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Abstract

The importance of climate in determining biodiversity patterns has been well documented. However, the relationship
between climate and rates of genetic evolution remains controversial. Latitude and elevation have been associated with
rates of change in genetic markers such as cytochrome b. What is not known, however, is the strength of such associations
and whether patterns found among these genes apply across entire genomes. Here, using bumblebee genetic data from
seven subgenera of Bombus, we demonstrate that all species occupying warmer elevations have undergone faster
genome-wide evolution than those in the same subgenera occupying cooler elevations. Our findings point to a critical
biogeographic role in the relative rates of whole species evolution, potentially influencing global biodiversity patterns.
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Species diversity patterns are correlated with environmental
variables such as temperature, primary productivity, and bi-
ome area (McBride et al. 2014; Gillman et al. 2015; Jonathan
and Walter 2015), and declining species richness among bees
with increasing elevation has been associated with tempera-
ture (Alice et al. 2015). Rensch (1959) suggested that high
diversity may derive from greater evolutionary speed in
warmer climates, possibly due to shorter generation times
and/or higher mutation rates (Rohde 1992). The strength
and importance of relationships among environmental and
geographical variables and rates of genetic evolution is, how-
ever, controversial (Gillman et al. 2011; Weir and Schluter
2011; Rolland et al. 2016). Faster rates of genetic evolution
have been found in warmer climates, such as at lower eleva-
tions, for a range of taxa including endotherms and ecto-
therms (Gillman and Wright 2014; Dugo-Cota et al. 2015),
and greater intraspecific divergence has been reported from
populations occupying warmer environments (Oppold et al.
2016). Life-history traits, including generation time, longevity,
metabolic rate, and body mass have also been related to rates
of substitution (Nabholz et al. 2008; Santos 2012; Lehtonen
and Lanfear 2014; Bromham et al. 2015) and may underpin
the geographic and climatic associations with rates of evolu-
tion. However, these studies have all relied on relatively small
genetic markers from mitochondria and, less often, nuclear
DNA, to characterize species-level rates of evolution, and it is

unknown whether the results are representative of genome-
wide evolution. Therefore, the importance of environment in
mediating the rate of evolution remains unclear. Here, we
address this issue by comparing rates of genetic evolution
across whole nuclear and mitochondrial genomes for seven
pairs of bumblebee species that occupy contrasting eleva-
tional distributions.

The genus Bombus (Hymenoptera: Apidae) includes�250
species within 15 subgenera (Cameron et al. 2007; Williams
et al. 2008). Elevational segregation of closely related species
enabled us to select seven pairs of species, within seven sub-
genera, with elevations differing between species within each
pair by an average of 1,867 m (two-tailed paired t-test, P¼ 9.5
� 10�4) (supplementary table S1, Supplementary Material
online). We sequenced 12 of the 14 species (SRA accession
No. PRJNA508540; supplementary table S2, Supplementary
Material online) and obtained published genome sequences
(Sadd et al. 2015) for the remaining two (B. impatiens and B.
terrestris). Nuclear genome sequences (NUC) and mitochon-
drial genome sequences (MIT) were each concatenated for
phylogenetic analysis. A total of 7,738 nucleotide genes with
4,641,249 bp and 13 mitochondrial genes with 10,842 bp were
used in our analyses.

Maximum likelihood with CODON models was used for
phylogenetic analysis. The best-fit model for NUC and MIT
was GYþFþR4 and GYþFþR5, respectively. The topologies
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of the two phylogenetic trees (fig. 1) were consistent with
each other, and with previous studies (Williams et al. 2008).
Branch lengths for all lowland species were longer than their
high-elevation counterparts for both NUC and MIT (fig. 1,
table 1). Consequently, mean log transformed branch lengths
of lowland species were longer than those for high-elevation
species (table 2). We also calculated the tip age (total branch
length from each tip to the root) of each species (supplemen-
tary table S2, Supplementary Material online) and performed
correlation analyses between log transformed tip ages and
their corresponding mean elevations. Both nucleotide (r ¼
�0.653, P¼ 0.011, n¼ 14) and mitochondrial (r ¼ �0.736,
P¼ 0.003, n¼ 14) tip ages were negatively correlated with
mean elevations.

Thus, all comparisons conformed to the pattern of greater
genome evolution in lower-elevation species. Our results con-
firm a pattern previously found among both ectotherms and
endotherms using limited genetic data from marker genes
(Gillman and Wright 2014; Dugo-Cota et al. 2015).
However, the results from previous studies were less consis-
tent, with approximately one-third of comparisons in each of
these studies producing a result contrary to the overall pat-
tern. Here, we show a stronger, indeed universal pattern
across our data set derived from full genomes.

Faster rates of genetic evolution at lower elevations may be
due to a population size effect. Nearly neutral theory predicts
elevated rates of substitution in small populations due to
relaxed purifying selection of slightly deleterious mutations
(Ohta 1972) thereby elevating nonsynonymous substitutions
(dN) relative to synonymous substitutions (dS). We therefore

examined dN and dS. Lower-elevation species in all cases
exhibited higher dN and dS in both mitochondrial and nu-
clear DNA than the contrasted higher-elevation species (ta-
ble 1). The log transformed means for dN and dS of both NUC
and MIT were all significantly larger in low-elevation species
(table 2). By contrast, there was no indication of a mean
difference in dN/dS between high- and low-elevation species
for either NUC or MIT (paired-samples t-test for log trans-
formed values, P¼ 0.196 and 0.337, respectively) (table 2).
Relaxed selection due to small populations cannot therefore
explain our results.

The opposite population effect, whereby total mutations
increase with population size and thus increase rates of sub-
stitution, has been previously modeled (Kimura 1979), and
the integrated evolutionary speed hypothesis predicts ele-
vated rates of genetic evolution in larger populations
(Gillman and Wright 2014). Longer branch lengths have
been reported for mainland bird species with larger popula-
tions relative to island species (Wright et al. 2009). The low-
elevation species in our study occur in higher densities and
are more widely distributed than the high-elevation species
(An et al. 2014) and therefore this mechanism provides a
potential explanation for our results.

Life-history traits such as body size, metabolic rate, longev-
ity, and generation time have been negatively associated with
temperature and with substitution rates (Martin and Palumbi
1993; Welch et al. 2008; Bromham et al. 2015). Life history
therefore provides plausible explanations for lower rates in
cooler environments. However, in many cases life-history
traits, such as longevity and body size, have failed to explain
latitudinal or elevational relationships (Gillman et al. 2012;
Gillman and Wright 2013; Lourenço et al. 2013). Neither gen-
eration time nor longevity is a tenable explanation for the
divergent substitution rates we measured because all of the
study species have an annual life cycle (Goulson 2010).
Likewise, larger bodies at higher elevations are an unlikely
explanation for slower substitution rates because the high-
elevation species in our study are generally smaller, not larger,
than their low-elevation counterparts (Williams et al. 2009).

Lower basal metabolic rates among the high-elevation spe-
cies are another potential explanation for our results.
However, empirical testing with large data sets has previously
failed to find significant relationships between basal metabolic
rate and substitution rate (Bromham et al. 1996; Lanfear et al.
2007). Active, rather than basal, metabolic rates have, by con-
trast, been positively associated with rates of genetic evolu-
tion (Santos 2012; Gillman and Wright 2013) and may be
suppressed at higher elevations due to colder temperatures.
A low substitution rate in two thermophiles is thought to
result from internal control mechanisms that counterbalance
potentially deleterious effects of elevated mutations at ex-
treme high temperatures (Drake 2009; Swami 2009).
Similarly, a conserved genetic structure might result due to
hypoxia stress among bumblebees occupying cold environ-
ments (Cai et al. 2013; Zhang et al. 2013). As potential explan-
ations for variable rates of evolution, these mechanisms
deserve further empirical investigation.

FIG. 1. Phylogenetic tree of the 14 bumblebee species based on the
concatenated nuclear sequences. The subgenus is given above the
branch; the species branch length is given above each terminal
branch; the species colored blue occur at high elevations and the
species colored red occur at low elevations.
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We clearly demonstrate faster molecular evolution among
low-elevation bumblebee species than among high-elevation
species. Further work is needed to identify the mechanisms
producing this pattern. Our genomic data also provide fertile
ground for investigation into functional implications of ge-
netic divergence in contrasting environments. The unequiv-
ocal pattern we reveal among our study species suggests a
critical biogeographic role in the relative rates of whole spe-
cies evolution. Tests for an association between substitution
rate, diversification rate, and species richness have produced
variable results (Lanfear et al. 2010; Goldie et al. 2011;
Bromham et al. 2015). Nonetheless, we suggest that differen-
tial rates of species evolution have the potential to influence
global patterns of biodiversity.

Materials and Methods
Bumblebees (adult workers) were live-trapped using sweep
nets and stored in a refrigerator (supplementary table S3,
Supplementary Material online). DNA was extracted from
each bumblebee and a 350-bp library constructed. The
paired-end library was sequenced (Illumina HiSeq2000) with
both directions of 150-bp reads representing �100� cover-
age of the genome. Using FASTX-Toolkit (http://hannonlab.
cshl.edu/fastx_toolkit/; last accessed March 14, 2019) the se-
quenced data were filtered by removal of adaptors, low-

quality reads, and ambiguous reads. The clean reads were
used for de novo assembly with IDBA-UD (Peng et al.
2012). The 200-bp longer contigs were used for further anal-
yses. In addition to the 12 species sequenced by us, previously
published genomes (Sadd et al. 2015) of B. terrestris (RefSeq
assembly accession: GCF_000214255.1) and B. impatiens
(RefSeq assembly accession: GCF_000188095.2) were used.

Mean elevation data for all species we sequenced were
obtained by An et al. (2014). For B. terrestris and B. impatiens,
distributions were obtained from the GBIF database (https://
www.gbif.org/; last accessed March 14, 2019), and average
elevations were determined using the ArcGIS platform and
the SRTM30 digital elevation model (https://dds.cr.usgs.gov/
srtm/version2_1/SRTM30/; last accessed March 14, 2019).
Seven sister pairs of bumblebee species, belonging to seven
subgenera, were compared with respect to rates of molecular
evolution and elevation.

First, we edited the gff file of B. terrestris
(GCF_000214255.1_Bter_1.0_genomic.gff) downloaded from
the National Centre for Biotechnology Information (NCBI)
RefSeq assembly database, only keeping the coding sequence
(CDS) of the longest exon of each gene. We then extracted
the CDSs (CDS-L) with the gffread program from the Cufflinks
package (Trapnell et al. 2010) using the gff file and the geno-
mic assembly (GCF_000214255.1_Bter_1.0_genomic.fna).

Table 1. Branch Lengths, Nonsynonymous (dN), Synonymous (dS), and dN/dS Ratios for High- and Low-Elevation Bombus Species.

Group Species NUC MIT

Length dN dS dN/dS Length dN dS dN/dS

High elevation B. asiaticus 0.00913 0.00110 0.00786 0.14035 2.40887 0.02487 1.19214 0.02086
B. ladakhensis 0.01054 0.00130 0.00900 0.14430 1.79839 0.01922 0.88297 0.02177
B. kashmirensis 0.00954 0.00114 0.00824 0.13814 3.37945 0.03769 1.64224 0.02295
B. lepidus 0.02149 0.00283 0.01790 0.15794 2.61395 0.02799 1.28283 0.02182
B. lucorum 0.00600 0.00076 0.00507 0.14960 1.24106 0.01370 0.60463 0.02266
B. personatus 0.01033 0.00123 0.00895 0.13685 1.53831 0.01768 0.74190 0.02383
B. supremus 0.01667 0.00205 0.01426 0.14346 1.97232 0.02328 0.94470 0.02464

Low elevation B. sibiricus 0.00939 0.00115 0.00803 0.14352 2.63253 0.02838 1.28988 0.02200
B. pyrosoma 0.01448 0.00184 0.01221 0.15101 2.94224 0.03046 1.45514 0.02093
B. breviceps 0.01447 0.00177 0.01240 0.14247 3.51815 0.03937 1.70821 0.02305
B. impatiens 0.02411 0.00319 0.02003 0.15933 4.30636 0.04482 2.12729 0.02107
B. terrestris 0.00724 0.00090 0.00617 0.14554 1.71056 0.01957 0.82593 0.02370
B. melanurus 0.01124 0.00132 0.00978 0.13454 2.13841 0.02271 1.05144 0.02160
B. bicoloratus 0.02201 0.00289 0.01833 0.15785 4.58913 0.04984 2.24455 0.02221

NOTE.—NUC, concatenated nuclear sequence; MIT, concatenated mitochondrial sequences.

Table 2. Mean Branch Lengths, dN, dS, and dN/dS ratios of High- and Low-Elevation Species.

Sequence Index High Elevation Low Elevation Statistics (df 5 6)a

NUC Length 0.01196 6 0.00528 0.01471 6 0.00630 t 5 23.864, P 5 0.008
dN 0.00149 6 0.00071 0.00187 6 0.00087 t 5 23.732, P 5 0.010
dS 0.01018 6 0.00436 0.01242 6 0.00513 t 5 23.885, P 5 0.008
dN/dS 0.14438 6 0.00735 0.14775 6 0.00887 t 5 21.454, P 5 0.196

MIT Length 2.13605 6 0.72434 3.11963 6 1.07576 t 5 23.615, P 5 0.011
dN 0.02349 6 0.00787 0.03359 6 0.01137 t 5 23.889, P 5 0.008
dS 1.04163 6 0.35518 1.52892 6 0.53026 t 5 23.548, P 5 0.012
dN/dS 0.02265 6 0.0013 0.02208 6 0.00101 t 5 1.044, P 5 0.337

NOTE.—NUC, concatenated nuclear sequence; MIT, concatenated mitochondrial sequences. Values are given as mean 6 SD.
aTwo-tailed paired-sample t-tests for log transformed mean differences.
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Second, we translated CDS-L into peptide sequences (PEP-L)
using MEGA (Kumar et al. 2016). With PEP-L as query sequen-
ces, we used TBlastN from the BLAST program package
(Altschul et al. 1997) and seqtk (https://github.com/lh3/seqtk;
last accessed March 14, 2019) to determine and extract po-
tential homologous sequences (plus 1,000 bp of upstream/
downstream regions). Third, we extracted the CDS region of
the potential homologous sequences using the Exonerate
program (Slater and Birney 2005). Finally, we extracted
CDS-L and PEP-L of each species and identified and aligned
the orthologous genes successively using the programs
InParanoid (Remm et al. 2001), MultiParanoid (Alexeyenko
et al. 2006), MACSE (Ranwez et al. 2011), and PRANK
(Löytynoja and Goldman 2005), as previous described (Lin
et al. 2014).

The 13 coding genes in the mitochondrial genome were
extracted and aligned manually. We downloaded a mito-
chondrial genome from GenBank (accession number:
KT368150.1) and extracted the 13 coding genes. Using each
coding gene as the query sequence, we identified and
extracted homologous sequences from the other 13 species
with the TBlastN program. We then aligned each of the 13
genes manually in MEGA.

All the aligned nuclear and mitochondrial sequences were
concatenated into two alignment sets (supplementary tables
S4 and S5, Supplementary Material online). The substitution
saturation of each of NUC and MIT was tested manually using
DAMBE (Xia 2013). We used maximum likelihood with
CODON models for phylogenetic tree reconstruction be-
cause they are thought to be biologically more realistic
than other substitution models for protein-coding se-
quence evolution (Gil et al. 2013; Galinskaya et al.
2014). IQ-TREE (Nguyen et al. 2015) was used to recon-
struct trees with 1,000 bootstrap replicates. The
ModelFinder (Darriba et al. 2012; Kalyaanamoorthy
et al. 2017) program was automatically invoked by IQ-
TREE to select the best-fitting substitution model for
each alignment according to the Bayesian information
criterion. The root setting with outgroup taxa does not
influence the topology of ingroup taxa. In order to avoid
loss of information in the processes of orthologous gene
identification between the ingroup and outgroup, we did
not use outgroup taxa in the reconstruction. Finally, the
branch length as well as the tip age for each species was
directly read from the phylogenetic trees. The “several x
ratio” branch model (model ¼ 2) in CODEML in the
PAML package (version 4.9h) was used to calculate dN/
dS (Yang et al. 2000). The 14 external branches corre-
sponding to the species were viewed as different fore-
grounds, whereas all the internal branches were viewed
as a common background (supplementary table S6,
Supplementary Material online). The prior branch lengths
generated by IQ-TREE were used with the fix_blength¼ 3
(proportional) set.

Statistical analyses were performed using SPSS. Several data
sets deviated from normal (one-sample Kolmogorov–
Smirnov test) and therefore, in order to be consistent, all
branch lengths, tip ages, dN, dS, and dN/dS were natural

logarithmic (Ln) transformed. The two-tailed paired-samples
t-test was used to compare means of each index between the
high- and low-elevation species. The Spearman correlation
test was performed to test the relationship between the tip
ages and their corresponding mean elevations.

Supplementary Material
Supplementary data are available at Molecular Biology and
Evolution online.
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