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Abstract
River	 damming	 influences	 the	hydro‐physicochemical	 variations	 in	 karst	water;	 how‐
ever,	such	disruption	in	bacterioplankton	communities	has	seldom	been	studied.	Here,	
three	sampling	sites	 (city‐river	section,	reservoir	area,	and	outflow	area)	of	the	Ca2+–
Mg2+–HCO3

−–SO4
2−	water	type	in	the	dammed	Liu	River	were	selected	to	investigate	

the	 bacterioplankton	 community	 composition	 as	 identified	 by	 high‐throughput	 16S	
rRNA	gene	sequencing.	In	the	dammed	Liu	River,	thermal	regimes	have	been	altered,	
which	has	 resulted	 in	considerable	spatial‐temporal	differences	 in	 total	dissolved	sol‐
ids	 (TDSs),	 oxidation‐reduction	 potential	 (Eh),	 dissolved	 oxygen	 (DO),	 and	 pH	 and	 in	
a	 different	 microenvironment	 for	 bacterioplankton.	 Among	 the	 dominant	 bacterio‐
plankton	phyla,	Proteobacteria,	Actinobacteria,	Bacteroidetes,	 and	Cyanobacteria	 ac‐
count	 for	 38.99%–87.24%,	 3.75%–36.55%,	 4.77%–38.90%,	 and	 0%–14.44%	 of	 the	
total	 reads	 (mean	relative	frequency),	 respectively.	Bacterioplankton	communities	are	
dominated	by	Brevundimonas, Novosphingobium, Zymomonas,	 the	Actinobacteria	hgcI‐
clade,	 the	 CL500‐29	 marine	 group,	 Sediminibacterium, Flavobacterium, Pseudarcicella, 
Cloacibacterium,	 and	 Prochlorococcus.	 Their	 abundances	 covary	 with	 spatial‐temporal	
variations	in	hydro‐physicochemical	factors,	as	also	demonstrated	by	beta	diversity	anal‐
yses.	In	addition,	temperature	plays	a	pivotal	role	in	maintaining	bacterioplankton	biodi‐
versity	and	hydro‐physicochemical	variations.	This	result	also	highlights	the	concept	that	
ecological	niches	for	aquatic	bacteria	in	dammed	karst	rivers	do	not	accidentally	occur	
but	are	the	result	of	a	suite	of	environmental	forces.	In	addition,	bacterioplankton	can	
alter	the	aquatic	carbon/nitrogen	cycle	and	contribute	to	karst	river	metabolism.
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1  | INTRODUC TION

Karst	 rivers	 contain	 the	 surface	 networks	 of	 water	 resources	 for	
domestic,	 industrial,	 and	 agricultural	 use	 and	 represent	 an	 exclu‐
sive	habitat	for	microbes	that	perform	critical	functions	 in	biogeo‐
chemical	 cycles	 under	 the	 influence	of	 carbonate	 rock	dissolution	
(Han	&	Liu,	2004).	Karst	rivers	are	commonly	regulated	by	damming,	
yet	 the	 influence	of	 these	dams	on	 changes	 in	 hydrological	 series	
of	water	 discharge	 is	 negative	 or	 positive	 (Miao,	Ni,	 Borthwick,	&	
Yang,	 2011).	 Although	 the	 diversity	 and	 dynamics	 of	 microbes	 in	
karst	springs	(Farnleitner	et	al.,	2005;	Ohad	et	al.,	2015;	Savio	et	al.,	
2018),	unsaturated	and	saturated	karst	aquifers	(Cooper	et	al.,	2016;	
Gray	&	Engel,	2013;	Johnson	et	al.,	2011;	Lin	et	al.,	2012;	Menning	
et	al.,	2018),	and	water	pools	 (Shabarova	et	al.,	2014)	as	well	as	 in	
groundwater‐surface	water	exchange	systems	(Li,	Song,	et	al.,	2017)	
have	been	discussed	in	the	literature,	much	less	attention	has	been	
paid	to	the	structure	of	bacterioplankton	communities	 in	dammed	
karst	rivers.	In	addition,	previous	studies	on	bacterioplankton	com‐
munities	in	the	canyon‐shaped	and	meso‐eutrophic	Rimov	Reservoir	
(Simek	et	al.,	2008),	the	dammed	Ebro	River	(Ruiz‐González,	Proia,	
Ferrera,	 Gasol,	 &	 Sabater,	 2013),	 and	 the	 rivers	 controlled	 by	 the	
Three	Gorges	Dam	(Huang	et	al.,	2016;	Li,	Lu,	et	al.,	2017;	Yan	et	al.,	
2015)	did	not	 include	 the	seasonal	variation	or	depth	dynamics	 in	
bacterioplankton.

Thus,	 a	 major	 challenge	 in	 understanding	 bacterioplankton	
ecological	 function	 is	 to	 determine	 the	 role	 of	 physicochemical	
properties	 in	 dammed	 karst	 rivers	 or	 the	 ecological	 factors	 that	
shape	bacterioplankton	biodiversity	and	species	coexistence	(Ávila,	
Staehr,	 Barbosa,	 Chartone‐Souza,	 &	 Nascimento,	 2017).	 Despite	
the	 controlling	 factors	 (such	 as	 trophic	 interactions,	 evolution‐
ary	 perspective,	 spatial	 heterogeneity,	 and	 temporal	 heterogene‐
ity)	 of	 prokaryotic	 diversity	 summarized	 by	 Torsvik,	 Øvreås,	 and	
Thingstad	 (2002),	 the	basic	principles	governing	 their	distribution	
and	 abundance	 in	 aquatic	 environments	 are	 just	 beginning	 to	 be	
explored.	For	instance,	Fisher,	Klug,	Lauster,	Newton,	and	Triplett	
(2000)	highlighted	that	nutrition	(inorganic	nitrogen	and	phospho‐
rus	as	well	 as	 carbon	 in	 the	 form	of	glucose)	and	 trophic	 interac‐
tions	 determined	 bacterioplankton	 diversity	 in	 an	 oligotrophic	
lake	 in	 northern	Wisconsin.	Ruiz‐González	 et	 al.	 (2013)	 used	 sur‐
face	water	 samples	 from	 the	 dammed	Ebro	River	 and	 noted	 that	
damming	 caused	 a	 pronounced	 decline	 in	 Betaproteobacteria,	
Gammaproteobacteria,	and	Bacteroidetes	from	upstream	to	down‐
stream	sites,	whereas	Alphaproteobacteria	and	Actinobacteria	sig‐
nificantly	 increased	after	 reservoirs	were	constructed.	Ávila	et	al.	
(2017)	 asserted	 that	 thermal	 stratification	 and	 oxygen	 depletion	
dictated	 the	 bacterioplankton	 diversity	 in	 two	 tropical	 shallow	
lakes	 in	 the	Brazilian	Atlantic	Forest.	Ren	et	al.	 (2017)	 found	 that	
spring	 bacterioplankton	 community	 composition	 shifted	 signifi‐
cantly	under	enhanced	warming	and	nutrient‐enriched	conditions.	
Although	the	above	studies	provide	an	exceptional	opportunity	to	
gain	insight	into	the	controlling	factors	of	bacterioplankton	commu‐
nity	composition	and	structure	 in	 inland	aquatic	ecosystems,	 fac‐
tors	 related	 to	bacterioplankton	diversity	and	communities	 in	 the	

city‐river	section,	reservoir	area,	and	outflow	area	of	dammed	karst	
rivers	are	still	unknown.

The	presence	of	dams	is	problematic	for	many	aquatic	ecosystems	
(Bednarek,	2001).	Consequently,	altered	thermal	regimes	in	dammed	
rivers	have	been	observed	at	a	spatial	scale	(Kelly,	Smokorowski,	&	
Power,	 2017;	Weber	 et	 al.,	 2017).	 In	 addition,	 temperature	 strati‐
fication	usually	occurs	 in	dammed	rivers	because	of	the	change	to	
a	more	 reservoir‐like	habitat	 (Bednarek,	2001).	 It	 should	be	noted	
that	temperature	can	influence	the	hydrochemistry	and	recycling	of	
nutrients,	etc.	(Bednarek,	2001;	Li,	Sun,	Han,	Liu,	&	Yu,	2008).	Here,	
we	hypothesized	that	water	temperature	is	the	key	factor	controlling	
bacterioplankton	community	composition	in	dammed	karst	rivers.

As	 a	 result,	 three	 sampling	 sites	 (city‐river	 section,	 reservoir	
area,	and	outflow	area)	were	selected	to	investigate	bacterioplank‐
ton	communities,	water	hydro‐physicochemical	properties	and	their	
relationship	in	the	dammed	Liu	River	(Figure	1).	Consequently,	how	
the	 bacterioplankton	 communities	 changes	 in	 relation	 to	 hydro‐
physicochemical	 parameters	 was	 determined	 via	 high‐throughput	
16S	rRNA	gene	sequencing.

2  | METHODS

2.1 | Study area

The	 Liu	 River	 (24°N‐27°N,	 107°E‐111°E)	 is	 a	 tributary	 within	 the	
Pearl	River	system	in	Guangxi,	China,	and	was	formed	by	the	conflu‐
ence	of	the	Rong	and	Long	Rivers	in	Fengshan.	The	Liu	River	passes	
through	 Liuzhou	 city	 (https	://en.wikip	edia.org/wiki/Liu_River	)	 as	
well	 as	 a	 sand/shale	 stone	 area	 and	 limestone	 area,	 as	 indicated	
in	 Figure	 1.	 According	 to	 water	 quality	 monitoring	 data	 in	 China	
(http://123.127.175.45:8082/),	 the	water	 environmental	 quality	 of	
the	Liu	River	belongs	to	class	II	or	III,	suggesting	that	the	river	can	
be	used	as	a	water	resource	for	domestic	use.	In	addition,	under	the	
influence	of	the	East	Asian	monsoon	and	South	Asian	monsoon,	71%	
of	 the	 annual	 precipitation	 (1004	 mm)	 occurs	 between	 April	 and	
August.	The	mean	temperature	from	December	to	March	is	12.6°C	
(dry‐cold	 season),	 the	 mean	 temperature	 from	 April	 to	 August	 is	
25.5°C	(rainy	hot	season),	and	the	mean	temperature	from	April	to	
August	is	22.4°C	(dry	hot	season).	In	addition,	the	water	flow	of	the	
Liu	River	is	controlled	by	many	dams,	including	a	constructed	rubber	
dam	in	the	city	of	Liuzhou	and	the	Honghua	dam	(between	sampling	
sites	B	and	C)	at	the	hydroelectric	station	(Figure	1),	resulting	in	slow	
water	 flow	 and	 higher	 nutrient	 concentrations.	 From	 upstream	 to	
downstream	in	dammed	Liu	River,	the	sampling	site	before	the	rub‐
ber	dam	is	named	A	(city‐river	section),	the	sampling	site	before	the	
Honghua	dam	is	named	B	(reservoir	area),	and	the	sampling	site	after	
the	Honghua	dam	is	named	C	(outflow	area).

2.2 | Sampling procedure and 
hydrological monitoring

A	total	of	23	water	 samples	 for	 the	analysis	of	water	hydro‐phys‐
icochemistry	 and	 bacterioplankton	 community	 structure	 were	

https://en.wikipedia.org/wiki/Liu_River
http://123.127.175.45:8082/
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collected	 in	 March,	 June,	 and	 September	 2016	 using	 a	 standard	
water	sampler	Acc.	to	Ruttner	2	L	(HYDRO‐BIOS,	Germany)	at	three	
sites	in	the	Liu	River	(Figure	1).	To	assess	the	damming	influence	on	
the	spatial‐temporal	dynamics	of	 the	bacterioplankton	community	
composition	and	hydro‐physicochemistry,	water	samples	were	taken	

at	 three	different	depths	 (0,	5,	 and	10	m).	However,	due	 to	water	
level	 changes,	 the	 samples	 in	 the	 reservoir	 area	 and	outflow	area	
lacked	a	layer	at	5	and	10	m.	Samples	were	named	according	to	time	
(M,	March;	J,	June;	and	S,	September),	sampling	site	(A,	B,	and	C),	and	
specific	depth	(0,	5,	and	10	m),	in	that	order	(e.g.,	MA0).

F I G U R E  1  Map	showing	localization	of	the	dammed	Liu	River	in	Liuzhou,	Guangxi,	P.	R.	China	(a).	Timing	and	depth	of	sampling	locations	
in	the	Liu	River	(b).	Sites	(A,	B,	and	C)	illustrate	the	sampling	locations	in	the	Liu	River.	The	blue	triangles	indicate	the	depth	of	the	water	
samples
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Water	samples	(approximately	3	L)	were	prefiltered	using	3	μm 
filter	membranes,	and	then	filtered	through	0.22	μm	pore‐size	filter	
membranes	(Merck	Millipore,	Germany)	in	situ	for	bacterioplankton	
samples.	After	that,	the	filter	membranes	were	stored	at	−80°C	until	
further	processing.

Water	temperature,	pH,	electrical	conductivity	(EC),	DO,	turbidity,	
chlorophyll‐α	(Chlα),	dissolved	organic	nitrogen,	TDSs,	and	Eh	were	ob‐
tained	in	situ	using	a	multiprobe	sensor	(YSI,	USA).	To	understand	the	
distributions	of	ions	in	Liu	River,	K+,	Fe2+,	Mg2+,	NO3

−,	and	SO4
2– were 

analyzed	by	the	ICS‐1600	Starter	Line	IC	System	(Dionex,	USA),	and	
HCO3

−	and	Ca2+	were	titrated	in	situ	using	the	Aquamerck	alkalinity	
and	Hardness	test	kit	(Merck	Millipore,	Germany),	which	plots	a	Piper	
diagram.	The	 results	 indicated	 that	 the	water	 samples	 from	the	Liu	

River	belong	to	the	Ca2+–Mg2+–HCO3
−–SO4

2−	water	type	(Figure	2a	
and	b).	Samples	for	total	nitrogen	(TN),	total	carbon	(TC),	dissolved	or‐
ganic	carbon	(DOC)	and	dissolved	organic	nitrogen	were	collected	ac‐
cording	to	Li,	Song,	et	al.	(	2017)	and	analyzed	using	a	multi	N/CR 3100 
total	 organic	 carbon	 (TOC	 analyzer)	 (Analytik	 Jena	 AG,	 Germany).	
Particulate	organic	carbon	 (POC)	 is	a	broad	term	that	encompasses	
suspended	organic	matter	such	as	phytoplankton;	consequently,	flu‐
vial	δ13C	POC	values	are	a	reflection	of	the	relative	contributions	from	
freshwater	phytoplankton	 (−25‰	to	−30‰)	and	particulate	 terres‐
trial	organic	matter	(−25‰	to	−33‰)	(Lamb,	Wilson,	&	Leng,	2006).	
δ13C	POC	was	 detected	 in	 the	 Institute	 of	Karst	Geology,	 Chinese	
Academy	of	Geological	Sciences	(CAGS),	using	the	Delta	V	Plus	com‐
bined	with	 the	gas	bench	automated	apparatus	 (Thermo	Company,	

F I G U R E  2  Piper	diagram	showing	the	distribution	of	hydro‐physicochemical	data	in	the	dammed	Liu	River	(a).	Relationship	between	
[HCO3

−]+[SO4
2−]	and	[Ca2+]+[Mg2+]	(b).	PCA	plot	displaying	hydro‐	physicochemical	data	(arrows)	collected	from	sampling	sites	A,	B,	and	C	

at	different	depths	(0,	5,	and	10	m)	in	March	(M),	June	(J),	and	September	(S)	(c).	The	percentage	explained	by	the	axes	is	shown	between	
parentheses.	δ13C	and	C/N	ratios	of	POC	in	the	dammed	Liu	River	(d)
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USA);	 the	error	of	analysis	was	better	 than	0.2	‰	(1σ).	The	 results	
were	expressed	in	δ13C	relative	to	the	Pee	Dee	Belemnite	(PDB)	stan‐
dard,	as	shown	in	Figure	3d.	The	hydro‐physicochemical	characteris‐
tics	of	the	water	samples	are	summarized	in	Table	1.

2.3 | DNA extraction and HiSeq

DNA	 extraction	 was	 performed	 using	 the	 PowerWater®	 DNA	
Isolation	Kit	(Mobio	Laboratories,	Inc.,	Carlsbad,	CA,	USA)	following	
the	manufacturer's	instructions.

For	 HiSeq	 sequencing,	 PCR	 primers	 515F	 (5′‐
CTACCGATTGCGGTGYCAGCMGCCGCGGTA‐3′)	 and	 909R	 (5′‐
CCCCGYCAATTCMTTTRAGT‐3′)	were	 used	 to	 amplify	 the	V4‐V5	
region	of	16S	rRNA	genes	(Tamaki	et	al.,	2011).	The	PCR	products	
targeting	the	V4‐V5	region	of	16S	rRNA	genes	were	purified	using	
the	TIANquick	Maxi	Purification	Kit	[TIANGEN	Biotech	(Beijing)	Co.,	
Ltd,	China].	Then,	16S	rRNA	gene	sequencing	was	performed	on	the	
Illumina	HiSeq	2500	platform	 (Illumina	 Inc.,	San	Diego,	CA)	at	 the	
Chengdu	Institute	of	Biology,	Chinese	Academy	of	Sciences.

2.4 | Bioinformatics analysis and statistical analyses

The	achieved	16S	sequence	data	from	23	water	samples	were	pro‐
cessed	using	the	QIIME	1.7.0	software	(Kuczynski	et	al.,	2012;	Li	
et	 al.,	 2018).	 Low‐quality	 sequences	with	 lengths	 below	150	 bp	
and	 an	 average	 quality	 score	 below	 30	 were	 excluded.	 In	 addi‐
tion,	 sequences	matching	plant	chloroplast	or	mitochondrial	16S	
rRNA	were	also	 filtered	and	rarefaction	of	all	 samples	was	done	
on	the	reader	of	3342.	Representative	sequences	from	each	op‐
erational	taxonomic	unit	(OTU)	cluster	at	the	97%	similarity	level	
were	aligned	with	the	PyNAST	aligner	to	the	SILVA128	ribosomal	
RNA	 databases.	 Consequently,	 590551	 low‐quality	 reads	 gener‐
ated	76866	high‐quality	reads	grouped	into	5979	OTUs.	The	cov‐
erage	 ranged	 from	 95.06%	 to	 98.47%.	 Bootstrap	OTU	 richness,	
Chao	 1	 estimates,	 the	 inverse	 Simpson	 index	 (i.e.,	 a	measure	 of	
evenness)	and	Simpson	diversity	index	were	calculated	on	rarefied	
OTU	tables	to	assess	the	distribution	patterns	of	bacterioplankton	
communities’	OTUs.	Beta‐diversity	measures	(unweighted	UniFrac	
and	Bray–Curtis	distances)	were	visualized	using	principal	coordi‐
nate	analysis	plots	generated	with	the	EMPeror	software	package	
to	assess	 the	similarity	 in	OTU	structure	among	different	bacte‐
rioplankton	 communities	 (Vázquez‐Baeza,	 Pirrung,	 Gonzalez,	 &	
Knight,	 2013).	 The	Partial	Mantel	 test	based	on	Pearson's	prod‐
uct‐moment	 correlation	 was	 applied	 to	 explore	 the	 correlations	
among	bacterioplankton	 communities	 (main	 phyla	with	 the	 rela‐
tive	abundance	>	1%),	temperature,	pH,	DO,	and	nutrition	factors	
(HCO3

−,	Ca2+,	DOC,	TN,	DON,	Fe2+,	NO3
−,	SO4

2−)	using	PASSaGE	
2	 so	 as	 to	 eliminate	 collinearity	 between	 variables	 (Yao	 et	 al.,	
2017).	Moreover,	the	function	inner	plot	in	R	package	Partial	least	
squares‐path	modeling	 (PLS‐PM)	 (Sanchez,	2013)	was	applied	 to	
construct	 the	model	 for	 exploring	 the	 relationships	 among	 bac‐
terioplankton	 communities,	 alpha	 diversity,	 temperature,	 pH,	
DO,	 and	 nutrition	 factors,	which	 can	 help	 us	 to	 visually	 inspect	

the	 model	 defined	 for	 the	 path	 matrix.	 Correlation	 networks	
were	 used	 to	 detect	 the	 interactions	 among	 the	 35	most	 abun‐
dant	OTUs	and	between	these	OTUs	and	hydro‐physicochemical	
variables	(Ávila	et	al.,	2017).	Their	interactions	with	p	values	<0.05	
based	 on	Pearson's	 product‐moment	 correlation	were	 visualized	
and	customized	using	Gephi	0.9.2	(Barberán,	Bates,	Casamayor,	&	
Fierer,	2012).	The	detailed	data	of	16S	rRNA	gene	sequencing	are	
summarized	in	Table	S1.

Moreover,	 correlation	 analyses	 were	 performed	 using	 the	
Pearson	 correlation	 method	 to	 detect	 the	 relationship	 between	
hydro‐physicochemical	 factors	 and	 bacterioplankton	 as	 well	 as	
Tukey	test	were	proposed	to	reveal	significant	differences	with	SPSS	
13.0	software	 for	Windows	XP	 (IBM,	Armonk,	NY,	USA).	Principal	
component	 analysis	 (PCA)	was	used	 to	 investigate	hydro‐physico‐
chemical	 characteristics	 and	 redundancy	 analysis	 (RDA)	was	 used	
to	detect	the	strength	of	hydro‐physicochemical	factors	upon	bac‐
terioplankton	 communities’	 structure	 and	 OTU	 associations	 with	
samples.

3  | RESULTS AND DISCUSSION

3.1 | Hydro‐physicochemical characteristics of 
dammed Liu River

The	spatial‐temporal	hydro‐physicochemical	characteristics	of	the	
dammed	Liu	River	are	listed	in	Table	1	and	Figure	2.	[Ca2+]+[Mg2+]	are	
the	major	cations	with	a	molarity	percentage	of	79.24%~95.09%;	
[HCO3

−]+[SO4
2−]	are	the	major	anions	with	a	molarity	percentage	

of	 85.30~94.33%,	which	 reflected	 the	 combined	 effect	 of	 lime‐
stone	weathering	 (Li	 et	 al.,	2008)	and	acid	precipitation	 ([Ca2+ + 
Mg2+]/[HCO3

− + SO4
2−]≈0.95)	 (Gao	et	 al.,	 2009).	Although	water	

column	thermal	stratification	is	not	evident,	the	spatial‐temporal	
dynamics	of	water	temperatures	are	clear.	In	dammed	rivers,	water	
temperature	usually	increases	from	upstream	to	downstream,	re‐
sulting	 in	 changed	 thermal	 capacities	 (Hanna,	 Saito,	 Bartholow,	
&	 Sandelin,	 1999).	 In	 addition,	 for	 strongly	 seasonal	 rivers	 with	
varying	water	 temperatures,	 26%	of	 the	 variation	 in	water	 tem‐
perature	 is	 attributed	 indirectly	 to	 low	 flow	 changes,	 and	 the	
remaining	 fraction	 is	 attributed	directly	 to	 changed	atmospheric	
energy	 input	 (van	Vliet	et	al.,	2013).	Consequently,	the	tempera‐
ture	 can	 be	 clustered	 into	 three	 groups	 as	 seen	 in	 Figure	 2c.	 In	
addition,	 water	 temperature	 can	 affect	 the	 Ca2+–Mg2+–HCO3

−–
SO4

2−	system	(Beck,	Grossman,	&	Morse,	2005;	Dreybrodt,	2012).	
pH,	DO,	TDS,	and	Eh	covary	with	temperature	behavior	(Pearson's	
r = 0.854,	 −0.964,	 0.552,	 and	 −0.739,	 respectively,	 p < 0.001,	
n	=	23,	two‐tailed)	(Figure	A1).	Water	temperature	also	can	affect	
bacterioplankton	 growth,	 resulting	 in	 oxygen	 uptake	 and	 bacte‐
rioplankton	production	(determining	the	accumulation	of	POC	and	
newly	produced	DOC)	(Lindström,	Kamst‐Van	Agterveld,	&	Zwart,	
2005;	Søndergaard,	Borch,	&	Riemann,	2000).	In	this	respect,	DO	
has	a	significantly	negative	relationship	with	TC	and	DOC	 in	the	
dammed	Liu	River	(Pearson's	r = −0.715	and	−0.687,	respectively,	
p < 0.001,	n	=	23,	two‐tailed).	Thus,	δ13C	and	C/N	ratios	of	POC	
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indicate	that	bacterioplankton	production	is	relating	to	water	tem‐
perature	differences	(Figure	2d),	which	confirms	the	findings	that	
water	 temperature	and	oxygen	have	strong	positive	correlations	
with	bacterioplankton	(Araújo	&	Godinho,	2008).

To	 better	 investigate	 the	 influence	 of	 hydro‐physicochemical	
factors	 on	 bacterioplankton	 community	 structure,	 RDA	 plots	 re‐
vealed	that	bacterioplankton's	OTU	distribution	across	all	 samples	
could	be	mainly	explained	by	the	RDA1	axis	(p = 0.028),	significantly	
correlating	 with	 water	 temperature	 (p = 0.002),	 pH	 (p = 0.002),	
DO	 (p = 0.002),	and	 iron	 (p = 0.004)	 (Figure	3a).	Notably,	 iron	can	
directly	 limit	 bacterial	 growth;	 thus,	 in	 turn,	 bacterioplankton	
account	for	up	to	70%	of	the	total	 iron	uptake	 in	aquatic	environ‐
ments	 (Arrieta,	 Weinbauer,	 Lute,	 &	 Herndl,	 2004;	 Gledhill	 et	 al.,	
2004).	 Moreover,	 hydro‐physicochemical	 variation	 strongly	 cor‐
related	 with	 Proteobacteria‐,	 Bacteroidetes‐,	 Cyanobacteria‐,	 and	
Actinobacteria‐related	OTU	clusters,	suggesting	that	environmental	
variables	had	an	important	influence	on	the	clustering	of	taxonom‐
ically	related	OTUs	(Figure	3a	and	c).	The	network	analysis	showed	
associations	 between	 co‐occurring	OTUs	 and	 environmental	 vari‐
ables	(Figure	3b),	which	were	proven	by	the	links	between	environ‐
mental	drivers	and	tribe	responses	(Newton,	Jones,	Eiler,	McMahon,	
&	Bertilsson,	2011).	Thus,	the	results	support	the	notion	that	bacte‐
rioplankton	in	the	dammed	Liu	River	are	not	there	accidentally	but	
are	the	result	of	a	suite	of	environmental	forces.

3.2 | Spatial‐temporal variations in bacterioplankton 
community composition

Of	 the	 reads,	 96.35%	 were	 assigned	 to	 10	 major	 phyla,	 includ‐
ing	 Proteobacteria,	 Actinobacteria,	 Bacteroidetes,	 Cyanobacteria,	
Verrucomicrobia,	 Planctomycetes,	 Firmicutes,	 Acidobacteria,	
Chloroflexi,	 and	 Armatimonadetes,	 as	 illustrated	 in	 Figure	 4	
(Archaea	 are	 not	 included).	 Among	 these	 bacterioplankton	 phyla,	
Proteobacteria,	 Actinobacteria,	 Bacteroidetes,	 and	 Cyanobacteria	
account	 for	 38.99%–87.24%,	 3.75%–36.55%,	 4.77%–38.90%,	 and	
0%–14.44%	 of	 the	 total	 reads	 (mean	 relative	 frequency),	 respec‐
tively.	These	phyla	have	also	been	found	in	different	relative	propor‐
tions	in	other	freshwater	ecosystems	worldwide	(Ávila	et	al.,	2017;	
Newton	et	al.,	2011).	Notably,	if	a	“core”	assemblage	as	the	subset	of	
OTUs	is	present	in	all	samples,	then	this	assemblage	can	be	defined	
as	a	core	OTU	(Engel,	2010).	Interestingly,	in	our	study,	only	2.31%	of	
all	OTUs	(24	core	OTUs)	are	shared	among	all	23	samples.	The	larg‐
est	group	of	core	OTUs	are	Betaproteobacteria	(10	OTUs),	followed	
by	Actinobacteria	(6	OTUs)	and	Alphaproteobacteria	(4	OTUs).	Most	
of	these	OTUs	were	related	to	strains	or	sequences	obtained	from	
various	aquatic	environments,	especially	karst	groundwater	(Engel,	
2010).

Proteobacteria	 are	dominant	 in	 all	water	 samples	 and	mainly	
consist	 of	 the	 classes	 Alphaproteobacteria,	 Betaproteobacteria,	
Deltaproteobacteria,	 and	 Gammaproteobacteria.	
Betaproteobacteria	 (accounting	 for	 10.77%–74.58%)	 constitute	
the	largest	fraction	of	the	bacterioplankton	community	in	the	Liu	
River,	 as	 shown	 in	 Figure	 A2.	 They	 have	 also	 been	 found	 to	 be	

the	numerically	dominant	group	 in	other	 freshwater	ecosystems	
(Newton	et	 al.,	 2011).	This	 result	 is	 in	 accordance	with	 the	clas‐
sification	 of	 Betaproteobacteria	 as	 r‐strategists	 (Novello	 et	 al.,	
2017),	that	 is,	taxa	able	to	grow	rapidly	under	conditions	of	high	
resource	availability.	In	addition,	the	abundance	of	Proteobacteria	
increases	 with	 depth	 in	 March	 and	 June	 (except	 for	 JC0,	 JC5,	
and	JC10);	however,	 the	abundance	of	Proteobacteria	decreases	
with	depth	in	September.	Betaproteobacteria	have	a	similar	vari‐
ation	 pattern,	 though	 they	 are	 often	 the	most	 abundant	 bacte‐
ria	 inhabiting	 the	 upper	 waters	 of	 lakes	 (Newton	 et	 al.,	 2011).	
Previous	 studies	 demonstrated	 that	 Proteobacteria	 are	 involved	
in	 a	 variety	 of	 biogeochemical	 processes	 in	 aquatic	 ecosystems	
(Damashek	&	Francis,	2018;	Xu	et	 al.,	 2014;	Zhang	et	 al.,	 2015).	
Thus,	they	are	more	active	due	to	a	greater	availability	of	POC	and	
DOC	at	 that	depth,	as	seen	 in	Figures	2d	and	3a,	which	demon‐
strates	 that	depth	has	a	 significant	effect	on	 their	 abundance	 in	
freshwater	 (Gattuso,	Peduzzi,	Pizay,	&	Tonolla,	2002).	Notably,	a	
significant	increase	in	Proteobacteria	occurs	during	the	rainy,	hot	
season	 (June),	 which	 is	 generally	 a	 period	 of	 increased	 grazing	
by	phagotrophic	protists	 (Newton	et	al.,	2011).	Among	 the	most	
frequent	Proteobacterial	OTUs,	OTUs	1,	28,	and	29	are	classified	
into	Alphaproteobacteria;	OTUs	2,	 5,	 8,	 6,	 9,	 14,	 16,	 19,	 26,	 30,	
35,	 and	65	are	 classified	 into	Betaproteobacteria;	 and	OTUs	10,	
13,	 15,	 17,	 20,	 and	 34	 are	 classified	 into	Gammaproteobacteria.	
Alphaproteobacteria	 are	 at	 the	 hub	 of	 the	 global	 nitrogen	 cycle	
(Newton	et	al.,	2011).	 Indeed,	 the	genus	Brevundimonas	 (OTU	1)	
has	a	small	angle	with	dissolved	organic	nitrogen	and	nitrate,	as	in‐
dicated	in	Figure	3a,	suggesting	that	they	are	nitrogen‐fixing	bacte‐
ria	(Liu,	Peng,	&	Li,	2012).	In	addition,	the	genera	Novosphingobium 
(OTU	 28)	 and	 Zymomonas	 (OTU	 29)	 have	 small	 angles	 with	 tur‐
bidity.	 In	 previous	 studies,	 Novosphingobium	 was	 often	 isolated	
from	humic‐rich	 subsurface	water	 (Glaeser	 et	 al.,	 2013;	Hutalle‐
Schmelzer,	Zwirnmann,	Krüger,	&	Grossart,2010),	and	sugar	is	an	
important	 factor	 for	Zymomonas	cells	 (Sulfahri,	Amin,	Sumitro,	&	
Saptasari,	2016),	which	can	be	reflected	by	water	turbidity	 (Lind	
et	 al.,	 1992).	 In	 contrast	 to	 Alphaproteobacteria‐related	 OTUs,	
Betaproteobacteria‐related	OTUs	5,	6,	65,	 and	30	belong	 to	 the	
family	Comamonadaceae;	Betaproteobacteria‐related	OTUs	2	and	
16	belong	to	the	families	Hydrogenophilaceae	and	Neisseriaceae;	
Betaproteobacteria‐related	OTUs	 8	 and	 35	 belong	 to	 the	 genus	
Variovorax;	 Betaproteobacteria‐related	 OTUs	 9	 and	 26	 belong	
to the genus Polynucleobacter;	 Betaproteobacteria‐related	 OTU	
19	 is	 affiliated	 with	 clade	 OM43;	 and	 Betaproteobacteria‐re‐
lated	OTU	14	 is	affiliated	with	an	unknown	order.	RDA	revealed	
that	 depth,	 pH,	 carbon	 substrate	 preferences,	 and	 time	 factors	
are	 closely	 related	 to	 Betaproteobacteria‐related	OTUs,	 as	 con‐
firmed	 by	 Figure	 3a.	 Although	 the	 Gammaproteobacteria,	 like	
Alphaproteobacteria,	are	not	particularly	abundant	 in	freshwater	
lakes,	 Gammaproteobacteria‐related	 OTUs	 are	 positively	 cor‐
related	with	nutrient	availability,	as	indicated	by	the	small	angles	
among	 OTU	 10	 and	 TN,	 among	 Gammaproteobacteria‐related	
OTUs	17	and	34	and	water	turbidity,	among	Gammaproteobacteria‐
related	 OTUs	 15	 and	 20	 and	 nitrate	 as	 well	 as	 among	
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Gammaproteobacteria‐related	OTU	13	 and	dissolved	organic	 ni‐
trogen,	which	prove	 that	members	of	 the	Gammaproteobacteria	
exhibited	even	 faster	growth	 rates	when	nutrition	was	added	 to	
enclosures	(Gasol	et	al.,	2002;	Newton	et	al.,	2011).	Moreover,	the	
heat	map	showed	that	co‐occurring	Proteobacteria‐related	OTUs	
can	be	classified	into	three	groups	according	to	the	spatial‐tempo‐
ral	variations,	as	confirmed	by	Figure	3a.

The	 phylum	Actinobacteria	 is	 often	 the	 numerically	 dominant	
phylum	 in	 lakes,	where	 it	 can	 account	 for	 50%	of	 the	 bacteria	 in	
the	 surface	 waters	 and	 is	 present	 in	 the	 bottom	 waters	 of	 lakes	
(Newton	 et	 al.,	 2011).	 However,	 Actinobacteria	 account	 for	 only	
a	moderate	 fraction	 in	 the	Liu	River,	a	 result	 that	 is	 similar	 to	 the	
observed	 results	 in	 Carioca	 and	 Gambazinho	 lakes	 (Ávila	 et	 al.,	
2017).	 The	 abundance	 of	 Actinobacteria	 has	 no	 obvious	 pattern	
with	depth;	however,	we	noted	a	significant	increase	during	the	dry,	
cold	season	(March),	which,	in	general,	is	a	period	without	high	in‐
cident	 solar	UV	 radiation	 and	extreme	daily	 temperature	 changes	
(Dorador,	Vila,	Witzel,	&	Imhoff,	2013).	Similarly,	in	Lakes	Chungará	
and	Cotacotani,	the	relative	abundance	of	Actinobacteria	was	also	
high	 in	 the	 dry,	 cold	 season	 than	 that	 in	 the	wet	 season	 (Aguilar,	

Dorador,	 Vila,	 &	 Sommaruga,	 2018).	Moreover,	 the	 abundance	 of	
Actinobacteria	often	decreases	with	decreasing	oxygen	concentra‐
tions	 (Newton	et	al.,	2011)	and	pH	has	been	 identified	as	another	
driver	 of	 the	 Actinobacteria	 clade	 and	 tribe	 distribution	 (Newton	
et	al.,	2011).	In	contrast,	in	this	study	Actinobacteria	have	no	signif‐
icant	correlations	with	DO	and	pH.	Besides	that,	our	study	showed	
that	 among	 Actinobacteria,	 OTUs	 3,	 4,	 7,	 25,	 and	 1125	 affiliated	
with	 the	 hgcIclade	 as	well	 as	OTUs	 12	 and	 18	 affiliated	with	 the	
CL500‐29	marine	group	are	always	the	most	abundant	OTUs	in	the	
Liu	 River.	 The	 presence	 of	 the	 CL500‐29	 marine	 group	 was	 sur‐
prising,	as	it	has	been	found	primarily	in	marine	ecosystems,	while	
through	 the	work	of	Zwart	 and	others	 (Zwart,	Crump,	Kamst‐van	
Agterveld,	Hagen,	&	Han,	2002),	 the	CL500‐29	marine	group	was	
determined	to	exist	in	freshwater	rivers	and	lakes.	Moreover,	OTUs	
4	and	18	are	positively	correlated	with	pH;	OTUs	3,	7,	12,	and	1125	
are	positively	correlated	with	dissolved	organic	nitrogen;	and	OTU	
25	 is	positively	correlated	with	nitrate,	as	 indicated	by	 their	 small	
angles	in	Figure	3a,	suggesting	that	the	abundance	and	distribution	
of	the	freshwater	Actinobacteria	are	related	to	the	chemical–phys‐
ical	 properties	 of	 the	 Liu	 River.	 In	 addition,	members	 of	 the	 hgcI	

F I G U R E  4  Comparison	of	the	quantitative	contribution	of	the	sequences	affiliated	with	different	bacterial	phyla	to	the	total	number	
of	sequences	from	the	water	samples.	Sequences	not	classified	to	any	known	phylum	are	included	as	unassigned	bacteria.	In	each	water	
sample,	bacterial	phyla	with	a	largest	relative	frequency	of	less	than	1%	are	included	as	others
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clade	belonging	to	the	phylum	Actinobacteria	are	known	to	have	a	
competitive	advantage	over	others	in	lakes	that	are	characterized	by	
low	DOC	and	low	temperature	(Glöckner	et	al.,	2000).

Bacteroidetes	have	colonized	many	different	ecological	niches,	
including	 freshwater,	 where	 they	 display	 various	 biological	 func‐
tions.	 Although	 Ávila	 et	 al.	 (2017)	 detected	 few	 Bacteroidetes	 in	
Carioca	and	Gambazinho	lakes,	in	this	study,	there	are	three	distinct	
classes	 within	 the	 Bacteroidetes:	 Flavobacteriales,	 Cytophagales,	
and	 Sphingobacteriales	 (Figure	 A2).	 Interestingly,	 Bacteroidetes,	
which	have	the	propensity	to	occur	during	periods	or	at	sites	char‐
acterized	by	high	external	DOC	loading	(Newton	et	al.,	2011),	have	
a	significantly	negative	correlation	with	DOC	(Pearson's	r = −0.445,	
p = 0.034,	 n	 =	 23,	 two‐tailed).	 O'Sullivan,	 Rinna,	 Humphreys,	
Weightman,	and	Fry	 (2006)	noted	 that	Bacteroidetes	are	 involved	
in	 organic	 carbon	 cycling,	 particularly	 in	 terms	 of	 the	 utilization	
of	 high	 molecular	 mass	 dissolved	 organic	 matter	 in	 nutrient‐rich	
aquatic	 habitats.	 Consequently,	 fast‐growing	 Bacteroidetes	 are	
related	 to	 elevated	 concentrations	 of	 DOC	 (Ruiz‐González	 et	 al.,	
2013).	 In	 addition,	 Bacteroidetes‐related	 OTU	 22	 is	 classified	 as	
Sediminibacterium	 (Sphingobacteriales),	 OTUs	 50	 and	 32	 are	 clas‐
sified	 as	 Flavobacterium	 (Flavobacteriales),	 OTU	 11	 is	 classified	
as	 Pseudarcicella	 (Cytophagaceae),	 and	 OTU	 21	 is	 classified	 as	
Cloacibacterium	 (Flavobacteriales).	 Cloacibacterium	 (OTU	 21)	 was	
positively	 correlated	 with	 TC	 and	 DOC,	 and	 Sediminibacterium 
(OTU	22),	Flavobacterium	(OTUs	50	and	32)	and	Pseudarcicella	(OTU	
11)	were	 negatively	 correlated	with	TC	 and	DOC,	 as	 indicated	by	
their	 small	 angles	 in	 Figure	 3a,	 suggesting	 that	 Flavobacteriales,	
Cytophagales,	and	Sphingobacteriales	have	different	organic	carbon	
utilization	rates	and	sizes	(Reintjes,	Arnosti,	Fuchs,	&	Amann,	2017)	
that	have	previously	been	overlooked.	 In	addition,	Cloacibacterium 
(OTU	 21)	 is	 positively	 correlated	with	 iron	 (Figure	 3a),	 suggesting	
that	Cloacibacterium	growth	 is	 limited	by	 iron	 (Arrieta	et	al.,	2004;	
Gledhill	et	al.,	2004).

Cyanobacteria	 are	 the	 largest	 and	 most	 widely	 distributed	
group	 of	 photosynthetic	 prokaryotes,	 found	 in	 ecosystems	 rang‐
ing	from	marine	and	freshwater	to	terrene	(Stanier	&	Bazine,	1977).	
Interestingly,	Cyanobacteria	account	for	only	a	small	fraction	and	are	
hardly	detected	in	MA10	and	MB10.	In	addition,	the	Cyanobacteria	
abundance	increases	with	depth	(except	for	MC	and	SB),	and	their	
abundances	 are	 higher	 in	 March	 and	 September	 than	 in	 June.	
This	 observation	 was	 supported	 by	 the	 fact	 that	 river	 damming	
leads	 to	 the	disappearance	of	 cyanobacterial	 blooms	 (Domingues,	
Barbosa,	&	Galvão,	2014)	and	that	cyanobacterial	growth	is	usually	
enhanced	by	high	water	 residence	 times	during	 the	dry,	 cold	 sea‐
son	 and	 dry,	 hot	 season	 with	 low	 freshwater	 flows	 (Domingues,	
Barbosa,	&	Galvao,	 2005).	Under	 these	 conditions,	Cyanobacteria	
can	grow	abundantly	and	 form	extensive	blooms,	as	confirmed	by	
Figure	 2d.	 The	 freshwater	 Bacteroidetes	 are	 often	 found	 during	
periods	 following	 cyanobacterial	 blooms;	 however,	 no	 correla‐
tion	 between	 the	 freshwater	 Cyanobacteria	 and	 Bacteroidetes	
(Pearson's	 r = −0.112,	p = 0.610,	n	=	23,	 two‐tailed)	 is	observed	 in	
our	study,	casting	doubt	on	their	relationship	that	has	been	reported	
(Newton	 et	 al.,	 2011).	However,	 freshwater	 Cyanobacteria	 have	 a	

significantly	 negative	 correlation	 with	 Proteobacteria	 (Pearson's	
r = ‐0.486,	 p = 0.048,	 n	 =	 23,	 two‐tailed).	 The	 relationships	 be‐
tween	Cyanobacteria	and	Alphaproteobacteria,	Betaproteobacteria,	
Deltaproteobacteria	as	well	 as	Gammaproteobacteria	are	also	dis‐
cussed.	 Notably,	 Cyanobacteria	 have	 a	 significantly	 negative	 cor‐
relation	with	Alphaproteobacteria	 (Pearson's	 r = −0.769,	p = 0.00,	
n	 =	 23,	 two‐tailed)	 and	 a	 significantly	 positive	 correlation	 with	
Betaproteobacteria	 (Pearson's	 r = 0.864,	 p = 0.00,	 n	 =	 23,	 two‐
tailed).	Some	Cyanobacteria	are	able	to	produce	potent	toxins	and	
have	 drastic	 impacts	 on	 the	 ecosystem	 and	 surrounding	 commu‐
nities	 (Steffen	 et	 al.,	 2012).	 Consequently,	 cyanobacterial	 blooms	
will	disrupt	aquatic	food	webs	and	act	as	a	driver	of	hypoxia,	espe‐
cially	changing	the	sensitivity	of	Proteobacteria	to	grazing	pressure	
(Eiler,	Olsson,	&	Bertilsson,	 2006).	As	 exposed,	 common	 freshwa‐
ter	 lake	 genera	 belonging	 to	 Cyanobacteria	 include	 Microcystis, 
Anabaena, Aphanizomenon, Oscillatoria, Planktothrix, Synechococcus,	
and	Cyanothece	 (Newton	 et	 al.,	 2011);	 however,	 in	 our	 study,	 the	
top	 Cyanobacteria‐related	 OTUs	 23	 and	 49	 are	 classified	 into	
Prochlorococcus. Prochlorococcus	(OTUs	23	and	49)	are	positively	cor‐
related	with	Chlα,	as	indicated	by	their	small	angles	in	Figure	3a,	as	
previously	reported	by	Domingues	et	al.	(2014).	The	results	suggest	
that	they	might	contribute	significantly	to	global	primary	productiv‐
ity	through	oxygenic	photosynthesis	(Boekema	et	al.,	2001;	Newton	
et	al.,	2011;	Stanier	&	Bazine,	1977).	In	addition,	Prochlorococcus	has	
small	 angles	with	 dissolved	 organic	 nitrogen	 and	 nitrate,	 suggest‐
ing	 that	 they	 can	 play	 a	 key	 role	 in	 nutrient	 cycling	 in	 freshwater	
(Stanier	&	Bazine,	1977).	Cyanobacteria‐related	OTU	23	is	positively	
correlated	with	iron	(Figure	3a),	which	is	supported	by	the	iron	lim‐
itation	of	Prochlorococcus	sp.	(Mann	&	Chisholm,	2000).

3.3 | Spatial‐temporal variations of 
bacterioplankton community diversity

To	 investigate	 the	 effects	of	 spatial	 (sampling	 site	 and	depth)	 and	
temporal	(season)	changes	on	bacterioplankton	communities,	we	ex‐
amined	alpha	and	beta	diversity	(Figure	4	and	Appendix	Table	A1).	
According	to	the	numbers	of	observed	and	estimated	OTUs	as	well	
as	Shannon	and	Simpson	diversity	 in	 the	Liu	River,	alpha	diversity	
shows	 highly	 spatial‐temporal	 variations,	 however,	 alpha	 diversity	
measures	have	no	significant	difference	with	depths.	The	Shannon	
and	Simpson	diversity	measures	in	outflow	area	have	the	significant	
difference	with	 these	measures	 in	 city‐river	 section	 and	 reservoir	
area.	 As	 to	 the	 season	 changes	 of	 bacterioplankton	 communities,	
the	numbers	of	 estimated	OTUs	 (Chao	1)	 as	well	 as	 Shannon	 and	
Simpson	diversity	in	June	have	the	significant	difference	with	them	
in	March	and	September.	 In	 this	 respect,	 rapid	decreases	 in	 alpha	
diversity	usually	appear	in	March	and	September.	Although	a	two‐
tailed	Pearson	correlation	showed	that	TDS	has	a	significantly	posi‐
tive	correlation	with	Chao1	and	the	observed	OTUs	(r = 0.557	and	
0.597,	respectively,	p < 0.01,	n	=	23),	Eh	has	a	significantly	negative	
correlation	with	the	observed	OTUs	(r = −0.462,	p < 0.05,	n	=	23),	and	
turbidity	 has	 a	 significantly	 positive	 correlation	with	 the	 Shannon	
and	 Simpson	 indexes	 and	 observed	 OTUs	 (r = 0.591,	 0.468,	 and	



     |  11 of 18YU et al.

0.497,	respectively,	p < 0.05,	n	=	23),	a	one‐tailed	Pearson	correla‐
tion	indicated	that	temperature	also	has	a	significantly	positive	cor‐
relation	with	the	Shannon	index	and	observed	OTUs	(r = 0.353	and	
0.354,	respectively,	p < 0.05,	n	=	23),	and	DO	has	a	significantly	nega‐
tive	correlation	with	the	Shannon	index	(r = −0.368,	p < 0.05,	n	=	23).	
Indeed,	 Ávila	 et	 al.	 (2017)	 found	 that	 DO	 showed	 a	 significantly	
negative	 correlation	with	 the	 Shannon	 index	 in	 two	 tropical	 shal‐
low	lakes	in	the	Brazilian	Atlantic	Forest,	as	indicated	by	regression	

analysis;	however,	the	regression	results	about	DO	and	the	Shannon	
index	are	not	significant	in	our	study	(R2	=	0.368,	p = 0.084).

Moreover,	 higher	 alpha	 diversity	 is	 usually	 found	 at	 the	 sur‐
face	water	 in	the	JB	and	JC	samples,	whereas	the	JA	sample	has	
higher	alpha	diversity	at	a	depth	of	5	m.	Although	alpha	diversity	
measures	 have	 no	 significant	 difference	 with	 depths	 (Appendix	
Table	A1),	 the	high	alpha	diversity	values	of	 the	JA5	sample	may	
be	attributed	to	a	less	stressful	environment	due	to	higher	nutrient	

F I G U R E  5  Alpha	diversity	of	the	bacterioplankton	communities	of	the	Liu	River	(a).	PCA	plots	of	bacterioplankton	community	structure	
based	on	the	unweighted	UniFrac	and	Bray–Curtis	distances	(b)
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availability	 and	 isolation	 from	 external	 disturbances,	 such	 as	UV	
radiation,	 wind,	 and	 waves	 at	 this	 layer	 (Ávila	 et	 al.,	 2017).	 In	
contrast,	 the	 alpha	diversity	 values	 are	 lower	 in	 the	 surface	 and	
bottom	layers	of	the	MB0	and	SA10	samples,	suggesting	that	an‐
thropogenic	 activity	 (e.g.,	 shipping	 activity,	 fishing	 or	 swimming)	
can	decrease	bacterioplankton	diversity	 in	 the	surface	 layer,	and	
the	 input	 of	 sand/mud	 restricts	 supplemental	 energy	 generation	
by	light	harvesting	for	bacterioplankton	(Gómez‐Consarnau	et	al.,	
2007),	as	confirmed	in	Table	1.	Compared	with	site	C,	site	A	and	B	
under	the	impact	of	a	long	water‐retention	time	is	quite	stable	with	
slow	rates	of	water	flow,	high	water	transparency	and	high	nutrient	
levels,	which	 in	 turn	enhance	 the	difference	of	bacterioplankton	
(Yang	et	al.,	2018),	as	seen	in	Appendix	Table	A1.	Interestingly,	in	
our	study,	 the	alpha	diversity	with	minimal	spatial‐temporal	vari‐
ations	 in	 other	 C	 samples	may	 be	 attributed	 to	 the	 influence	 of	
water	 discharge	 of	 the	 Honghua	 dam	 resulting	 in	 a	 normalized	
bacterioplankton	 community;	 however,	 the	 hydro‐physicochemi‐
cal	characteristics	of	site	C	are	different.	Moreover,	because	site	

C	and	B	are	directly	connected	along	the	Honghua	dam,	the	JC0	
sample	also	has	high	alpha	diversity	values.

On	the	basis	of	the	fact	that	bacterioplankton	community	mem‐
bers	turn	over	quickly	in	response	to	changing	environmental	condi‐
tions	and	beta	diversity	is	the	variation	in	species	composition	among	
sites	in	a	geographic	area	(Legendre,	Borcard,	&	Peres‐Neto,	2005),	
we	used	the	unweighted	UniFrac	and	Bray–Curtis	distances	of	beta	
diversity,	independent	of	changes	in	alpha	diversity,	to	compare	the	
range	 of	 bacterioplankton	 diversity	 in	 spatial‐temporal	 variations	
(Figure	5).	Highly	similar	communities	 (three	clusters)	are	observed	
at	the	same	sampling	time,	suggesting	that	a	mixed	seasonal	environ‐
ment	can	facilitate	bacterial	coexistence	(Huang,	Dong,	Jiang,	Wang,	
&	Yang,	2016),	as	confirmed	by	Appendix	Table	A1.	Interestingly,	the	
community	structures	of	site	C	in	March	and	September	deviate	from	
their	 corresponding	 clusters	 and	 appear	 together	 in	 the	 rainy,	 hot	
season	cluster.	This	observation	is	supported	by	the	fact	that	water	
discharge	 of	 the	 Honghua	 dam	 results	 in	 similar	 bacterioplankton	
niches	and	a	higher	input	of	allochthonous	organic	matter	during	the	

TA B L E  2  The	influences	of	hydro‐physicochemical	factors	on	bacterioplankton	communities	by	a	partial	Mantel	test

Effect of controlling for 
bacterioplankton community

Temperature pH Dissolved oxygen

pH Nutrition Nutrition Temperature pH Nutrition

r p r p r p r p r p r p

 0.263 0.001 0.307 0.001 0.161 0.041 0.331 0.001 0.395 0.001 0.407 0.001

F I G U R E  6  Directed	graph	of	the	PLS‐PM	of	temperature,	pH,	DO,	and	nutritional	effects	on	bacterioplankton	communities.	Note:	The	
path	coefficients	and	the	explained	variability	(R2)	were	calculated	after	999	bootstraps.	The	width	of	the	arrows	indicates	the	strength	of	
the	causal	influence.	Blue	solid	arrows	indicate	positive	direct	effects,	red	solid	arrows	indicate	negative	direct	effects,	and	blue	dashed	
arrows	indicate	positive	indirect	effects.	Models	with	different	structures	were	assessed	using	the	GoF	statistic,	a	measure	of	the	overall	
prediction	performance.	For	the	model	represented	here,	the	GoF	was	0.501
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rainy,	hot	season,	providing	nutrients	for	bacterioplankton	(Brandão,	
Staehr,	&	Bezerra‐Neto,	2016).	In	addition,	unweighted	UniFrac	and	
Bray–Curtis	 analyses	 revealed	 an	 enhanced	 dissimilarity	 between	
communities,	suggesting	that	stratification	determines	the	phyloge‐
netic	 diversity	 in	 each	 community	 layer,	 as	 previously	 reported	by	
Ávila	et	al.	(2017)	in	two	tropical	shallow	lakes	in	the	Brazilian	Atlantic	
Forest.	Overall,	our	results	suggest	that	spatial‐temporal	variations	in	
bacterioplankton	community	 structure	are	 shaped	by	hydro‐physi‐
cochemical	variability	relating	to	water	temperature	differences.

3.4 | Relationship of bacterioplankton communities 
with hydro‐physicochemical properties

To	explore	 the	key	drivers	shaping	bacterioplankton	communities	 in	
the	dammed	Liu	River,	we	provided	comprehensive	results	using	a	vari‐
ety	of	statistical	methods.	The	partial	Mantel	test	(permutations	=	999)	
shows	the	significant	effects	of	temperature	on	the	bacterioplankton	
community	(p < 0.01)	when	pH	and	nutrition	factors	were	controlled	
(Table	 2).	 pH	 is	 significantly	 correlated	 with	 bacterioplankton	 com‐
munities	(r = 0.161,	p = 0.041)	when	the	nutrition	factor	is	controlled.	
DO	is	also	significantly	correlated	with	bacterioplankton	communities	
(p < 0.01)	when	temperature,	pH,	and	nutrition	factors	are	controlled.

In	addition,	the	PLS‐PM	is	represented	here	with	a	goodness‐of‐
fit	 (GoF)	 value	 of	 0.501	 to	 integrate	 the	 complex	 interrelationships	
among	 environmental	 factors	 and	 bacterioplankton	 communities	
(Figure	6).	According	to	the	PLS‐PM,	temperature,	and	nutrition	exert	
direct	 positive	 effects	 on	 bacterioplankton	 composition	 and	 alpha	
diversity,	and	pH	exerts	direct	negative	effects	on	bacterioplankton	
composition	and	alpha	diversity;	however,	DO	exerts	a	direct	negative	
effect	on	bacterioplankton	composition	and	a	direct	positive	effect	
on	alpha	diversity.	Notably,	temperature	exerts	significant	positive	or	
negative	effects	on	pH,	DO,	and	nutrition,	which	in	turn	cast	the	influ‐
ences	on	bacterioplankton	composition	and	alpha	diversity	(Figure	6).	
pH	is	a	major	environmental	determinant	shaping	the	patterns	of	bac‐
terioplankton	 biodiversity	 and	 bacterioplankton	 community	 struc‐
tures	 (Yun	 et	 al.,	 2016);	 however,	we	have	 very	 limited	 information	
about	the	patterns	and	processes	by	which	overall	bacterioplankton	
communities	assemble	across	wide	pH	gradients	in	karst	waters	(Ren	
et	al.,	2015).	DO	exerts	a	direct	negative	effect	on	bacterioplankton	
composition,	thus	contributing	to	the	shape	of	community	structures	
of	 anoxygenic	 and	 oxygenic	 phototrophic	 bacteria	 in	 the	 dammed	
Liu	River	(Taipale,	Jones,	&	Tiirola,	2009).	It	should	be	noted	that	pH,	
DO,	and	nutrition	are	affected	by	water	 temperature;	consequently	
temperature	plays	pivotal	 roles	 in	maintaining	aquatic	bacterial	bio‐
diversity	patterns	 and	bacterioplankton	 community	 composition,	 as	
previously	reported	by	Wang,	Pan,	Soininen,	Heino,	and	Shen	(2016).

4  | CONCLUSION

In	the	dammed	Liu	River,	thermal	regimes	have	been	altered,	which	
has	resulted	in	considerable	spatial‐temporal	differences	in	TDS,	Eh,	

DO,	and	pH	that	were	strongly	related	to	the	Ca2+–Mg2+–HCO3
−–

SO4
2−	water	type	and	formed	a	different	microenvironment	for	bac‐

terioplankton.	In	this	respect,	the	dominant	bacterioplankton	phyla	
Proteobacteria,	Actinobacteria,	Bacteroidetes,	 and	Cyanobacteria	
account	 for	 38.99%–87.24%,	 3.75%–36.55%,	 4.77%–38.90%,	 and	
0%–14.44%	 of	 the	 total	 reads	 (mean	 relative	 frequency),	 respec‐
tively.	The	dammed	Liu	River	is	also	populated	by	typical	freshwa‐
ter	groups,	 such	as	Brevundimonas, Novosphingobium, Zymomonas, 
the	 Actinobacteria	 hgcI	 clade,	 the	 CL500‐29	 marine	 group,	
Sediminibacterium, Flavobacterium, Pseudarcicella, Cloacibacterium, 
and	Prochlorococcus,	which	covary	with	spatial‐temporal	variations	
of	hydro‐physicochemical	factors.	In	addition,	these	groups	played	
a	 key	 role	 in	 the	 carbon/nitrogen	 cycle	 and	 contributed	 to	 karst	
river	metabolism.	Temperature	without	clear	water	column	thermal	
stratification	plays	pivotal	roles	 in	maintaining	the	hydro‐physico‐
chemical	factors	and	the	aquatic	bacterial	biodiversity	patterns	 in	
the	dammed	Liu	River.	This	result	highlights	the	concept	that	eco‐
logical	 niches	 for	 aquatic	 bacteria	 in	 dammed	 karst	 rivers	 do	 not	
occur	 accidentally	 but	 are	 the	 result	 of	 a	 suite	 of	 environmental	
forces.
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APPENDIX 

TA B L E  A 1  Mean	alpha‐diversity	of	sampling	site,	specific	depth	and	time

Sampling site Chao1 Shannon Simpson Observed 

A 376.93	±	84.03	a 5.27	±	0.45	b 0.93	±	0.02	b 246.67	±	48.22	a

B 376.53	±	166.70	a 5.33	±	0.70	b 0.93	±	0.03	b 258.75	±	108.09	a

C 419.04	±	81.41	a 5.98	±	0.28	a 0.96	±	0.01	a 292.50	±	58.58	a

Specific depth Chao1 Shannon Simpson Observed 

0 424.83	±	133.68	a 5.61	±	0.66	a 0.94	±	0.03	a 282.11	±	90.44	a

5 m 397.09	±	111.23	a 5.56	±	0.50	a 0.94	±	0.02	a 270.38	±	72.29	a

10 m 319.78	±	65.90	a 5.16	±	0.56	a 0.92	±	0.03	a 223.83	±	45.55	a

Time Chao1 Shannon Simpson Observed 

March 319.00	±	62.86	b 5.12	±	0.46	b 0.93	±	0.02	a 206.78	±	36.77	b

June 495.77	±	125.02	a 5.97	±	0.49	a 0.95	±	0.02	a 337.63	±	73.94	a

September 346.94	±	32.17	b 5.36	±	0.46	b 0.93	±	0.03	a 247.17	±	18.57	b

Values	are	the	mean	of	analytical	replicates	for	each	sample	±	standard	deviations.	Statistical	pairwise	multiple	comparisons	of	data	homo‐
geneity	were	carried	out	by	the	Tukey	test:	means	with	the	same	letter	in	the	same	column	are	not	significantly	different	at	P < 0.05.

F I G U R E  A 1  Change	in	TDS,	oxidation‐reduction	potential,	dissolved	oxygen,	and	pH	with	water	temperature
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F I G U R E  A 2  Comparison	of	the	
quantitative	contribution	of	the	sequences	
affiliated	with	different	class
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