2015; Drane et al., 2008). Our requirement that patients
be impaired on at least two language measures was implemented to
mitigate this likelihood. However, future studies with a larger sample
size that evaluate impairment on each individual test may identify sub-
phenotypes associated with specific network alterations, achieving
more precise categorizations.

5. Conclusion

A recent review of connectomics in TLE noted that further devel-
opment of the field would require comparisons of connectome ap-
proaches with more conventional measures (Tavakol et al., 2019). Here
we add to this literature by demonstrating that the SC may capture the
extent of the language network better than either clinical features or
global measures of fiber bundle microstructure. While current clinical
or track-based approaches may oversimplify the language network,
they have the virtue of being easy to implement and interpret. As
network methodologies increase in popularity, efforts are needed to
easily extract and interpret meaningful biomarkers. Here we used PCA
for dimensionality reduction. In other studies graph theory measures
have proven to be effective in predicting seizure outcome (Taylor et al.,
2018) and in characterizing cognitive phenotypes in TLE (Reyes et al.,
2019). As the field matures, there will need to be convergence on ac-
cepted methods for connectome generation (Sotiropoulos and
Zalesky, 2019). Here we chose an anatomically-based, cognitively ag-
nostic method for connectome reconstruction, with a number of ROIs in
line with recommendations from previous studies (Bonilha et al., 2015;
Prčkovska et al., 2016). Alternative approaches including functionally
defined ROIs that take into account the cognitive construct under study
may further improve performance. Further studies are needed to de-
termine the best dimensionality reduction and connectome generation
approaches to white matter data and to identify the neural networks
that underlie specific cognitive impairments in TLE.
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