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Abstract

As the COVID-19 pandemic continues to spread, hundreds of ne w initiatives including studies on existing
medicines are running to fight the disease. To deliver a poten tially immediate and lasting treatment to
current and emerging SARS-CoV-2 variants, new collaborati ons and ways of sharing are required to create
as many paths forward as possible. Here, we leverage our expe rtise in computational antibody engineering
to rationally design/engineer three previously reported S ARS-CoV neutralizing antibodies and share our
proposal towards anti-SARS-CoV-2 biologics therapeutics . SARS-CoV neutralizing antibodies, m396, 80R
and CR-3022 were chosen as templates due to their diversified epitopes and confirmed neutralization
potency against SARS-CoV (but not SARS-CoV-2 except for CR3 022). Structures of variable fragment (Fv)
in complex with receptor binding domain (RBD) from SARS-CoV or SARS-CoV-2 were subjected to our
established in silico antibody engineering platform to imp rove their binding affinity to SARS-CoV-2 and
developability profiles. The selected top mutations were en sembled into a focused library for each antibody
for further screening. In addition, we convert the selected binders with different epitopes into the trispecific
format, aiming to increase potency and to prevent mutationa l escape. Lastly, to avoid antibody-induced virus
activation or enhancement, we suggest application of NNAS a nd DQ mutations to the Fc region to eliminate
effector functions and extend half-life.

Statement of Significance: Engineering SARS-CoV antibody f or SARS-CoV-2 cross-reactivity is a
potentially effective and fast way toward COVID-19 treatme nt. We utilized computational methods to
engineer known antibodies and further formatted them into t ri-specific antibody aiming for potent and
broad neutralization of SARS-CoV-2. We share our proposal t o contribute to the SARS-CoV-2 research
community.

KEYWORDS: SARS-CoV-2antibody; engineeringstructure-ba sed; engineeringtri-specific; antibodymachine
learning

INTRODUCTION

COVID-19 cases continue to climb rapidly after causing
over 160 million infections and 3.3 million deaths since
the start of the outbreak. The causing virus, SARS-
CoV-2, is identified to enter human cells by binding to

∗To whom correspondence should be addressed. Anna Park or Yu Qiu or Yanfeng Zhou. Email: Yanfeng.zhou@sanofi.com, Yu.qiu@sanofi.com, or
Anna.park@sanofi.com.
© The Author(s) 2021. Published by Oxford University Press on behalf of Antibody Therapeutics. All rights reserved. For Permissions, please email: jour-
nals.permissions@oup.com.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use,
please contact journals.permissions@oup.com

the angiotensin-converting enzyme 2 (ACE2) protein,
following a similar path as SARS-CoV infection in 2003
[1–3]. However, compared to SARS, mutations in the
RBD domain in SARS-CoV-2 produce a stronger binding
affinity to human ACE2 [4–7].
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Due to the function of mediating cell entry, the spike
protein and its RBD have been the focus of drug discov-
ery for SARS coronaviruses. To date, hundreds of new
research projects are focused on exploring potential treat-
ments, many are at the preclinical trial phase, and sev-
eral have reached the administration stage. For instance,
the mRNA-based vaccines developed by Moderna and
Pfizer-BioNTech alongwith theOxford-AstraZeneca’s vac-
cine built on the chimpanzee adenoviral vector supple-
mented by the SARS-CoV-2 spike protein have been autho-
rized for emergency use. Besides vaccines, therapeutic anti-
bodies offer additional advantages including tractable effi-
cacy, stability and biocompatibility. Several antibody-based
therapeutics to combat SAR-CoV-2 have been developed,
including Regeneron’s REGN-CoV2 and Eli Lilly’s LY-
CoV555. The former is a cocktail of two monoclonal anti-
bodies (mAbs), REGN10933 and REGN10987, that target
different RBD regions in order to maintain its neutralizing
activity against future mutations [8], while the latter is
isolated from a recovering COVID-19 patient [9].
While developments of new vaccines and therapeutics

have progressed rapidly, SARS-CoV-2 is evolving at a fast
pace, if not faster, and thus poses risks and uncertainties
to developed candidates and products. Several variants
including K417N, E484K and N501Y mutations and
deletions at positions 69—70 of the RBD have been
reported. One of the spike protein mutations, E484K,
was suggested to hinder the neutralization effects of
some polyclonal and monoclonal antibodies [10, 11].
Some early studies suggest the mRNA-based vaccines
developed by Moderna and Pfizer-BioNTech may be
less effective against the recently emerged South Africa
variant [12, 13]. To increase neutralization likelihood and
prevent mutational escape, application of a mixture of
monoclonal antibodies, i.e. an antibody cocktail, results
in stronger responses that are particularly effective against
highly evolving pathogens [8]. Multispecific antibody
engineering based on a combination of broadly neutralizing
antibodies is another highly effective method to target
constantly evolving viruses. This design rationale was
used to generate a trispecific antibody against HIV [14].
The underlying hypothesis is that targeting different
regions of the antigen prevents resistance and escape and
further enhances cross reactivity. Similar strategy using
tandem linked single domain camelid antibodies showed
significant efficacy against both influenza A and B viruses
[15].

Several neutralizing mAbs targeting the spike RBD
on the SARS-CoV virus were previously isolated and
structurally characterized. Among them, the antibody 80R
binds to an epitope on the RBD that largely overlaps with
the ACE2 interface (Fig. 1A), and a strong salt bridge is
characterized as the principal component of 80R efficacy
against SARS-CoV [16]. Another antibody, m396, was
reported with the unique ability of blocking both virus
fusion and cell entry via the spike glycoprotein [17], with
its epitope overlapping with the ACE2 binding site but
substantially different from the 80R’s epitope (Fig. 1A).
Four CDR loops, H1—H3 and L3, mediate extensive
interactions with the RBD and promote strong affinity
of m396 to the virus [18]. While 80R and m396 directly

block the ACE2 binding site, CR3022 possess an epitope
not overlapping with the ACE2 binding site (Fig. 1A),
making its combination with other antibodies an attractive
neutralizing agent against SARS-CoV. Moreover, CR3022
was found effective against the CR3014 escape viruses
and in combination with CR3014 provides prophylaxis
against SARS-CoV. For instance, mutations in the SARS-
CoV RBD, such as N479S and P462L, did not eliminate
CR3022 neutralization potency [19]. Previous investiga-
tions reported that only CR3022 has detectable binding to
the SARS-CoV-2 RBD region [20]. P384A mutation in the
SAR-CoV-2 RBD was able to return the binding affinity
to SARS-CoV levels, which suggests that this location
plays a vital role in CR3022 neutralization activity. These
observations highlight the importance of optimizing the
properties of these mAbs to be used for therapeutic or
prophylactic purposes against SARS-CoV-2 virus.
Discovery of antibody therapeutics has rapidly evolved

in the past few years, and research in lead generation
and optimization faces strong challenges in needing high
success rates and short timelines. Structure-based rational
engineering of antibodies has been shown fast and highly
effective in optimizing features of lead candidates, including
cross-reactivity, potency, developability and safety profile.
Hereto we selected the above-mentioned three structurally
known anti-SARS-CoV monoclonal antibodies with
established neutralization potency and fed them into our
computational design pipeline to propose SARS-CoV-2
neutralizing antibodies. Moreover, combinations of those
binders are designed into a multi-specific format aiming
to further enhance the anti-viral potency and tolerance to
viral evolution in the RBD.

METHOD

Selection of templates

SARS-CoV and SARS-CoV-2 share the same RBD-ACE2
interface as a cell entry path. The RBDs have 76% sequence
identity between SARS-CoV and SARS-CoV-2, and the
level of identity decreases to 64% within the RBD-ACE2
interface residues [4] (Fig. 1B). We select three clones,
m396, 80R and CR3022 as our templates, with the filtering
criteria of continuously overlapping epitopes, ranging from
highly conserved RBD surface to more mutation prone
(Fig. 1A and B).

Developability assessment and engineering at Fv level

The Fv of the candidates were isolated from their complex
structure and subjected to computational prediction of
developability features including surface patches, chemical
degradation of Asp and Asn, and oxidation of Met.
Patch calculation included spatial aggregation propensity
(SAP) [21] using Discovery Studio (BIOVIA, Dassault
Systèmes) with a 5 Å radius and clustering of residues in
the patch analysis usingMolecular Operation Environment
(MOE) version 2019.0102 [22]. Patches larger than 50 Å2

were selected for further visual inspection. Deamidation
and isomerization motifs were analyzed with bioMOE
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Figure 1. Redesign of the three anti-SARS-CoV RBD antibodies to target SARS-CoV-2. (A) Structural superimposition of CR3022 (cartoon
representation colored in blue, PDB code 6 W41), m396 (cartoon representation colored in orange, PDB code 2DD8), 80R (cartoon representation
colored in magenta, PDB code 2GHW) and ACE2 (ribbon representation colored in grey, PDB code 6 M17) on their binding to SARS-CoV or SARS-
CoV-2 RBD. N-glycosylation at N343 site is shown as red sphere, while glycosylation at N313 site is not visible in the crystal structures. (B) Sequence
alignment of the SARS-CoV-2 and SARS-CoV RBDs. Conserved residues between SARS-CoV and SARS-CoV-2 are highlighted in blue color. Recent
UK and South African SARS-CoV-2 mutation sites are highlighted in red. Epitope residues are indicated by colored dots: blue for CR3022, orange for
m396 and magenta for 80R. (C) Schematic workflow for engineering of the three antibodies. Green text indicates engineering toward developability and
cross reactivity, and orange text indicates format related designs in Fab and Fc regions.

using structure-based prediction models developed by
Sydow et al. [23] and Robinson et al. [24]. Risk of
methionine oxidation was predicted using sulfur solvent-
accessible area and 2-shell models with bioMOE [25].
Residue scanning on the patch residues or chemical
liability motifs were manually inspected and mutation
strategies were made following two criteria: 1) mutation
does not impact binding and 2) mutation reduces size of
patch area.

Structure preparation for SARS-CoV-2 reactivity
engineering

Crystal structure of the SARS-CoV RBD in complex with
80R (PDB ID: 2GHW) and m396 (PDB ID: 2DD8) anti-
bodies at 2.3 Å resolution were used as template for SARS-
CoV-2, excluding the non-protein atoms. RBD segments
in these structures were superimposed to SARS-CoV-2
RBD (PDB ID: 6 W41) using Cα atoms. Subsequently,
the SARS-CoV RBD was replaced by the SARS-CoV-2
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RBD. CR3022 structure in complex with SARS-CoV-2
RBD (PDB ID: 6 W41) was used without any structural
modification. For 80R, the single chain Fv (scFv) was
split to Fv with standard VH-VL pairing and the linker
between VH and VL in the scFv was removed.All antibody
sequences reported here are renumbered using continuous
peptide numbering. To prepare the structures for residue
scanning, the PDB model of Fab/Fv with RBD2 were
initially protonated and energy minimized with MOE. For
calculations in Rosetta and machine learning based meth-
ods, the MOE minimized structures were further relaxed
with Rosetta fastrelax protocol. Antibody residues that
are within 6 Å of the RBD are selected and fed to residue
scanning inMOE, Rosetta, TopNetTree and SAAMBE3D.

MOE

The MOE computation workflow, unless specified, was
performed withMOE.2019.01.02 [22] with Amber10 force-
field [26] and Born solvation model [27]. After protonation
and minimization, all selected residues that are within 6 Å
of the antigen were subjected to single residue scanning
to 20 natural residues with ensemble LowMode [28]. For
ensemble generation, residues located outside 4.5 Å away
from the mutation site were fixed.

Rosetta flex ddG

Flex ddG is built upon the Rosetta architecture and
incorporates the conformational sampling of backbone
and side chain torsions into the free energy calculation
using the Talaris scoring function inRosetta [29]. Following
the nonlinear reweighting protocols, i.e. generalized
additive models, of the Rosetta energy function computed
for each structure of mutant and wild type at complex
and unbound states, Flex ddG estimates the 11G values.
Firstly, the three RBD-Fv complex structures prepared by
MOE were energy minimized using the Rosetta FastRelax
protocol. For each complex, the lowest energy structure
was chosen from the 10 relaxed structures and used for the
next step. Secondly, 11G estimates for each single point
mutation were calculated using the “Flex ddG” protocol
with default parameters as described in the reference
[30], except for using 10 instead of 35 averaged models
due to computational constraints. This change was made
according to the observation in the original publication
that the correlation and mean absolute error between
predicted 11G and experimental 11G became stable
when the number of averaged models was around 10 or
more [30].

TopNetTree

TopNetTree is a machine learning (ML) model that utilizes
site-specific persistent homology to extract the local geo-
metric information of the protein complexes and mutation
sites [31]. As such, this method simplifies the complexity
of the 3D atomic structure and in conjunction with ML
methods, including convolutional neural networks and
gradient-boosting trees, it is able to capture the change
in the underlying biochemical features, such as hydrogen
bonding and dispersion interaction represented at the

zeroth homology group H0, along with the structural
change, represented at first and second homology groups
H1 and H2, at the mutation site. The model is trained
and validated on different single site mutation datasets,
including computational and experimental data, such as
SKEMPI v2.0 [32] and AB-Bind [33]. Validation results
of this method illustrate satisfactory performance across
different databases and mutation regions (accessible sur-
face area) for the 11G prediction. The 11G calculations
were performed using both topological and physiochemical
properties. The original TopNetTree model parameters
were used in this study. The optimized complex structures
obtained from Rosetta were used as input for free energy
calculations. To maintain consistency with TopNetTree
methodology each structure was further optimized with
the profix module in Jackal modeling suite.

SAAMBE-3D

SAAMBE-3D is an ML-based model that is constructed
based on a variety of features spanning across multiple
chemical, physical, sequential and mutation-specific prop-
erties. This allows SAAMBE-3D to efficiently extract
essential information from the structure and predict the
11G upon mutation. We downloaded and used, without
modification, the scripts and models associated with the
publication [34] (http://compbio.clemson.edu/saambe_we
bserver/index3D.php). The model was trained on 3753
single point mutations from 299 different protein–protein
complexes, of which approximately 650 mutations were
from 76Ag-Ab complexes.We did not re-train themodel on
the more relevant Ag-Ab subset as the significant reduction
in the dataset size may decrease the performance of the
model. Rosetta optimized structures for each Fv-RBD
system were used as the initial structure for SAAMBE-3D
calculations.

Consensus z-score

z-scores were used to extract the favorable mutations
for each system. Coupled with the structural inspection,
z-scores have been shown to accurately highlight/guide
mutation selection from the vast affinity maturation
calculations. We used a modified z-score as suggested by
Sulea et al. [35] where the median and median absolute
deviation (MAD) were used based on the following
equation:

Zi = (xi—xmed)/(1.4826 × MAD) (1)

Each z-score was averaged over the four methods. Top 60
average scores for each system supplementedwith the struc-
tural inspection to select the final list of affinity promoting
mutations.

RESULTS

Selection of three neutralizing antibodies

Monoclonal antibodies 80R, m396 and CR3022 have been
well characterized to prove their neutralizing potency
to SARS-CoV virus. The mutations in SARS-CoV-2
from SARS-CoV RBD prevent these antibodies, except
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for CR3022, blocking the SARS-CoV-2 RBD–ACE2
interactions [36, 37]. Therefore, we sought to engineer the
three antibodies to make them reactive against SARS-
CoV-2 by using our structure-based rational engineering
platform with publicly available structures of the Fab
in complex with RBD [38]. The epitopes of these three
antibodies are located in relatively conserved surfaces on
the RBD (Fig. 1A and B). The 80R and m396 epitopes
largely overlap with the ACE2 binding site, which limits the
possibility of escaping mutations on the RBD as mutations
abolishing ACE2 interaction are unfavorable. Although the
CR3022 epitope is distal from the ACE2 binding site, it has
been shown as a conserved epitope between SARS-CoV
and SARS-CoV-2 [20]. Additionally, the glycosylation sites
(N331 and N343) in the SARS-CoV-2 RBD are away from
the epitopes of the three antibodies, making it less likely
to shield antibody binding (Fig. 1A) [39]. Lastly, 80R and
CR3022 utilize kappa, while m396 uses lambda light chain.
The difference in light chains also helps assembly design
into multi-specific antibodies and minimize mispairing
risks.

In silico mutagenesis and consensus z-score

For each complex structure, antibody residues within
6 Å from the RBD were selected for 11G calculations
upon mutation to all 20 amino acids. This resulted in
48, 35 and 34, mutation sites corresponding to 80R,
m396 and CR3022, respectively. Figures 2D, 3D and 4D
depict the results of 11G calculations performed on
80R, m396 and CR3022, respectively, using the four
computational methods discussed before. Due to the
mutational structure sampling algorithms, the binding
affinity scores comparing mutations to wild type (e.g.
H:S101S) can be nonzero. For normalization, the 11G
value for each mutation is offset so that the wild-type
mutations are zero. Interestingly, predicted 11G values
obtained from SAAMBE-3D are mainly unfavorable
(positive values), and the range of predicted values is
smaller than other methods. Another observation is the
large variation of predicted values among these four
methods, reflecting the need of an approach to effectively
rank the mutations.
Previous studies in binding affinity predictions suggest

that using a consensus approach over different methods
can improve prediction accuracy [35, 40–45]. Following
this rationale, we applied a similar strategy to rank the
single mutations from the four computational predictions
for each antibody. We used relative ranking instead of
absolute score due to different magnitudes and scales of
the four methods. A z-score describes a value’s relationship
to the mean of a group of values, which is useful for
normalization of raw scores. Here, we used a z-score based
on the median value instead of the mean value for each
scoring function, which reduces the sensitivity of z-scores
to outliers. By averaging the z-score from the four methods,
consensus z-scores were computed, and the top ranked
mutations were visualized to validate the predictions. For
each system, we selected the top 60 mutations as presented
in Table 1.

Structural inspection

During the structural inspection, physiochemical factors,
such as spatial limitations, removal of salt bridge or hydro-
gen bond, deletion or introduction of Cys, Met and Pro
residues were taken into consideration. As shown in Fig. 2C
and Table 1, selected mutations for 80R belong to positions
D50, A51, S52, S67, S92 in the light chain; and N57, R100,
S101 in the heavy chain. SinceA51 is in the vicinity ofY489,
F490 and Q493, it is expected that mutations to Phe, Trp
or Tyr will promote formation of π—π interactions, while
mutations to Glu, His, Arg and Lys may facilitate hydrogen
bond interactions with Q429. Similarly, mutations at sites
50 and 32 can either strengthen the hydrogen bond or form
nonpolar interactions with the bonding partners on the
RBD. Side chains of residue 100 and 101 on the heavy chain
are in close proximity to Y505; therefore, introduction
of aromatic side chains in these locations are presumably
favorable. Heavy-chain S101Dmutationwas selected due to
possible hydrogen bond enhancement for interacting with
N501 (Fig. 2C).

As shown in Fig. 3C and Table 1, top ranked affinity
enhancing mutations for m396 are primarily located at the
CDRH2 loop, such as residues 52—59. These residues are
in a close contact with R403, Q498, Y505 and N501 on
the RBD. H:I57R and H:N59R mutations can introduce
a salt bridge with D405 resulting in stronger binding to
the RBD. H:S31X mutations, where X is polar side chain,
increases the possibility of hydrogen bond formation with
T500 and N501 on the RBD. Structural investigation does
not support the H:S31F change as it disrupts the hydrogen
bond network at this site. However, due to the large z-score
and consistency of the three methods, including MOE,
Flex ddg and TopNetTree, this mutation was included in
the suggested list. Mutations on the light chain, including
L:G29X and L:S30X, where X is an aromatic mutation,
are highly favorable as these side chains are in proximity
of Y369 and F374. L:S30E, L:S30H and L:S30K can result
in strong hydrogen bond interactions with the backbone of
the RBD near L:S30. Lastly, L:S93E may introduce a salt
bridge with the R408 side chain.
As shown in Fig. 4C and Table 1, selected mutations on

the light chain of CR3022 are located on four sites, 33—
35 and 62. The polar substitutions of these residues are
justified through possibility of formation of a hydrogen
bond network with D428 and T430 on the RBD, whereas
nonpolar mutations can enhance the hydrophobic interac-
tions with L517. The selected mutations on H:G101 and
H:S103 of the heavy chain are all of aromatic nature due to
their proximity to Y380 and F377. Chain elongation and
a more polar headgroup in the H:S100Q substitution can
potentially enhance the hydrogen bond network with S383,
T385 and K386. H:I102Y is likely to enhance interactions
with Y380, while H:T104E and H:Y27R mutations could
promote a stronger hydrogen bond network with S383 and
N370, respectively.

Developability engineering

Computational developability risk assessments were
focused on chemical liability sites that are nearby or within
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Figure 2. Engineering of 80R. (A) Sequence alignment of SARS-CoV-2 and SARS-CoV RBDs. 80R epitope residues are highlighted in orange. Non-
conserved epitope residues are marked with asterisks. (B) Epitope residues on SARS-CoV-2 are shown. CDR loops are labeled. Epitope residues that are
conserved between SARS-CoV-2 and SARS-CoV are shown in pink, and those that are not conserved are shown in red. (C) Interactions between selected
80R residues for engineering and epitope residues are shown. Amino acid variants observed in SARS-CoV are in parentheses. SARS-CoV-2 RBD is grey,
80R heavy chain is magenta and 80R light chain is pink. Residues are numbered according to their positions on the SARS-CoV-2 S protein sequence. (D)
Heatmap of prediction of all possible mutations for selected residues on 80R from SAAMBE-3D, TopNetTree, Rosetta flex ddG and MOE MM/GBVI
methods. Residues selected for library design are colored in red.

the paratope and surface patch forming residues, such as
hydrophobic and charged residues.
De-risk plan for antibodies 80R andCR3022 is proposed

only for chemical liabilities. In 80R, CDRH2 largely
contributes to RBD binding. H:D54-G55, which sit in
the middle of CDRH2 are considered high risk, although
H:D54 does not directly contact RBD residues; H:D54E
mutation is, therefore, proposed. In CR3022, D54 in the
DS motif in CDRH2 forms salt bridge to K378 in the
RBD. H:D54E mutation is proposed, as H:D54 flanking

residues are not directly interacting with the RBD and
H:D54 sits in a relatively flexible loop. Surface patches
on those two antibodies are generally smaller than 100 Å2

and are considered as low risk. One cluster of hydrophobic
residues exists in CR3022 around CDRL2 and the 17-
residue long CDRL1. The hydrophobic interface (L-
I34, Y55, W56) is critical for RBD binding, and the
surface is surrounded by charged residues. Therefore, no
mitigation plan is proposed on the CR3022 hydrophobic
patch.
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Figure 3. Engineering of m396. (A) Sequence alignment of SARS-CoV-2 and SARS-CoV RBDs. M396 epitope residues are highlighted in brown. Non-
conserved epitope residues are marked with asterisks. (B) Epitope residues on SARS-CoV-2 are shown. CDR loops are labeled. Epitope residues that
are conserved between SARS-CoV-2 and SARS-CoV are shown in orange, and those that are not conserved are shown in red. (C) Interactions between
selected m396 residues for engineering and epitope residues are shown. Amino acid variants observed in SARS-CoV are in parentheses. SARS-CoV-2
RBD is grey, m396 heavy chain is orange andm396 light chain is yellow. Residues are numbered according to their positions on the SARS-CoV-2 S protein
sequence. (D)Heatmap of prediction of all possible mutations for selected residues on m396 from SAAMBE-3D, TopNetTree, Rosetta flex ddG andMOE
MM/GBVI methods. Residues selected for library design are colored in red.

Among the three selected antibodies, m396 has the
highest developability risk, with a 130 Å2 hydrophobic
patch around CDRH2 (H:I54-L55-G56-I57) and a 130 Å2

acidic patch around CDRL2 (L:D50-D51-S52-D53) (Fig-
ure S1B). Chemical liabilities in m396, including exposed
H:M102 in CDRH3, L:N26-N27 motif in CDRL1 and

L:D92-S93 motif in CDRL3, were predicted as moderate
risk since those residues are not directly mediating RBD
recognition. Tomitigate the risks inm396, mutations giving
higher consensus scores at residues L:N26, L:D51, L:D92,
H:I54, H:L55, H:I57 and H:M102 were selected into the
screening library (Fig. 3D, Tables 1 and 3).
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Figure 4. Engineering of CR3022. (A) Sequence alignment of SARS-CoV-2 and SARS-CoV RBDs. CR3022 epitope residues are highlighted in brown.
Non-conserved epitope residues are marked with asterisks. (B) Epitope residues on SARS-CoV-2 are shown. CDR loops are labeled. Epitope residues
that are conserved between SARS-CoV-2 and SARS-CoV are shown in blue, and those that are not conserved are shown in red. (C) Interactions between
selected CR3022 residues for engineering and epitope residues are shown. Amino acid variants observed in SARS-CoV are in parentheses. SARS-CoV-2
RBD is grey, CR3022 heavy chain is blue and CR3022 light chain is cyan. Residues are numbered according to their positions on the SARS-CoV-2 S
protein sequence. (D) Heatmap of prediction of all possible mutations for selected residues on CR3022 from SAAMBE-3D, TopNetTree, Rosetta flex
ddG and MOEMM/GBVI methods. Residues selected for library design are colored in red.

Library design

With proposed affinity and developability optimization
mutations, we next proceeded to design three focused
libraries for 80R, m396 and CR3022 individually. The
designed libraries will be used by a high-throughput system,
such as phage display, to screen for high affinity binders.
Tables 2–4 summarizes variations at different positions in
the three libraries. The resulting theoretical library sizes
are all smaller than 1 × 1011, which are suitable for phage
display screening.

Trispecific antibody design and Fc selection

SARS-CoV-2 has shown fast mutation rates among discov-
ered variants, therefore combining neutralizing antibodies
with different epitopes into a multi-specific format can
benefit both potency and breadth, especially for future
variants. We, therefore, proposed to engineer the three
mAbs, after affinity optimization against SARS-CoV-2,
into a trispecific format, which has been demonstrated
successful in HIV neutralization [14]. The trispecific for-
mat includes a single Fab arm derived from a normal
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Table 1. Top 60 mutations ranked by consensus z-scores

80R m396 CR3022

Chain:mutation z-score Chain:mutation z-score Chain:mutation z-score

H:S101W H:R100W H:S101M H:S101L L:A51F L:A51H
H:R100F L:A51Y H:S101D H:S101C H:R100M H:R100L
L:A51L l:A51Q L:A51I H:R100E H:R100I H:R100D
H:R100V H:S101I L:A51W l:S67Y l:D50E l:A51E
l:S67H l:S67F H:R100C H:S101V L:S52F H:R100K
L;S92H L:A51M H:R100A H:R100S H:R100N L:A51K
L:S31Y H:R100T H:S101T L:D50Y H:R100Q H:S101E
L:A51D L;S92M L:S67M L:A51R H:D105W L:S52M
L:S67E H:S101Y H:S31W L:S67K L:S92R L:A19K
L:A19D L:A51N L:S52Y H:N57Q H:A33M H:S31F
−3.068 −3.029 −2.905 −2.886 −2.604 −2.558
−2.48 −2.384 −2.292 −2.219 −2.114 −2.099
−2.09 −1.957 −1.931 −1.898 −1.892 −1.887
−1.874 −1.833 −1.824 −1.816 −1.791 −1.768
−1.754 −1.742 −1.739 −1.731 −1.697 −1.688
−1.641 −1.626 −1.612 −1.556 −1.523 −1.512
−1.422 −1.405 −1.362 −1.349 −1.336 −1.331
−1.303 −1.29 −1.274 −1.273 −1.269 −1.23
−1.217 −1.217 −1.199 −1.187 −1.172 −1.166
−1.164 −1.149 −1.104 −1.104 −1.002 −0.995
L:S30Y L:S30F L:S30W H:L55Y H:V101Y L:S93H
H:S31R L:S30R H:V101W H:S31F H:G103F H:S31Y
L:S30H H:N59F H:I54F L:S94F H:T52Y H:S31Q
L:S30E L:S93E L:S95F L:S93Y L:S93I H:M102W
L:S32Y H:V101F H:N59R H:S31W H:G103W L:G29F
H:L55F H:I57R H:V101L H:S31M H:T100W L:N27E
H:I57W H:N59Y H:G50E H:S31K H:M102Y L:S30K
L:S32W H:V101M L:S93N H:G50Q L:G29R L:S30M
L:G29Y H:I57H L:S94W H:V101R L:S95I L:K31R
L:S32F L:G29W L:S93D L:G29P L:N27W L:N27Y
−2.865 −2.464 −2.351 −2.241 −1.863 −1.797
−1.788 −1.695 −1.664 −1.656 −1.637 −1.545
−1.507 −1.496 −1.459 −1.428 −1.413 −1.38
−1.366 −1.365 −1.356 −1.339 −1.329 −1.29
−1.263 −1.263 −1.248 −1.244 −1.244 −1.24
−1.237 −1.213 −1.21 −1.208 −1.198 −1.187
−1.184 −1.178 −1.163 −1.159 −1.134 −1.132
−1.121 −1.11 −1.104 −1.062 −1.051 −1.03
−1.013 −1.011 −0.993 −0.976 −0.96 −0.944
−0.939 −0.923 −0.906 −0.841 −0.835 −0.822
H:S103W H:G101F L:S33H L:S33F H:G101A L:S33M
H:S103F L:S33Y L:S33E L:S62W H:S103Y L:S33L
H:T104Q H:G101W H:D55Q L:N35R H:D55I H:D55H
H:S103M L:S33Q L:S33I H:S100Q L:S62Y H:D55C
L:S62V H:T31E H:D55S H:I102Y H:T104E H:T31M
L:S62M H:S100P H:S100A H:Y27R H:S100M H:Y27W
H:D107W H:D55G H:P105W H:G101S L:S33W H:S100T
L:I34Q H:T31I L:S62T H:I102F L:S62R L:S62N
L:S62L L:S33C L:S62F L:N35Y L:S62H L:N35W
L:S33K L:S33R L:S62I L:I34Y L:S32N L:S62Q
−2.238 −2.169 −1.939 −1.828 −1.653 −1.630
−1.628 −1.470 −1.466 −1.433 −1.423 −1.316
−1.306 −1.291 −1.288 −1.241 −1.213 −1.199

Continued
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Table 1. Continued

80R m396 CR3022

Chain:mutation z-score Chain:mutation z-score Chain:mutation z-score

−1.139 −1.137 −1.131 −1.126 −1.114 −1.114
−1.111 −1.110 −1.087 −1.085 −1.077 −1.069
−1.055 −1.055 −1.040 −1.030 −1.010 −0.998
−0.998 −0.960 −0.959 −0.958 −0.956 −0.939
−0.930 −0.923 −0.920 −0.920 −0.900 −0.882
−0.858 −0.832 −0.809 −0.800 −0.789 −0.773
−0.768 −0.709 −0.695 −0.690 −0.677 −0.673

Mutations are represented in “Chain ID: Mutation” format and are associated with consensus z-scores calculated by the formula in Methods section

Table 2. Selected 80R mutations for library design

80R: Variable light chain 80R: Variable heavy chain

19 31 50 51 52 67 92 31 54 57 100 101 105

Wild type A S D A S S S S D N R S D

K Y E F F Y H W E Q W W W
D Y H Y H R F F L

Y F L D
L E E I
Q K I V
I D T
W V E
E K Y
K A
D S
R N
N T

Q

Wild-type residues are listed in bold. Underlined residues are potential developability labile sites.

Table 3. Selected m396 mutations for library design

m396: Variable light chain m396: Variable heavy chain

26 27 29 30 31 32 51 92 93 94 95 31 52 54 55 57 59 101 102 103

Wild type N N G S K S D D S S S S T I L I N V M G

Q E F Y R W W E Y F I R Y F Y R F Y W F
W R F F I W F F W R W Y W
Y W W N Y H Y F

P R D Q L
H W R
E K
K

Wild-type residues are listed in bold. Underlined residues are potential developability labile sites.

immunoglobulin G (IgG) with a double Fv arm generated
in the CODV-Ig format (cross-over dual variable Ig-like
proteins) [46] (Fig. 5A and B). We modeled all possible
combinatorial structures of CODV in complex with SARS-
CoV-2 spike proteins (Fig. 5C and D). Interestingly, it had
been reported that CR3022 binding requires rearrange-
ments in the S1 domain of the spike protein, which results

in dissociation of the spike [47]. A similar observation
that CR3022 showed incompatibility to all possible CODV
configurations led us to keep CR3022 in the Fab arm and
use m396 and 80R in the CODV arm. After examining
the structural compatibility, option 2 (80R as VH1/VL2,
m396 as VH2/VL1) showed to be the best geometrical
configuration (Fig. 5C and D).
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Table 4. Selected CR3022 mutations for library design

CR3022: Variable light chain CR3022: Variable heavy chain

32 33 34 35 62 27 31 54 55 100 101 102 103 104 105 107

Wild type S S I N S Y T D D S G I S T P D

N H Q R W W E E Q Q F Y W Q W W
F Y Y Y I I P W F F E
Y W V H A S Y
E T S T
L R G
Q N
I L
W F
K H
R I

Wild-type residues are listed in bold. Underlined residues are potential developability labile sites.

Modifications to the Fc domain are devised to block
the contact formation between the Fc region and effec-
tor cells. Antibody-dependent enhancement (ADE) poten-
tially poses a safety risk to an antibody treatment, and
anti-SARS-CoV-2 antibodies could exacerbate COVID-19
through antibody-dependent enhancement [48]. Although
effector function has been recently reported as essential
for optimal efficacy in SARS-CoV-2 monoclonal antibody
SC31 [49], considering the triplicated valency in ourCODV-
IgG trispecific antibody, we included NNAS glycosyla-
tion at the FcγR interface [50] to completely eliminate
Fc-mediated effector functions therefore minimizing ADE
risk, andDQmutations at the FcRn interface [51] to extend
antibody half-life.

DISCUSSION

The devastating COVID-19 pandemic urges faster and
smarter designs of treatment to patients worldwide.
Antibody therapies have been shown to have the advantages
of large-scale production and anti-viral potency. Structure-
based rational engineering to redesign well-characterized
SARS-CoV neutralizing mAbs enables quick solutions to
create a pool of SARS-CoV-2 neutralizers with known
epitopes. In this work, we share our knowledge in antibody
engineering especially in multi-specific formats. Using
computational protein engineering tools, we proposed a
multi-specific antibody based on optimization of SARS-
CoV neutralizing antibodies. Our extensive exploration
of mutational space involved in the direct interaction
with the SARS-CoV-2 RBD has produced a mutation
library that is expected to improve the efficacy of these
antibodies against the SARS-CoV-2 virus. Physiochemical
properties and free energy calculations of each mutation
were taken into consideration in building our mutation
library. The satisfactory level of agreement and consistency
among three of the methods used in this study, including
MOE, Rosetta Flex ddg and TopNetTree, highlights the
effectiveness of our proposed library design.

Several AI-guided studies have been carried out to
discover treatment against SARS-CoV-2 virus, including
the work from Magar et al. [52] and Desautels et al. [53].
Using an ML-based algorithm, Magar and coworkers
proposed single and combinatorial mutations on 80R and
S230 antibodies with potentially better antibody response.
In the case of 80R, the proposedmutations are largely distal
from the binding site, and they do not overlap with our
proposal. Since theML-basedmodel was trained on patient
neutralization response, it may capture different properties
related to neutralization rather than direct interaction with
antigen. It is intriguing that there may be a synergistic
effect when combining the ML-based mutations with our
proposed mutations in neutralization activity. In another
work from Desautels et al., antibody candidates were
proposed using an active learning protocol where themodel
takes Rosetta scores as ground truth and continuously
improves its predictability. Complex structures of SARS-
CoV neutralizing Abs, including S230, m396 and F26G19,
were fed to the algorithm, and mutants with favorable
predicted Rosetta scores were proposed. The mutants were
further selected by free energy calculations using MD
simulations under the implicit solvent model (GBSA).
After all, mutations were selected based on Rosetta score
and MM/GBSA free energy, while the ML model was used
to predict Rosetta scores of large numbers of mutations.
In contrast, our method used two separate ML-based
models predicting affinity changes directly and assembled
the results together with two physics-based methods,
one Rosetta-based and one similar to MM/GBSA. By
this more diverse scoring system, we expect to increase
the prediction accuracy. Moreover, a high-throughput
screening method enables testing more mutations and their
combinations, which will further increase the possibility of
success.
Continuous evolution of SARS-CoV-2 virus remains

a significant threat even after the successes of current
vaccine development. Among the mutations in the UK
and South African strains, E484K is within the 80R
epitope, while N501Y is within both 80R and m396
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Figure 5. Trispecific antibody engineering. (A) Schematic linear configuration of the trispecific antibody color coded by position. Dark shades (blue,
purple or green) denote heavy chain peptides; light shades denote light chain peptides. (B) Schematic cartoon configuration of the trispecific antibody
shown in cartoon. Same color scheme is used as that in (A). (C)All possible combinations of the three Fvs in the trispecific format. (D) Structural modeling
showed only Option 2 as the optimal geometrical configuration. The CODV is shown in surface format and color coded as in (A-C), and the spike proteins
are shown in grey colored cartoon.

epitopes (Fig. 1B). This emphasizes the importance of
combining multiple antibodies with different epitopes,
especially to include antibodies with conserved epitopes,
such as CR3022. Given the success shown in the HIV

study, our trispecific format is one of the suitable formats
for 3-in-1 antibody design. However, it requires careful
geometry modeling and sequence optimization for further
developability.
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CONCLUSIONS

In this study, we used computational protein engineering
tools to optimize SARS-CoV neutralizing mAbs against
SARS-CoV-2 virus. Three mAbs were used as templates
where their complex structures with SARS-CoV-2 RBD
were optimized following modeling protocols in Rosetta
and MOE simulation packages. Subsequently, extensive
free energy calculations were carried out on the residues in
contact with the RBD. Two physics-based and two ML-
based free energy calculation suites were utilized to per-
form the affinity maturation calculations. For each system,
developability assessment was done and a focused library
was proposed for high-throughput screening of high affin-
ity and developable Fabs against the SARS-CoV-2 RBD.
Lastly, a design of combining the three antibodies in a
trispecific format was achieved, aiming for high potency
and broad neutralization activity.
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