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Abstract
Background. Resection of posterior fossa tumors (PFTs) can result in hydrocephalus that requires permanent ce-
rebrospinal fluid (CSF) diversion. Our goal was to prospectively validate a machine-learning model to predict post-
operative hydrocephalus after PFT surgery requiring permanent CSF diversion.
Methods. We collected preoperative and postoperative variables on 518 patients that underwent PFT surgery at 
our center in a retrospective fashion to train several statistical classifiers to predict the need for permanent CSF di-
version as a binary class. A total of 62 classifiers relevant to our data structure were surveyed, including regression 
models, decision trees, Bayesian models, and multilayer perceptron artificial neural networks (ANN). Models were 
trained using the (N = 518) retrospective data using 10-fold cross-validation to obtain accuracy metrics. Given the 
low incidence of our positive outcome (12%), we used the positive predictive value along with the area under the 
receiver operating characteristic curve (AUC) to compare models. The best performing model was then prospec-
tively validated on a set of 90 patients.
Results. Twelve percent of patients required permanent CSF diversion after PFT surgery. Of the trained models, 8 
classifiers had an AUC greater than 0.5 on prospective testing. ANNs demonstrated the highest AUC of 0.902 with 
a positive predictive value of 83.3%. Despite comparable AUC, the remaining classifiers had a true positive rate 
below 35% (compared to ANN, P < .0001). The negative predictive value of the ANN model was 98.8%.
Conclusions: ANN-based models can reliably predict the need for ventriculoperitoneal shunt after PFT surgery.

Key Point

• Adaptive neural networks predict need for VPS in patients with p-fossa tumors.

A well-known complication after resection of posterior fossa tumors 
(PFTs) is postoperative hydrocephalus (HCP).1–3 Postoperative HCP 
can necessitate long-term cerebrospinal fluid (CSF) diversion, which 

is treated with the ventriculoperitoneal shunt (VPS). Diagnosing 
persistent HCP and surgery for VPS may increase hospitalization 
times and the cost of care for patients with PFTs.

Artificial neural networks predict the need for 
permanent cerebrospinal fluid diversion following 
posterior fossa tumor resection
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Neurosurgeons employ preoperative VPS/endoscopic 
third ventriculostomy, pre-/postoperative external ventric-
ular drainage (EVD), and avoiding subtotal resection (STR) 
and intraventricular hemorrhage (IVH) to combat the risk 
of postoperative HCP.4,5 While some studies from single in-
stitutions suggest predictors for postoperative HCP after 
PFT resection, no novel, machine-learning techniques have 
been used to predict the need for VPS after PFT surgery.5,6

Neurosurgeons sorely need a robust predictor for the 
risk of requiring VPS after resection of PFTs. In another 
manuscript, our group performed a multivariate analysis 
on a retrospectively collected database of predictors of 
requiring VPS after PFT surgery.7 With this study, we per-
formed a validation analysis of predictors of VPS with a 
machine-learning, artificial neural network (ANN) algo-
rithm on prospectively collected patient cohort. The pri-
mary goal of this study was to develop an algorithm that 
can reliably predict the need for VPS after PFT surgery 
based upon easily collected, patient-level, and periopera-
tive variables.

Materials and Methods

Study Design

This is a multi-site study to develop and prospectively val-
idate a predictive model of need for CSF diversion in adult 
patients undergoing craniotomy for PFTs within the Emory 
University Healthcare system from January 2006 to March 
2021. This system features 2 tertiary/quaternary academic 
medical centers, one community-based hospital, and one 
large public/safety-net hospital. Data were collected from 
the CTORE (CNS Tumor Outcome Registry at Emory) data-
base, a prospectively maintained database of patient out-
comes for central nervous system (CNS) tumors treated at 
the participating sites. Models were developed and trained 
based on data from 2006 to December 2019 and then val-
idated upon a prospective cohort consisting of consecutive 
patients undergoing craniotomy for PFTs between January 
2020 and March 2021. The study was approved by the in-
stitutional review board at Emory University, and an in-
formed consent waiver was obtained.

Patient Selection

Patients at least 18  years old or older who underwent a 
craniotomy for PFT resection within the study period were 

included. Patients were included regardless of tumor type 
or suboccipital craniotomy approach. Patients with ad-
ditional supratentorial lesions were included, provided 
the posterior fossa lesion was the dominant lesion. In pa-
tients who had multiple lesions in the posterior fossa, the 
largest of the lesions was enumerated in the following 
analyses. Patients received peri- and postoperative cor-
ticosteroids (unless major contraindication) for 1–2 weeks 
postoperatively. All posterior fossa durostomies were 
closed with the assistance of a collagen-based, synthetic 
graft. It is our institutional preference to replace the cra-
niotomy flap after dural closure in all PFT cases, given 
the known association of craniectomy and postoperative 
CSF leak.8 We do not routinely perform endoscopic third 
ventriculostomy (ETV) for postoperative hydrocephalus if 
there is no persistent aqueductal stenosis. Therefore, no 
patients in our cohort had an ETV performed.

Data Collection and Model Predictors

Data for model training and validation were obtained 
from the CTORE database and included variables from 
a primary review of the patient charts, procedure notes, 
and imaging data and featured in a previously published 
manuscript.7 Patient charts were reviewed for patient 
demographics, procedures (eg, EVD placement), surgical 
complications, pathology, need for permanent CSF diver-
sion (eg, VPS placement), length of stay, and patient final 
disposition. Preoperative imaging was performed within 
1 week of surgical intervention, and postoperative mag-
netic resonance imaging (MRI) was performed within 
72  h of surgery. These MRIs were used to evaluate the 
location and number of lesions, lesion size, presence of 
ventriculomegaly (with or without transependymal flow), 
and extent of resection. Mass effect on the fourth ventricle 
was also assessed (by authors D.P.B., A.M.A, and K.B.H.) 
using preoperative MRI and categorized into “no mass 
effect” (patent ventricle with no effacement), “partial ef-
facement” (any mass effect without complete effacement 
of the ventricle), or “full effacement.” The location of the 
lesion was dichotomized into extra-axial and intra-axial 
lesions. Gross total resection was defined as complete 
resection noted on the postoperative imaging. Patients 
that had a residual tumor on postoperative imaging were 
noted to have STR. Surgical complications were defined 
as ischemic stroke, postoperative hematoma, postopera-
tive edema requiring decompression, infection, CSF leak, 
and wound complications.

Importance of the Study

Hydrocephalus is a prevalent complication 
after resection of PFTs. Clinicians need a du-
rable method to predict the occurrence of CSF 
diversion in this population. Defining patients 
at high risk of ventriculoperitoneal shunt (VPS) 
will decrease hospital stay time and healthcare 
expenditures. We applied multiple machine-
learning algorithms to retrospectively collected 

data and found that ANNs could be used to 
best predict need for long-term CSF diver-
sion after PFT resection. We will next develop 
a web-based application to help clinicians pre-
dict which patients will require a VPS. These 
data will continue to make our models more 
robust, and therefore more applicable to future 
patients.
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Previously validated predictors included in the surveyed 
models along with their classification scheme are summar-
ized in Table 1.7 All listed variables were included in this 
study and were present for all included patients. No impu-
tation was performed for missing variables. Patients with 
absent imaging data were not included in the study.

Classifier Training and Validation

We designed a multi-layer perceptron (or ANN) model, 
using the data mining tool, WEKA, that includes all 17 input 
variables with 2 hidden layers to predict the 2 outcomes 
of interest: VPS requirement versus no VPS requirement.9 
A total of 2 hidden layers were included, given that addi-
tional layers did not improve model performance during 
training. The model was trained using the N = 518 observa-
tions with 10-fold cross-validation at a learning rate of 0.05 
with a batch size of 100. Performance at each fold was as-
sessed using the weighted area under the curve (AUC) for 
both output classes and the true positive rate for the VPS 
group. To determine the performance of our ANN model 
compared to a common classifier, we performed similar 
training for a total of 16 alternative classifiers that are com-
patible with our input/output attributes. Surveyed classi-
fiers include Bayes Networks, Simple Logistic Regression, 
Multinomial Logistic Regression, Support Vector Machine, 
Stochastic Gradient Descent, Voted Perceptron, 1R 
Classifier, PART Decision List, Decision Table Majority 
Classifier, Decision Stump Classifier, Hoeffding Tree, 
Random Forest, Random Trees, REP Trees, Logistic Model 
Tree, and J48 Decision Trees. All these classifiers were 
trained using the training set with 10-fold cross-validation. 
We performed automated parametrization of the different 

classifier parameters using Auto-WEKA to determine the 
optimal parameters for each classifier.10 Model perfor-
mance was assessed against the weighted area under the 
receiver operating characteristic curve (AUC) and the accu-
racy in predicting the VPS class (positive predictive value 
[PPV]) given the relatively low proportion of this class in 
the data. The top 8 performing models with weighted AUC 
> 0.5 were reported.

Following training, the ANN model was then tested on 
a prospective cohort of N = 90 patients to evaluate model 
performance on an external dataset, and similar param-
eters, including weighted AUC and true positive rates were 
reported.

Model Implementation

Instructions on model implementation and execution on 
independent datasets are available along with sample data 
in the Supplementary Material.

Results

Training and Validation Cohorts

A total of 608 patients underwent craniotomy for PFT 
within the study period, of which 518 patients were in-
cluded in the training set, and 90 patients were included in 
the validation set. The 90 patients in the validation set were 
prospectively collected from January 2020 to March 2021. 
Table 2 describes the demographic, imaging, procedural, 
and outcome variables in the two patient populations.

  
Table 1. Variables Included in Model Training and Validation

Variables Type Classes (if applicable) 

Age Numeric Continuous Variable

Gender Nominal 1: Male, 2: Female

Race Nominal 1:White, 2: Black, 3: Hispanic, 4: Other

Location Nominal 1: Intra-axial, 2: Extra-axial

Size Numeric Continuous Variable

Number of Infratentorial lesions Numeric Continuous Integer

Number of Supratentorial lesions Numeric Continuous Integer

Hydrocephalus Binary 0: Absent, 1: Present

Transependymal Flow Binary 0: Absent, 1: Present

Preoperative EVD Placed Binary 0: No, 1: Yes

Intra-operative/Postoperative EVD Binary 0: No, 1: Yes

Mass Effect on fourth Ventricle Nominal 0: None, 1: Partially effaced, 2: Full effaced, 4: Intraventricular

Surgical Complications Binary 0: No, 1: Yes

Postoperative IVH Binary 0: No, 1: Yes

Pathology: Benign/Malignant Nominal 1: Benign, 2: Malignant

Pathology: Primary/Metastatic Nominal 1: Primary, 2: Metastatic

Outcome: VPS Placed Binary 0: No, 1: Yes

EVD, external ventricular drainage; IVH, intraventricular hemorrhage; VPS, ventriculoperitoneal shunt.
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Performance of ANN Versus Alternative 
Classifiers

The ANN model was trained based on our retrospective 
data (N = 518 patients) using 10-fold cross-validation as 
described in the methods. Given that the 2 output classes 
(VPS vs. no VPS) are not balanced (13%), a stratified 
cross-validation approach was used to ensure balanced 
class distribution at each fold. Results of cross-validation 
data are shown in Table 3. A total of 16 alternative classi-
fier types that are compatible with our patient attributes 
that include a combination of Gaussian distributed, non-
Gaussian distributed, and categorical variables were 
tested to provide comparative analysis. A  comparison 
of our ANN model to the top 7 alternative classifiers is 
shown in Figure 1.

Given that 87% of patients in the cohort did not require 
a VPS, several classifiers had an AUC > 0.5. However, 
the PPV for these classifiers in predicting the need for 
VPS in the cohort was low; the highest TP recorded out-
side of ANN was achieved using additive logistic regres-
sion models (AUC = 0.799 and PPV = 33.3%; Figure 1). 
Using z-score comparison, the performance of ANN was 
superior to that of additive logistic regression models  
(P < .01).

External Validation of ANN Model

We performed external validation of our ANN model on an 
independent subset of 90 patients prospectively enrolled 
after model development. Within this dataset, 12 patients 
(13%) required a VPS, and the overall characteristics of the 
cohort was similar to those in the training dataset (Table 2). 
The PPV of our ANN model was 83%, and the negative pre-
dictive value was 98.8% (Figure 2).

Discussion

Our data suggest that the need for permanent CSF diver-
sion is one of the most common complications that occur 
after craniotomy for PFT, occurring in 13% of cases.7 In a 
previous study, we performed a rigorous descriptive, 
univariate, and multivariate statistical analysis to iden-
tify preoperative and postoperative variables that could 
be used in machine-learning models.7 With this work, we 
used ANNs to develop a model that predicts, with high 
accuracy, the subset of patients who will likely require 
VPS placement postoperatively. The model was validated 
on an external cohort of prospectively collected patients 

  
Table 2. Description of Features for the Included Patient Populations

Variable* Training Cohort  
(N = 518) 

Validation Cohort  
(N = 90) 

Age 51.5 (15) 53 (16)

Gender: Female 297 [57%] 56 [62%]

Race: White 308 [59%] 62 [69%]

Intra-axial Location 289 [56%] 59 [66%]

Size (cm3) 16 (18) 20 (18)

Number of Infratentorial lesions {1} {1}

Number of Supratentorial lesions {1} {1}

Hydrocephalus 151 [29%] 31 [34%]

Transependymal Flow 60 [12%] 18 [20%]

Preoperative EVD Placed 31 [6%] 8 [9%]

Intra-operative/Postoperative EVD 73 [14%] 14 [16%]

Mass Effect on 4th Ventricle   

 No Mass Effect 151 [29%] 11 [12%]

 Partially Effaced 285 [55%] 65 [72%]

 Completely Effaced 61 [12%] 10 [11%]

 Intraventricular 13 [3%] 4 [4%]

Surgical Complications 144 [28%] 27 [30%]

Postoperative IVH 74 [14%] 8 [9%]

Pathology: Benign 235 [45%] 40 [44%]

Pathology: Primary 173 [33%] 31 [34%]

Gross Total Resection 334 [64%] 59 [66%]

Outcome: VPS Placed 68 [13%] 12 [13%]

EVD, external ventricular drainage; IVH, intraventricular hemorrhage; VPS, ventriculoperitoneal shunt.
*Variables reported as Mean (SD) for continuos variable, {Median} for nonguassian variables or N [%] for categorical variables.
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and implemented in an online resource available for 
multicenter validation.

VPS is a life-saving procedure for patients with hydro-
cephalus, but their placement subjects these patients to 
the additional surgical risk of wound infection, IVH, and 
shunt failure.11 Neurosurgeons attempt to treat hydro-
cephalus secondary to PFTs temporarily with preopera-
tive EVDs or endoscopic third ventriculostomies; these 
procedures have their own complications and can subject 
patients to longer hospitalizations (ie, drain weaning).4,12 
Others have attempted to devise scoring systems that 

predict high/low risk for postoperative need for VPS.2,6 The 
scoring systems suffer accuracy as the number of patients 
in the testing groups is smaller than our cohort, score cut-
offs are made somewhat arbitrarily, and model fit was not 
tested on prospectively collected data. Therefore, the low 
sensitivity and accuracy of these models make them less 
helpful for clinical use.

Oncologists, neurosurgeons, and radiation oncolo-
gists need a better tool to predict which patients are at 
high risk of needing VPS after PFT resection such that they 
can reduce hospital stays and counsel patients/families. 
Predictive mechanisms could reduce unplanned 30-day re-
admissions, which may reduce healthcare costs and avoid 
insurance/governmental penalties.13,14 ANN is a computa-
tional modeling strategy that can be employed to under-
stand non-linear statistical data for the purposes of clinical 
decision-making and prediction.15–17 Others have used 
ANNs to predict the risk of cerebral vasospasm after sub-
arachnoid hemorrhage, outcome after traumatic brain in-
jury, or MRI analysis to predict the pathology of different 
PFTs.18–20 To our knowledge, this is the first attempt to use 
machine-learning-based algorithms to predict the need for 
VPS after PFT resection.

In this work, we compare the performance of ANN to 
different alternative classifiers commonly used in clin-
ical data mining. As shown in Figure 1, several classifiers 
had an overall high AUC; however, the overall accuracy in 
predicting the need for VPS was low. This is secondary to 
the low incidence of VPS in the cohort and the need for a 
more complex model that can predict both classes (VPS 
and no VPS). For example, a model whose output is always 
“no VPS required” will correctly classify 87% of the co-
hort, which will result in an inflated AUC. Careful attention 
to the accuracy (ie, PPV and negative predictive value) of 
predicting patients with VPS and without VPS is needed to 
avoid confirmation bias.

  
Table 3. ANN Model Performance During Training

Cross-validation Fold
(N(Train)= 466,  
N(Test)=52) 

Weighted AUC True Positive Rate  
(VPS Class) 

1 0.886 85.70%

2 0.911 85.70%

3 0.999 100%

4 0.886 85.70%

5 0.886 85.70%

6 0.886 85.70%

7 0.999 100%

8 0.927 85.70%

9 0.999 100%

10 0.999 100%

Average 0.938 91.40%

AUC, area under the receiver operating characteristic curve; VPS, 
ventriculoperitoneal shunt.

  

  
Artificial neural networks

Additive logistic regression

Logistic model trees (LMT)

Random trees

Random forests

Stochastic gradient decent

Logistic regression

0.0 0.2 0.4

Area under ROC curve /
positive predictive value

Positive predictive value

0.6 0.8 1.0

REP trees

AUC

Figure 1. Classifier performance on training dataset using 10-fold cross-validation. Note that while AUC was high for multiple machine-learning 
based algorithms, the PPV was unacceptably low (less than 0.4) in all cases except for ANNs. ANN, artificial neural networks; PPV, positive predic-
tive value.
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For clinicians that are uninitiated to “black box” machine-
learning models, interpretation and evaluation of final 
models can be disconcerting. In ANNs, no single variable will 
have a unique overall multiplier or weight. The input features 
are weighted differently at different nodes within the layers 
of the network that allows for a unique learning opportunity 
for trends that are not simply predicted by linear regression 
models or decision trees. Our data were studied with the 
optimal rigor of combining both internal validation on the 
training set and prospective validation on an independent 
cohort allowing for high confidence in the model’s results.

Logistic regression models performed second best 
to our ANN model in predicting the need for VPS. These 
models are commonly used in clinical data analytics with 
good performance. However, logistic regression models 
do not account for the complex interactions between dif-
ferent variables; a unique attribute of ANN. ANNs discover 
hidden layers of nodes, which, in turn, include different 
combinations of attributes, which increase the degrees of 
freedom and allow for more robust prediction. Logistic re-
gression models allow for fewer than 20 total degrees of 
freedom compared to over 100  degrees of freedom that 
can be attained via ANN using the same variables. From 
clinical experience, we anticipate significant interactions 
and inter-dependencies among the study variables (ie, 
presence of HCP, preoperative EVD placement, tumor size, 
fourth ventricle mass effect, etc.). These attributes likely 
provide predictive strength to the overall model that is 
better captured using ANNs. Indeed, the removal of any 
single variable from our model resulted in less than a 5% 
change in overall model performance, further supporting 
this inter-dependency.

The overall performance of our ANN model was rel-
atively high (83% PPV). Therefore, to ensure there is no 
over-fitting and confirm the robustness of the model, we 
first noted the low variability among the different cross-
validation folds (Table 3). We additionally performed inde-
pendent external validation of the model on a new cohort 

of prospective patients that were not part of the initial 
training set.

In the future, we will develop a web-based platform such 
that this model can be used by neurosurgeons around 
the world. We will employ the prospective data collected 
through the web-based platform to externally validate the 
ANN model. These steps will allow for the dissemination of 
this model to clinical use.

Limitations

The major limitation of this work is that it is a single-
institution study. We have attempted to minimize bias 
therein with the inclusion of a large number of patients 
in the cohort, multiple clinical sites, and multiple prac-
ticing neurosurgeons. At our institution, we routinely use 
perioperative corticosteroids, collagen-based, synthetic 
dural graft for closure, and to avoid craniectomies. Due 
to the uniformity of these practices at our institution, we 
did not collect these variables for our analysis. In a multi-
institutional database, we will need to include variables 
concerning the size of craniotomy, craniectomy rate, and 
dural graft use. To prove model reliability, the ANN model 
will need to be applied to a multi-institutional database in 
future studies. Additionally, the ANN model was applied 
to retrospective data, which has inherent biases. We at-
tempted to ameliorate these biases by external validation 
of prospectively collected data.

Supplementary Material

Supplementary material is available at Neuro-Oncology 
Advances online.
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Figure 2. ANN model performance in our prospective cohort per 
outcome category. The full cohort rate of needing a VPS after PFT 
resection was 13%. On the prospectively collected data, trained 
ANNs predicted need for VPS with 83% PPV and predicted no need 
for shunt (negative predictive value) of 98.8%. ANN, artificial neural 
networks; AUC, area under the receiver operating characteristic 
curve; PFT, posterior fossa tumor; PPV, positive predictive value; 
VPS, ventriculoperitoneal shunt.
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