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Abstract

Shape is data and data is shape. Biologists are accustomed to thinking about

how the shape of biomolecules, cells, tissues, and organisms arise from the

effects of genetics, development, and the environment. Less often do we con-

sider that data itself has shape and structure, or that it is possible to measure

the shape of data and analyze it. Here, we review applications of topological

data analysis (TDA) to biology in a way accessible to biologists and applied

mathematicians alike. TDA uses principles from algebraic topology to compre-

hensively measure shape in data sets. Using a function that relates the similar-

ity of data points to each other, we can monitor the evolution of topological

features—connected components, loops, and voids. This evolution, a topologi-

cal signature, concisely summarizes large, complex data sets. We first provide

a TDA primer for biologists before exploring the use of TDA across biological

sub-disciplines, spanning structural biology, molecular biology, evolution, and

development. We end by comparing and contrasting different TDA approaches

and the potential for their use in biology. The vision of TDA, that data are

shape and shape is data, will be relevant as biology transitions into a data-

driven era where the meaningful interpretation of large data sets is a limiting

factor.
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1 | INTRODUCTION: SHAPE IS
DATA AND DATA IS SHAPE

Shape is foundational to biology. Observing and docu-
menting shape has fueled biological understanding, and
from this perspective, it is also a type of data. At a glance,
illustrations can reveal insights into relatedness and
development. Ernst Haeckel's Kunstformen der Natur

focuses on symmetry, structure, and pattern revealing dif-
ferences and similarities in form throughout life. Shape
can be documented with technology. The cyanotypes of
Anna Atkins, a pioneer in photography, capture the
exquisite branching patterns of algae while the micro-
scopic renderings of Santiago Ramón y Cajal exposed the
hitherto unknown realms of arborization within the
brain. These glimpses into hidden realms rely on a shared
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ability to recognize patterns in experimental data: to look
at a picture, see shape and form, and to extract meaning
and latent information.

Beyond observation and documentation, we can mea-
sure shapes, just as we analyze data. D'Arcy Thompson
in his On Growth and Form used sheer mapping to line-
arly transform biological shapes between each other and
described allometry, the relative growth of parts of an
organism to the whole. Geometric morphometrics allows
us to define distances between shapes by quantifying sim-
ilarity and difference using landmarks, that is, sets of
corresponding Cartesian coordinates1 (Figure 1). Sets of
landmarks can be superimposed by translating, rotating,
scaling, and reflecting to minimize the overall distance of
shapes to each other.2 The process of superimposing sets
of coordinates, known as Procrustes analysis, allows a
metric space—the overall distance measuring the similar-
ity of any pair of shapes—to be calculated and statistics
performed. In the absence of a set of corresponding coor-
dinates, the outline of a shape can be measured using
Fourier analysis.3 A Fourier series is a summation of sine
waves that approximate a complex wave. The discrete
movements from pixel-to-pixel while traversing the
closed contour (outline) of a shape can be analyzed using
Fourier-based approaches, describing the shape as a har-
monic series, a summation of wave-like elliptical contri-
butions to the overall shape.4 Both geometric and
Fourier-based approaches quantify shape, exposing
genetic, developmental, evolutionary, and environmental
forces that sculpt the organismal form.5

Rarely do a finite set of landmarks capture the
entirety of form that we see with our eyes, and often
shapes lack corresponding points to define landmarks. A
Fourier decomposition of a closed contour accurately
recapitulates the outline of a shape, but how do we define
features beyond silhouettes: pattern, texture, structure,
and architecture? There are multitudes of shapes that
defy definition using coordinates or outlines. Branching
architectures—vasculature, trees, hyphae—not only
abound in nature, but are the basis of abstract shapes,
such as evolutionary trees.6 Networks (or in mathemati-
cal terms, graphs) are another abstract shape that can
represent gene regulation, protein interactions, or

FIGURE 1 An example of geometric morphometrics. A,

24 landmarks (orange dots) and pseudo-landmarks (6000 evenly

spaced vertices between landmarks, magenta dots) on grapevine

leaves of Cabernet sauvignon (orange), Chardonnay (blue), and

Chasselas cioutat (green) varieties. Every grapevine leaf has five

major veins, allowing corresponding landmarks to be placed

throughout every leaf. B, Corresponding vertices allow replicates to

be superimposed on each other, and C, mean leaves calculated

using Procrustean methods that translate, rotate, reflect, and

scale. D, A principal component analysis (PCA) and other statistics

can be performed on the Procrustes-adjusted vertices (95%

confidence ellipses for each variety are shown)
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metabolism in biology. Typically, we focus on individual
nodes (or vertices, such as genes, proteins, or metabo-
lites) but we could also analyze the overall shape of such
a network (graph). We lack methods in biology to com-
prehensively describe the abundance of forms around us,
from the molecular to organismal levels. We cannot
extract the information we see with our eyes; there is a
gulf between the biological information we know exists
and the amount we can quantify.

Starting with a set of vertices, David Kendall in his
Shape manifolds, Procrustean metrics, and complex projec-
tive spaces7 describes a theory of shape upon which geo-
metric morphometrics is built:

As topologists already have a theory of
‘shape’, I must apologize for using the word
again with an entirely different meaning. In
this paper ‘shape’ is used in the vulgar sense,
and means what one would normally expect
it to mean.

We return to sets of vertices and rather than describe
shape in the vulgar sense, we focus on topology. Starting
with a metric space, that is, data in which the distance of
every point to every other is known, topological data
analysis (TDA) allows the shape and structure of data to
be measured.8 Data with distance can be points, pixels, or
voxels; atoms, amino acids, or biomolecules; nuclei, cells,
or organisms; or genetic and correlative distances. Not
only can we use TDA to extract data from the shape, but
also inherently TDA assumes that data have a shape. The
concept of shape is only limited by the nature of the
underlying data, and when considered in the abstract
sense, the ability to measure shape becomes a powerful
data analysis tool that can be applied to virtually any
data set.

Here, we provide a middle ground between mathe-
matics and biology: for mathematicians, a review of ways
TDA has been successfully used to study biology and for
biologists, an accessible introduction to topological think-
ing. We begin with examples from structural biology,
evolution, cellular architecture, and neurobiology that
lend themselves to simple but powerful TDA representa-
tions. We then examine shapes, focusing on the outlines
of leaves, and the use of Euler characteristic curves as
convenient topological signatures that enable statistical
analyses. Next, we highlight ways that TDA can measure
branching architecture and the use of bottleneck distance
to calculate the overall topological similarity between
objects. We end with a discussion about future trends in
TDA: measuring dynamic shapes and time series as well
as using topology to convert data to graphs representing
its structure.

2 | TDA: A PRIMER

2.1 | Vietoris-rips complex

Topology is the branch of mathematics concerned with
mathematical properties that are preserved under contin-
uous transformations. With some mathematical frame-
work, described below, topology offers powerful tools
that can precisely describe the overall shape and struc-
ture of the data encoded by a given network. Informally,
we can think of the topology of a network as the collec-
tion of its features that remain unchanged whenever the
data “varies smoothly.” For example, scaling, centering,
translation, and rotation are all smooth operations that
do not alter the topology (ie, the core shape) of our data.
However, partitioning, merging, and attaching are not
smooth operations and may significantly alter topology.

In a mathematical context, networks are referred to
as graphs. Nodes or points are referred to as vertices,
while links between nodes as edges. We can generalize
the idea of graphs by adding triangles that link edges or
even tetrahedrons that link triangles. More formally, we
can think of our data as composed of different building
blocks, called simplices. Vertices, edges, and triangles are
zero-, one-, and two-dimensional simplices, respectively.
A collection of multiple simplices makes a simplicial
complex, or complex, for short. For example, in Figure 2
we have a complex made of vertices, edges, and triangles.

We can describe the topology of a complex based on
the number of its connected components, loops, and
voids. For example, in Figure 2 we can see two distinct,
separate pieces, each of them being a connected compo-
nent. We see that five edges in the left component form
the frame of a pentagon. We say then that these five
edges form a loop. Also on the left, we see a collection of
four triangular faces that form a tetrahedron. We can
assume that this tetrahedron is hollow so that the com-
plex contains a void.

Many times, our data or network cannot be immedi-
ately thought of as a complex. However, we can generate
a complex based on a collection of data points and a
notion of similarity or distance between these points. For-
mally, a collection of individual points and positive dis-
tances between every pair of points is referred to as a
metric space. The Vietoris-Rips (VR) complex is a

FIGURE 2 An example of a complex. It has two connected

components, one loop, and one void
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versatile method to define a complex from a network.
The VR complex starts with data in a metric space and a
fixed nonnegative parameter r, often referred to as a
radius. If two vertices are close enough, that is, the dis-
tance between them is less than r, then the VR complex
will have an edge between those two vertices. Similarly,
if there are three vertices close enough, that is, the dis-
tance between every pair of them is less than r, then the
VR complex will have a triangle between those three ver-
tices. Following these two rules, every time we have a tri-
angle, we also have the three edges that make the frame
or border of such a triangle. Conversely, every time a trio
of vertices form a triangular frame, the VR complex will
also contain the corresponding triangle.

2.2 | Walking through an example

Notice that the same data and metric can produce differ-
ent VR complexes by using a different parameter r each
time. We can consider a sequence of increasing radii and
its corresponding sequence of VR complexes. First,
observe that the distance between any two different data
points is always a positive quantity. If we start with r = 0,
then the corresponding VR complex will consist solely of
separate vertices, one for each data point. As the radius r
increases, the corresponding VR complex will now have
edges that link the pairs of vertices that are close to each
other. If r keeps increasing, we may then have triangles
that link trios of close vertices.

FIGURE 3 An example of two different Vietoris-Rips complexes with resulting persistence barcodes. A, Evolution of a VR complex

with five vertices as Euclidean distance increases. B, Persistence barcode corresponding to topological changes in the previous VR

complex. C, Alternative visualization of the persistence of barcode B as a dendrogram. D, Alternative visualization of the persistence of

barcode B as a tree. E, Moving one vertex in A yields a different VR complex as Euclidean distance increases. F, Persistence barcode

corresponding to topological changes in the previous complex E. G, Alternative visualization of the persistence barcode F as a

dendrogram. H, Alternative visualization of the persistence barcode F as a tree
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For example, consider the five data points in
Figure 3A, which we can take as vertices of a complex.
The distance between the points will be simply the Euclid-
ean distance. Consider seven different positive radii. For
the first three radii, the shape remains the same: just five
separate components. Suddenly, as soon as we increase
the radius a fourth time, four pairs of vertices are finally
close to each other so we draw edges between them to
form a square. There is also a fifth vertex that remains iso-
lated, as it is still distant from the rest. When the radius
increases a fifth time, the isolated vertex is finally close
enough to one of the square vertices. We draw one more
edge at this point. The radius increases a sixth time so that
the pair of diagonal vertices in the square is close enough.
We then draw the diagonals of the square, which also
draws the four possible triangles in the square. The radius
finally increases a seventh time, so that the fifth vertex is
closer to another vertex in the square. We then add an
edge and a triangle including this fifth vertex. As the
radius keeps increasing beyond this, the overall shape of
the VR complex will not have any significant changes: it
will always remain a single component with no holes.

2.3 | Representing persistent features

All the observations described above can be summarized
using two topological features: connected components
and holes. For connected components, we need to keep
track of which snapshot each connected component
appeared (was born) and in which snapshot two separate
components merged (died). Similarly, we can keep track
of when each hole is formed (born), and when it is filled
(dies). These life spans of topological birth and death can
be drawn as life bars, the length of which indicates for
how long a component persisted before it merged or how
long a hole persisted before being filled. Putting all the
bars together, we obtain a persistence barcode, in which
each bar corresponds to a topological feature and the hor-
izontal axis indicates at which radius value these features
are born and die. Note that the vertical order of these life
bars is irrelevant.

For the persistence barcode in Figure 3B, we observe
that we start with five different vertices, all of which
remain separate (the components persist) until the fourth
radius. By the fourth radius, we only have two connected
components: one square and one distant vertex. We also
observe the birth of the hole in the square (indicated in
blue). By the fifth radius, the distant vertex has merged
with the square so we have only one connected compo-
nent. By the sixth radius, we observe that the square hole
has been filled with triangles. From this point onwards, as
radius keeps increasing, our VR complex will be

essentially a single connected component with no holes.
We say then this component dies at infinity and it is repre-
sented by the continuing red arrow. We can alternatively
display the persistence of components and holes as a den-
drogram (Figure 3C) or a tree (Figure 3D), keeping track
of which components merge. A particularly useful display
of persistence barcodes are persistence diagrams, as illus-
trated in Figure 4. Simply, the birth start point and death
endpoint of a bar in a persistence barcode are transformed
as x-y coordinates in a death-vs-birth plane in a persis-
tence diagram. Persistence diagrams have a convenient
visual and mathematical representation which has
allowed further theoretical developments in TDA.

Barcodes are a useful way to illustrate and summarize
prominent topological features, such as the distant fifth
vertex or the hole enclosed by a square. Consider now
“obstructing” this hole by moving the distant fifth vertex
inside the square, as in Figure 3E. We observe in
Figure 3F-H a different persistence barcode, dendrogram,
and tree, respectively. The barcode now shows that all
five vertices merge into a single connected component at
earlier stages compared to Figure 3A. Also notice that we

FIGURE 4 Translating a persistence barcode into a

persistence diagram. Birth and death times in the persistence

barcode are interpreted as x-y coordinates on a death-vs-birth

plane. This planar display is referred to as a persistence diagram
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have now filled the square's hole, so that the barcode in
Figure 3F registers no holes, unlike Figure 3B.

2.4 | Filters: Beyond spatial distances

As mentioned before, the VR complex is constructed
from a set of vertices and a sense of distance or similarity
between these. Sometimes, we refer to such a measure of
similarity as a filter function since changing the maxi-
mum value of this function filters when the edges
between vertices are observed. For example, in Figure 3A
and E, our filter function was the Euclidean distance
between vertices. Given a filter function, we can consider
a series of snapshots, wherein each snapshot, we consider
larger and larger filter values, called thresholds. Going
back to Figure 3A and E, each snapshot considers
increasing radius lengths around each vertex. In this
case, we say that our collection of data points have been
filtered by Euclidean distance with six thresholds. Notice
that if we increase the number of thresholds, we may be
able to capture finer topological changes which may, in
turn, produce richer persistence barcodes.

Filter functions are extremely flexible and we can use
more than spatial distance. For example, consider a gray
scale image. We will consider each pixel a separate vertex
and use an intensity filter, resulting in the distance
between two pixels simply being the difference of their
intensities. We can then consider each possible intensity
value as a threshold. Figure 5 shows the persistence
barcode of connected components from an X-ray com-
puted tomography (CT) scan of an orange where we con-
sider more than 50 000 threshold values. We can look

more carefully at some select snapshots in Figure 5A. In
each snapshot, we only display the voxels (vertices) whose
intensity value is less than the value of the threshold. At
30 000, we only observe the contour of the exocarp with
some separate bits of rind. At 35 000, more bits (connected
components) of rind appears, and some of these rind bits
merge into each other. Additionally, we observe the
appearance of the pith. By 40 000, we have three clear sep-
arate connected components, namely exocarp, rind, and
pith. By 45 000, the rind and the exocarp have merged
while numerous bits of endocarp have appeared. By
50 000, the appearance of the endocarp has merged the
pith to the exocarp, yielding a single connected orange.

3 | APPLIED TOPOLOGY:
EXAMPLES FROM STRUCTURAL
BIOLOGY, EVOLUTION, CELLULAR
ARCHITECTURE, AND NEURAL
NETWORKS

The VR complex framework introduced above, filtering
on the Euclidean distance between data points, can be
used to study a wide range of complex phenomena in
biology. A metric space might be the 3D coordinates of
atoms in a biomolecule like a protein or folded RNA,
could represent species or virus variants separated from
each other by genetic distance, might be defined by the
nuclei of cells in a cross-section of tissue, or be a correla-
tion network of neural activity. Below, we provide exam-
ples where the VR complex has successfully been applied
to structural biology, evolution, cellular architecture, and
neural networks (Figure 6A-C).

FIGURE 5 An example of a persistence barcode. A, Snapshots of an X-ray CT image of an orange. Only the pixels with intensity lower

than indicated are displayed. B, Persistence barcode of connected components of such an image. Observe that the barcode distinguishes the

existence of exocarp, rind, and pith as separate components at lower intensities
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FIGURE 6 Applications of topological data analysis (TDA) to biology. A, Structural biology. A diagram of RNA secondary structure

(left; solid lines covalent bonds, dashed lines hydrogen bonds). Increasing radii of vertices (middle, right; blue points) are used to visualize

filtration on Euclidean distance. As radii merge, connected components die. Purple lines indicate the formation of loops that eventually fill

in as the radius threshold increases. B, Evolution. A plot showing the genetic distance of samples (left). As radius threshold value increases

(middle, right) the birth and death of connected components (blue) represent vertical evolution (a tree) while that of loops (purple)

horizontal evolution events (such as hybridization, gene transfer, or recombination; modified from Reference 13). C, Cellular architecture.

Modification of a part of the original Gleason guide to prostate cancer changes in cellular architecture (left). Nuclei (blue) increase in radius

(middle, right) and connected components (blue) and loops (purple) are born and die. D, Branching architecture. A theoretical tree where

the filter is the geodesic distance to the base (blue). Branching tips are separate connected components that merge as the filter progresses to

the base of the tree (left to right). E, Mapper. Point cloud of a hand where the filter is the axes from the wrist to fingertips (left). Cover

intervals (bars on top of the color scale) and their overlap (gray bars) divide points into bins (middle). Points that cluster together over each

cluster are assigned to a vertex, and if the points are shared between clusters in an overlap, then they are assigned to an edge connecting the

corresponding vertices (modified from Reference 42)
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3.1 | Structural biology

This prototypical example of TDA—a metric space con-
sisting of points where the filter is Euclidean distance—
can be extended to biomolecules, where the points are
atoms or residues (Figure 6A). Proteins are comprised of
a linear polymer of amino acids. The primary structure of
a protein is the sequence of amino acids. The polypeptide
chain of a protein folds upon itself, stabilized by interac-
tions between amino acids, first forming a secondary
structure (local structures such as alpha helices and beta
sheets formed by hydrogen bonds in the peptide back-
bone) followed by the tertiary structure. The overall 3D
structure of a protein is determined by the interactions of
amino acid side chains within the protein. This overall
structure, or conformation, of a protein is the basis of
protein function: metabolism, transport, signaling, struc-
ture, and movement, among many others. The conforma-
tion of a protein can change depending upon binding
ligands, signaling, or the chemical environment.

Kovacev-Nikolic et al.9 use TDA to distinguish the
open and closed conformations of maltose-binding pro-
tein (MBP). Each of the 370 amino acids of MBP is
treated as a vertex, its 3D coordinates reflecting the spa-
tial location of the residue. Euclidean distance is used to
create a filtered VR complex for each protein studied. As
the VR complex evolves, persistence barcodes record the
birth and death of connected components, loops, and
voids, which within the context of the tortuous folding of
a protein backbone, yield complex topological signatures
unique to distinct conformations. These persistence
barcodes are transformed into persistence landscapes10

that allow statistics, hypothesis testing, and machine
learning to be applied to differentiate the shapes captured
by topological signatures. The authors successfully differ-
entiate open- and closed-conformation states of MBP.
They also note that the active site residues (the amino
acids responsible for ligand binding) lie at the edge of the
most persistent loop of the VR complex, indicating that
TDA is sensitive to the relationship between structure
and function. Beyond structure, electrostatic and other
chemical properties of atoms can be incorporated into
topological signatures that, when analyzed using
machine learning methods, can predict protein-ligand
binding affinities.11,12

3.2 | Evolution

Evolution is typically depicted as a tree, which in mathe-
matical terms is an acyclic graph (a graph with no loops).
Each node and its descendant branches represent a com-
mon ancestor of a taxonomic group and its members as a

hierarchy of similarity or relatedness. Evolutionary trees
depict vertical evolution, random mutations that accumu-
late within a specific lineage that lead to phenotypic
changes. However, genetic material can be exchanged
between lineages as well. This process, known as horizon-
tal evolution, is depicted as a reticulate graph (with
loops), in which genetic information is exchanged by
recombination, hybridization, horizontal gene transfer,
or viral reassortment. Extensive phylogenetic theory
models vertical evolutionary processes using trees, but
the study of horizontal evolution is often limited to
detecting reticulate phylogenetic events, and a theory
unifying vertical and horizontal evolution has remained
elusive.

Chan et al.13 reconsider evolution from the perspec-
tive of topology. Using influenza as an example, they
begin by considering that every sample has a genetic dis-
tance to every other, a metric space. From this genetic
space, they construct a VR complex, just as in the previ-
ous examples (Figure 6B). The resulting persistence
barcode for connected components can be converted into
a dendrogram, which is the phylogenetic tree that biolo-
gists are accustomed to. Influenza viruses extensively
exchange genetic material in a process known as
reassortment. If a persistence barcode is generated for
loops, then this represents a topological signature of hori-
zontal evolution. For example, a lower bound of recombi-
nation rate can be calculated from the number of loops
(recombination or reassortment events) for a given time
frame (in this example, the filter of genetic distance
which can be calibrated to time). In higher dimensional
spaces, voids can be detected, and the authors show that
persistence barcodes for voids detect more complicated
reassortment events, such as the triple reassortment that
gave rise to the 2013 avian influenza outbreak and com-
plex reassortment events within HIV. Using loops as an
estimator of recombination rate has been extended to
large-scale genomic analysis14 and humans,15 expanded
upon by evaluating different topological features,16

applied to coalescent theory to estimate ancestral recom-
bination events,17 and used to study lateral gene transfer
of protein families and its implications for the evolution
of antibiotic resistance.18

3.3 | Cellular architecture

Tissues are comprised of cells, the organization of which
is determined by cell division, differentiation, growth,
movement, migration, and death. Within a tissue, each
cell takes up a finite volume, often in close contact with
neighbors. When a tissue is finely cross-sectioned and
microscopically examined, a tessellated array of cells

AMÉZQUITA ET AL. 823



emerges: an aggregated mixture of parenchyma, stroma,
and glands (Figure 6C). Staining can differentiate nuclei,
cytoplasm, and extracellular matrix. To a trained eye,
these complex patterns can indicate disease or abnormal-
ities, but the process takes time and is subjective. The
emergent organization of cells reflects developmental
processes as well. TDA provides an objective way to clas-
sify these patterns, potentially removing the subjectivity
of histopathological diagnosis enabling a rigorous way to
define cellular anatomy.

Lawson et al.19,20 explore the cellular architecture of
prostate cancer. The Gleason grading system is a one to
five scale that is a powerful prognostic indicator based on
increasingly neoplastic tissue organization of the pros-
tate: a uniform cellular architecture becomes disrupted
forming glands that eventually form solid cell types. Tis-
sue sections are stained with blue-purple hematoxylin
and pink eosin which indicate nuclei and cytoplasm/
extracellular matrix, respectively. The authors use these
stains to isolate cell nuclei from surrounding structures
(Figure 6C). They then use thresholding as a filter on his-
tological images of prostate cancer to create binary
images, where connected components and loops are
recorded as persistence barcodes. Creating vectors of the
most persistent features, they use a variety of statistical
techniques including principal component analysis
(PCA), hierarchical clustering, and t-distributed stochas-
tic neighbor embedding (t-SNE) to successfully classify
images according to the Gleason grading system. The
strategy of reducing cells to data points of a VR complex
to classify cellular architecture works for predicting epi-
thelial organization from cell centroids21 and in other
cancers as well.22,23

3.4 | Neural networks

The complex architecture of neurons and their numerous
connections in the brain, formally referred to as the
connectome, is of particular interest. The architecture of
the brain, its activity, and connectivity, is usually pres-
ented as a square pair-wise correlation matrix where each
row (and column) represents different neurons or
encoding brain regions when the subject is performing a
fixed task. Usually, negative correlations are treated as
zero, and the rest of matrix entries are thresholded so
that only neurons or regions with strong correlation are
considered connected. We can then consider a metric
space where the points are different neurons, anatomical
regions of interest, or imaging voxels. The distance
between these points is given by the correlation between
them (or one minus correlation to be mathematically
consistent). With this setup, it is possible to produce VR

complexes and persistence diagrams that summarize the
brain network model.

Observing the change in the number of connected
components, Lee et al.24 differentiate the abnormal glu-
cose metabolism associated with neuronal activity
between attention-deficit hyperactivity disorder (ADHD)
children, autism spectrum disorder (ASD) children, and
pediatric control subjects. On the other hand, by keeping
track of persistent loops, Petri et al.25 distinguish effects
of psilocybin on human brain functional patterns, while
Ibañez-Marcelo et al.26 highlight that mental imagery
shares the same neurophysiological bases with perceptual
and motor experience. TDA has also revealed previously
ignored anatomical loops and voids in the connectome,
which might explain both spatial and nonspatial behav-
iors both in mice27 and humans.28

4 | SHAPE, TEXTURE, AND THE
EULER CHARACTERISTIC CURVE

The examples above rely on point-based representations
of biological data to which a filtered VR complex on
Euclidean (or genetic) distance produces zero-
dimensional (connected components) or one-dimensional
(loops) persistence barcodes. The persistence of the
barcodes, representing prominent topological features, is
the focus of analysis. However, the concept of the filter
can be extended to any real values that can be associated
with structures: for instance, different choices of metric
space between data points, or even using filter functions
based on the data points instead of the edges between the
data points. For the same data, many filters might be
applied, yielding a new lens to reveal different facets of
shape. Persistence barcodes can always be calculated, but
there are other ways to record topological signatures
as well.

Below, we first describe the Euler characteristic curve
(ECC) as a convenient complement to persistence
barcodes to capture topological signatures that can be
used with traditional statistical methods. We then
describe TDA frameworks to measure shape (in the tradi-
tional sense of a closed contour) focusing on leaf outlines
and the usefulness of ECCs to measure genetic and envi-
ronmental effects that determine phenotype.

4.1 | ECC

The Euler characteristic, often denoted by the Greek let-
ter χ, was originally defined by the equation:

χ =# Verticesð Þ−# Edgesð Þ+# Facesð Þ:
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The Euler characteristic is the first example of a topo-
logical invariant; that is, a quantity that can be calculated
and returns the same value on many different representa-
tions of the same topological shape. For convex polyhe-
dra (eg, the Platonic solids), the Euler characteristic
always equals two since all platonic solids are topologi-
cally spheres. For example, a tetrahedron has 4 vertices,
6 edges, and 4 faces (4 − 6 + 4 = 2); a cube has 8 vertices,
12 edges, and six faces (8 − 12 + 6 = 2).

What is even more surprising is that this quantity can
also be obtained by counting some intrinsic properties of
a given shape. The Euler-Poincaré formula establishes
that the formula above is the same as:

χ =# Connected Componentsð Þ−# Loopsð Þ+# Voidsð Þ:

So, since all convex polyhedra have one connected
component and one void, the Euler characteristic is still
seen to be 1 − 0 + 1 = 2. Then, of course, it is easier to
see the value of the Euler characteristic for other struc-
tures. For example, a doughnut, mathematically known
as a solid torus, has one connected component, one loop,
and no voids so its Euler characteristic is 1 − 1 + 0 = 0.

If the Euler characteristic is applied to TDA, by keep-
ing track of the number of building blocks of our simpli-
cial complex, we can indirectly summarize its topological
features.

Similar to persistence barcodes, given a data set, for
each sample, we define vertices, a filter function, and
many thresholds. For example, consider a 3D (voxel-
based) image of a barley seed (Figure 7A). Each voxel is a
vertex in our simplicial complex. One type of filter we
can apply is the 3D axes of the coordinate system, which
is oriented with respect to the depth, width, and height of
the seed. For each of these filters, the voxels take the real
number value of their coordinate for the particular axis.
We then choose many thresholds, or equivalently, we
choose how many times to “slice” through the seed along
the given axis. Each time we take a slice, we compute the
Euler characteristic of the seed. We continue to add slices
one-by-one and recalculate the Euler characteristic each
time as we continue through the axis, which is the filter
function. Adding all the slices together yields the original
seed. Finally, we summarize our computation as an ECC
(Figure 7B), where the x-axis is the threshold while the y-
axis is the Euler characteristic of the complex at that par-
ticular threshold value.

Persistence barcodes tend to be notoriously expensive
and difficult to compute since they must keep track of all
the possible component merges and hole fillings for
every threshold value. Most of the available software to
compute persistence barcodes is incapable of handling
truly large data sets effectively, especially when each

sample consists of millions of vertices. Euler characteris-
tic curves are a convenient way to summarize a topologi-
cal signature of an object as a sequence of numbers, a
curve, or a numerical vector. Computing and storing
these vectors is quite efficient, and it is especially conve-
nient since it allows us to perform standard statistical
analysis techniques and test hypotheses about the shape
of our data.

4.2 | Shapes and textures

Sometimes leaves have corresponding coordinates, as in
the case of grapevine where every leaf has five major
veins and numerous landmark features5 (Figure 1). In
these instances, geometric morphometrics is a powerful

FIGURE 7 Three different Euler characteristic curves (ECCs)

from three different filters. A, X-ray CT scan of a barley seed. The

symmetry of the seed encourages a filter by depth, width, and

height values, that is, the three main axis directions with respect to

the seed scan. Slicing the barley seed in different directions

produce, B, different corresponding ECCs. Notice that the three

curves end with Euler characteristic equal to one, which

corresponds to the Euler characteristic of a solid sphere
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tool. Besides the base of the petiole and tip, though, most
leaves do not have coordinates that correspond in a way
that analysis by geometric morphometrics is possible. To
compare the outlines of 182 707 leaves from 141 plant
families and 75 sites throughout the world, Li et al.29

used TDA. The pixel outline of each leaf is treated as a
point cloud. The filter applied to each pixel is a Gaussian
density estimator, sensitive to the number of neighboring
pixels around each pixel. Straighter edges of the leaf
blade will have low-density values while pixels in serra-
tions, lobes, or other undulations will have higher values.
The number of connected components is monitored and
the respective ECCs are computed.

For so many leaves, an ECC curve serves as a suc-
cinct, computationally feasible topological signature that
allows downstream statistical analyses. Li et al.29 are able
to compute a morphospace for all leaves (which reveals
not only the leaf shapes that exist, but those that do not,
either because of developmental constraint or negative
selection) and use ECCs to predict plant family and loca-
tion. Others have used the same filter and ECCs to deter-
mine the genetic basis of leaf shape in apple30 and
tomato31 as well as the genetic basis of cranberry shape.32

ECCs are sensitive enough to complex and subtle
changes in shape to measure the effects of rootstock and
climate on grapevine leaf shape.33 ECCs have also been
used to measure the hairiness and shape of spikelets
(arrangements of grass flowers)34 and patterns of vegeta-
tion from satellite imagery.35

5 | BRANCHING ARCHITECTURES
AND BOTTLENECK DISTANCES

5.1 | Persistence diagrams

The Euler characteristic allows us to monitor a topologi-
cal summary as a function of the filter we choose. The
resulting curve enables statistical analyses. In some cases,
we might not want a summary, though; we may want to
keep track of each topological feature separately, as we
do in a barcode. The bottleneck distance is a convenient
way to determine the overall topological similarity of two
barcodes with each other. If we compute the bottleneck
distance of all barcodes to all other barcodes, we can
determine the overall topological similarity of samples to
each other, in which case statistical analyses can be per-
formed. To understand the meaning of bottleneck dis-
tance, we need a better display of topological information
than persistence barcodes. We thus turn to persistence
diagrams.

As mentioned previously, each topological feature in
the barcode has a birth and death time. Instead of

representing a topological feature with a life bar as in
persistence barcodes, we can simply represent it with a
point in a plane; the x-coordinate of this point is the birth
time of the topological feature, while the y-coordinate is
its death time. All of our topological information is then
displayed in a death-vs-birth plane, referred to as a persis-
tence diagram. Certainly, a topological feature cannot die
before it is born, so all our points will lie above the diago-
nal line. We also agree that the top of the plane will rep-
resent infinite time, for those features that persist until
infinity.

Consider a very simple persistence barcode as shown
in Figure 4. The birth and death times of each life bar are
read as x-y coordinates on the plane below. Observe that
the barcode presents a component that persists until
infinity. Thus, we define an “infinite death time” at the
top of our diagram.

5.2 | Bottleneck distance

For ease of exposition, we will describe bottleneck dis-
tance in terms of persistence diagrams rather than per-
sistence barcodes as they are equivalent. Intuitively,
the bottleneck distance between two diagrams mea-
sures how much change the first sample must undergo
so that its resulting persistence diagram matches the
diagram of the second sample. More formally, think of
bottleneck distance as follows: we overlap the persis-
tence diagrams of two samples, so both diagrams are
actually on the same plane. Next, we are tasked to pair
topological features between the diagrams. Every point
from the first diagram must be either paired to an
unmatched point from the second diagram or matched
with the diagonal. Given a pairing, we define its score
as the maximum distance between pairs. After consid-
ering all possible pairings, the bottleneck distance is
defined as the minimum possible score.

For example, consider the two different persistence
diagrams drawn on top of each other in Figure 8, the first
one is represented with red circles while the second with
blue triangles. In Figure 8A we pair each triangle with
another circle, taking care to match the infinite triangle
with the infinite circle. Observe that one circle is mat-
ched to the diagonal. The score of this pairing is the
length of the longest green, dashed line. A different
pairing is considered in Figure 8B, which in turn pro-
duces a considerably smaller score as the green lines are
all considerably shorter. After considering all possible
pairings between diagrams, we realize that Figure 8B is
optimal in the sense that it produces the smallest score.
The bottleneck distance between these barcodes is then
this minimum score.
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5.3 | Branching architectures

Branching architecture is one example where bottleneck
distance is useful. Traditional morphometric approaches
fail to measure branching, despite it being a common
architectural motif throughout life.6 Li et al.36 measure
the branching architecture of X-ray Computed Tomogra-
phy (CT) scans of grapevine rachises, the branching stem
structure that remains after removing the berries from
the cluster. The filter they choose is a geodesic distance
of each voxel to the rachis base (Figure 6D). The geodesic
distance is the shortest distance between two vertices on
a surface, in this case, the grapevine rachis itself. Starting
with those voxels with the furthest geodesic distance
from the base and filtering towards those closest, if zero-
dimensional features are monitored, connected compo-
nents at the tip of the branching structure are first born
and then die as they merge at their parent node. Con-
nected components continue to arise at branch tips and
die at parent nodes in a hierarchical fashion. Each topo-
logical feature corresponds to a bar as in Figure 3, and
the record of merging can create a dendrogram that reca-
pitulates the branching. There are many filters sensitive
to branching that have been used in both plants and
other organisms.37-41

Branching is an instance where calculating bottle-
neck distance might be preferred to Euler characteristic
curves because the topological features more directly
correspond to the feature of interest (branches). Calcu-
lating the bottleneck distance of each grapevine rachis
to the other36 creates a metric space from which samples

can be hierarchically clustered based on morphology.
Comparing morphological similarity to evolutionary his-
tory, rates of evolution along branches of the phyloge-
netic tree can be modeled. The morphological similarity
matrix calculated from bottleneck distances can also be
compared to traditional measurements (such as the
number of branches, median branch length, and width,
convex hull) and the ability to classify rachises from dif-
ferent species.

6 | THE STRUCTURE OF DATA:
MAPPER AND BIOLOGICAL
NETWORKS

6.1 | Mapper

Topological signatures and TDA outputs—barcodes,
Euler characteristic curves, and bottleneck distances—
measure the shape of data comprehensively but lack a
correspondence to the original data. This is known as the
inverse problem: from data, we can calculate a topologi-
cal signature, but from a topological signature, we cannot
resynthesize the original data. Biological data are noisy,
and if the shape of the underlying structure in data could
be visualized, individual data points that contribute to
the overall shape of data could be isolated and studied in
detail. For this reason, we now turn our attention to the
mapper graph, which does provide some information in
the reverse direction. By delimiting an underlying struc-
ture to our data and assigning correspondence of data

FIGURE 8 Computing the bottleneck distance between two persistence diagrams. A, A possible pairing of points is suggested. Observe

that it produces a large maximum distance between pairs. B, An alternate pairing that yields a considerably smaller maximum distance

between pairs
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points to this structure, complex and noisy data sets are
simplified in a way similar to data reduction techniques.

Mapper is a tool from TDA that skeletonizes and
summarizes the shape and structure of data as a graph.42

The Mapper algorithm is comprised of three main steps.
(a) We choose a filter function on the data (Figure 9A),
this time associated with vertices rather than edges, and
project all data points onto a line according to their filter
function values (Figure 9B). (b) Next, we split the real
line into a fixed number of bins called covers. Each
cover is an interval over the filter and, additionally,
there is an overlap between the covers. (c) Finally, we
cluster the original data points in each of these bins to
form graph vertices. Edges are drawn between nodes in
the mapper graph if two clusters share some data points
(Figure 9C).

Imagine a 3D point cloud of data shaped like your
hand, where the filter function is the distance of each
data point to your wrist42 (Figure 6E). If we created
overlapping intervals, or covers, along this axis, then
points at the fingertips would each form a vertex, and
points towards the base of the fingers would form their
vertices as well. Because there is overlap between the
covers, then vertices along each finger, but not between
fingers, would share points, and we would draw in edges
between these groups of points that would recapitulate
the structure of fingers. The most proximal finger verti-
ces would converge with vertices representing the palm,
as well as vertices of the thumb. In the case of a hand, it
is easy to see how a mapper graph summarizes and

recapitulates the structure of the actual data. When
applied to real-world data, such as volumetric images
like an X-ray CT scan, mapper graphs recapitulate shape
in intuitive ways.43

Let us consider a voxel-based X-ray CT scan of a gall
(Figure 9A), a swollen plant growth induced by an insect
for its benefit. Each voxel is a data point that takes on the
value of the filter function, which in this case is its dis-
tance from the center of the gall. The Mapper algorithm
clusters the data into vertices based on their filter func-
tion value (Figure 9B), and if two vertices share some
voxels between them (based on the cover intervals
assigned and the physical location of the voxels), then
they are connected by an edge. Bigger vertices in the
mapper graph (Figure 9C) correspond to a larger number
of clustered voxels. Thicker edges correspond to a larger
number of voxels in the bin overlap. The color of the ver-
tices corresponds to the average filter function values of
its voxel members. At the bottom of the graph, we can
see a purple cluster corresponding to the core of the gall.
As we move up, we eventually find larger turquoise verti-
ces corresponding to the outer layers of the gall. Notice
the small vertices that stem from these large turquoise
vertices which represent the vasculature of the gall.
Finally, as we reach the top of the mapper graph, we find
green and yellow vertices that represent the leaf. From
this example, two important features of mapper can be
seen: its ability to serve as a data reduction technique
that summarizes the structure and the correspondence of
the graph to the original data.

FIGURE 9 An example of mapper graphs. A, X-Ray CT scan of a gall filtered by distance from the center. B, These filter values are

projected to a real line. The real line is then covered by a collection of overlapping intervals. For each interval, we then form different

clusters of voxels whose filter value is in such interval. These clusters then yield the vertices and edges of, C, a mapper graph. Formally, the

vertices are connected components within a certain range of radius from the center and edges correspond to overlap. Size of vertices and

edges corresponds to the size of the component or overlap
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6.2 | Biological networks

We have focused on Euclidean distances up until this
point. However, just like genetic distances can be used to
create metric spaces to study evolution, other distance
metrics can be used to create graphs that can be studied
with TDA as well. Nicolau et al.44 used mapper to iden-
tify breast cancer subtypes using gene expression micro-
array data. The filter they use decomposes their data into
separate normal and disease components. The resulting
mapper graph reveals three distinct arms that, upon sub-
sequent analysis, reveal a distinct genetic subtype of
tumors. The architecture of the mapper graph corre-
sponds to disease progression and its vertices to the
expression of genes linked to breast cancer subtypes. By
choosing an appropriate filter, the mapper graph reveals
a structure of the data that might have been missed oth-
erwise and is linked to prognosis.

Mapper has also been used to reveal the underlying
structure of cell lineages and development using single-
cell RNA-Seq data. Single-cell RNA-Seq is a method that
captures the gene expression profiles of individual cells.
Dimension reduction techniques combined with knowl-
edge of cell type-specific markers can reveal the evolution
of gene expression profiles during differentiation. Similar
to the example above, Rizvi et al.45 use a filter related to
their question of interest, which is based on first creating
nodes of genes with high connectivity and then assigning
a root node based on sampling time that corresponds to
the undifferentiated state. The remainder of nodes are
assigned values based on their distance from the root.
Mapper is a powerful method to analyze a single-cell
RNA-Seq data set of motor neurons differentiating from
murine embryonic stem cells, as the resulting mapper
graph reflects the process of differentiation itself.

7 | A WORD OF STATISTICAL
CAUTION

Most of the time, our data are subject to different kinds
of errors and we must address the statistical robustness of
our topological signals. One foundational result by
Cohen-Steiner et al.46 is the stability of persistence dia-
grams with respect to the bottleneck distance. Intuitively,
this stability result implies that if all our data points wig-
gle only a little bit (possibly due to noise), then the
resulting points in the persistence diagram will only wig-
gle a little bit as well. We must be careful with outliers
though, as illustrated by Figure 3 since a single outlier
can significantly alter our persistence diagram. Nonethe-
less, there has been many ideas to address this lack of
robustness with respect to outliers, such as using a

distance to measure47 or multi-parameter persistence.48,49

Intuitively, since an outlier is distant from every other
point, it will lie in a low-density region, so we then pro-
ceed to discard such regions.

It is worth to warn that the space of all possible per-
sistence diagrams is a mathematically complicated space
to work with. For instance, given a collection of persis-
tence diagrams, there might not be a unique “mean dia-
gram.”50 The space of persistence diagrams presents
many difficulties to define P-values, or confidence inter-
vals, which are crucial in any statistical analysis. How-
ever, there has been a growing number of ideas and
research to address such pitfalls, such as modifying the
bottleneck distance to explicitly construct “mean
diagrams”,51,52 adapting randomized null hypothesis
tests,53 or defining a confidence interval line along the
diagonal of the diagrams.54 Other alternatives include
transforming diagrams to a simpler and more sound
space, as done with persistence landscapes,10 where the
usual statistics, parameter estimation, and hypothesis
testing can be carried out as usual.

Another caution to make is the interpretability of
topological signatures. While summaries as persistence
landscapes and ECCs are powerful when combined with
machine learning techniques, it is hard to directly iden-
tify phenotypes from them. For instance, it is difficult to
deduce the length, height and width of a seed-based
solely on the ECCs from Figure 7B. Turner et al.55 mathe-
matically prove that the collection of all ECCs
corresponding to all possible directions effectively sum-
marizes all the morphological information for 3D and 2D
shapes. Moreover, with such a collection we would be
able to reconstruct the original object. Nonetheless, in
practice, we cannot consider an infinite number of direc-
tions. A finite bound on the number of necessary direc-
tions for general 3D shapes has been proven,56,57

although the idea of efficiently reconstructing large
objects solely from ECCs remains elusive.

8 | CONCLUSION

We have seen how given data, a summary of the topologi-
cal shape and structure of the space can be computed.
For instance, data could come as a metric space of any
distance—whether Euclidean, geodesic, genetic, func-
tional, or correlative—and we can return a VR complex
and corresponding persistence barcode, which measure
the shape of our data. By monitoring connected compo-
nents, loops, or higher-dimensional features, the barcode
captures shape comprehensively, by monitoring the evo-
lution of these features as a function of the filter. Such a
framework has been used to measure the shapes of
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proteins, model evolution, and classify tissue architec-
ture. The filter that we choose is arbitrary: it is merely a
lens through which we can view relationships between
our data points. The ability to choose a filter tailored to
the hypothesis at hand is what confers the versatility of
TDA to measure the shape of nearly any data set, often in
multiple ways. Gaussian density estimators applied to the
pixels defining leaf outlines measures shape, allowing the
genetic basis of the plant form to be studied. Geodesic
distance captures the branching patterns of grapevine
clusters, permitting the analysis of their evolution and
modeling of berry development. We can analyze and
compare the most persistent features in our barcodes,
summarize them using the Euler characteristic, or truly
calculate the overall topological similarity between
barcodes using bottleneck distance. Using mapper, we
can summarize the structure of data as a graph, and upon
visualizing nodes of interest, identify the data points—
whether voxels of an X-ray CT scan or nodes
corresponding to gene expression—for further study and
interpretation.

The promise of the application of TDA to biology is
still in its infancy. Unlike any other method in biology,
TDA provides a way to measure topological features and
shapes in a comprehensive way. The versatility of filter
function selection allows TDA to be applied to any

number of data sets across sub-disciplines: structural
biology, evolution, molecular biology, medicine, neuro-
science, and developmental biology. The methods
described here can be applied to higher-dimensional data
sets that are dynamic or evolve over time,58-61 easily
accommodating biological complexity. Regardless of data
size, complexity, or dimensionality, TDA provides concise
summaries of the information content of any data set
from the perspective of shape and structure. Given the
spectacular diversity of form across biology (Figure 10), a
method like TDA, that can be customized to measure
shape using a tailored filter function, will allow previ-
ously unstudied phenomena to be analyzed from the per-
spective of shape. The vision of TDA, that data is shape
and shape is data, will be relevant as biology transitions
into a data-driven era where the meaningful interpreta-
tion of large data sets is a limiting factor.
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