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Abstract

Background: Hepatocellular carcinoma (HCC) is a disease with a high incidence and
a poor prognosis. Growing amounts of evidence have shown that the immune
system plays a critical role in the biological processes of HCC such as progression,
recurrence, and metastasis, and some have discussed using it as a weapon against a
variety of cancers. However, the impact of immune-related genes (IRGs) on the
prognosis of HCC remains unclear.

Methods: Based on The Cancer Gene Atlas (TCGA) and Immunology Database and
Analysis Portal (ImmPort) datasets, we integrated the ribonucleic acid (RNA)
sequencing profiles of 424 HCC patients with IRGs to calculate immune-related
differentially expressed genes (DEGs). Survival analysis was used to establish a
prognostic model of survival- and immune-related DEGs. Based on genomic and
clinicopathological data, we constructed a nomogram to predict the prognosis of
HCC patients. Gene set enrichment analysis further clarified the signalling pathways
of the high-risk and low-risk groups constructed based on the IRGs in HCC. Next, we
evaluated the correlation between the risk score and the infiltration of immune cells,
and finally, we validated the prognostic performance of this model in the GSE14520
dataset.

(Continued on next page)

© The Author(s). 2021 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to
the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The
images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise
in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain
Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless
otherwise stated in a credit line to the data.

Yan et al. BioData Mining           (2021) 14:29 
https://doi.org/10.1186/s13040-021-00261-y

http://crossmark.crossref.org/dialog/?doi=10.1186/s13040-021-00261-y&domain=pdf
http://orcid.org/0000-0002-5428-7110
mailto:awen681029@163.com
mailto:awen681029@163.com
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


(Continued from previous page)

Results: A total of 100 immune-related DEGs were significantly associated with the
clinical outcomes of patients with HCC. We performed univariate and multivariate
least absolute shrinkage and selection operator (Lasso) regression analyses on these
genes to construct a prognostic model of seven IRGs (Fatty Acid Binding Protein 6
(FABP6), Microtubule-Associated Protein Tau (MAPT), Baculoviral IAP Repeat Containing
5 (BIRC5), Plexin-A1 (PLXNA1), Secreted Phosphoprotein 1 (SPP1), Stanniocalcin 2
(STC2) and Chondroitin Sulfate Proteoglycan 5 (CSPG5)), which showed better
prognostic performance than the tumour/node/metastasis (TNM) staging system.
Moreover, we constructed a regulatory network related to transcription factors (TFs)
that further unravelled the regulatory mechanisms of these genes. According to the
median value of the risk score, the entire TCGA cohort was divided into high-risk and
low-risk groups, and the low-risk group had a better overall survival (OS) rate. To
predict the OS rate of HCC, we established a gene- and clinical factor-related
nomogram. The receiver operating characteristic (ROC) curve, concordance index (C-
index) and calibration curve showed that this model had moderate accuracy. The
correlation analysis between the risk score and the infiltration of six common types of
immune cells showed that the model could reflect the state of the immune
microenvironment in HCC tumours.

Conclusion: Our IRG prognostic model was shown to have value in the monitoring,
treatment, and prognostic assessment of HCC patients and could be used as a
survival prediction tool in the near future.

Keywords: Hepatocellular carcinoma, Immune-related genes, Prognostic model,
Nomogram, Immune infiltration

Introduction
Ranking sixth in worldwide incidence, primary liver cancer (PLC) is the fourth-

leading cause of cancer-related mortality [1]. Hepatocellular carcinoma (HCC), the

most common pathological type of PLC, accounts for approximately 90% of re-

ported cases [2–5]. Hepatitis B and C viruses are the biggest risk factors for HCC

[6]. Application of the hepatitis B virus vaccine has caused the incidence of HCC

to decline [7]. Leaving aside patients who are diagnosed at an early stage or eli-

gible for potentially curative therapies, treatment for advanced HCC is limited due

to its heterogeneity, and the overall prognosis of HCC patients is still unsatisfac-

tory [8, 9].

Cancer immunotherapy has contributed to personalized medicine, with substan-

tial clinical benefit against advanced disease [10–15]. Current immune checkpoint

inhibitors show surprising potential effectiveness against HCC [16, 17]. Indeed, the

liver is a central immunological organ with a high density of myeloid and lymphoid

immune cells [17, 18]. Immune cells are widespread in the tumor microenviron-

ment (TME) [19, 20], wherein interaction between tumor cells and immune cells is

extremely important to maintaining the dynamic balance of normal tissues and

tumor growth; this process is closely related to the occurrence, progression, and

prognosis of cancer [21]. Meanwhile, inflammatory reaction plays a decisive role at

different stages of tumor development. It also affects immune monitoring and re-

sponse to treatment and promotes the occurrence and development of tumours to

varying degrees [22]. Since HCC often arises in the setting of chronic liver inflam-

mation [5, 23] and might be responsive to novel immunotherapies, people infected
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with hepatitis B or C viruses are at high risk of HCC [24]. While several studies

have supported the importance of immunology in HCC, the exact molecular mech-

anisms still remain unknown, particularly for combinations of immune cells form-

ing a TME [25] and for immunogenomic effects [26]. With the advent of multi-

dimensional, large-scale high-throughput analyses, cancer researchers have been

able to identify culpable biomarkers for tumour prognosis and prediction [27–30].

Long et al. explored the prognostic value of immune-related genes (IRGs) linked to

TP53 status in order to improve the prognoses of HCC patients [31]. Moeinia

et al. analysed the expression profiles of 392 early-stage non-tumour liver tissues

from HCC patients and liver tissues from HCC-free cirrhosis patients, identified

possible regulatory changes in the expression of IRGs in HCC, and further verified

the accuracy of this conclusion through experiments. This gene expression pattern

is related to the risk of PLC in cirrhosis patients [32]. Liang S et al. proposed that

after liver injury, the molecular pattern related to the release of hepatocytes would

activate liver tumour-associated macrophages (TAMs), thus producing cytokines to

promote tumour development [33]. However, the clinical relevance and prognostic

significance of IRGs in HCC have yet to be comprehensively explored.

Our study aimed to better appreciate the potential clinical utility of IRGs prognostic

stratification and develop a new IRG-based immune prognostic model (IPM). We sys-

tematically investigated the expression status from The Cancer Gene Atlas (TCGA,

https://cancergenome.nih.gov/) database and prognostic landscape of IRGs, constructed

a genomic–clinicopathological model for these patients and validate it in Gene Expres-

sion Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/). Moreover, underlying regula-

tory mechanisms have been explored by bioinformatics analysis. The results of this

study could help provide a more complete understanding and more-precise immuno-

therapy for HCC.

Materials and methods
HCC datasets and preprocessing

As TCGA and GEO databases both are landmark cancer genome projects that

are publicly available to any researcher, our research did not require the approval

of an ethics committee. After downloading data from transcriptome messenger

ribonucleic-acid (mRNA) expression profiles and the clinical information of HCC

patients from the TCGA and GEO website, we ultimately obtained a dataset of

374 HCC and 50 para-tumor samples [34] as a training dataset, 225 HCC tissues

and 220 adjacent non-tumour samples (GPL3921) in GSE14520 dataset as a test

dataset [35].

Also, we obtained a list of IRGs from the Immunology Database and Analysis Portal

(ImmPort, https://www.immport.org/shared/home). This is one of the largest open

source repositories of human immunological data at the subject level, providing data

on clinical and mechanistic studies of human subjects and immunological studies of

model organisms [36]. The integrated analysis of these databases, which reveals new in-

sights into the comprehensive analysis yielded by the combination of mass spectrom-

etry staining and tumour molecular profiling, could become a useful resource on the

regulation of tumour-related genes.
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Identification, normalization, and elucidation of differentially expressed genes (DEGs)

and immune-related genes (IRGs)

We used the limma package in R software (version 3.5.3; R Foundation for Statistical

Computing) to calculate genes in common between HCC and para-tumour tissue [37].

The absolute value of log fold change (FC) was ≥2, and adjusted P < 0.05 was the cutoff

value. We screened DEGs between the two groups and depicted the results in a heat-

map and volcano plot. Then, we use the combat function in the sva package in R soft-

ware to remove batch effects and batch corrections on the gene expression data

between the training and test group [38]. By combining DEGs and IRGs, we obtained

the intersection of IRGs involved in HCC pathogenesis, and all of the IRGs were listed

in GSE14520 dataset, too. To explore the potential functions and possible pathways of

these IRGs, we further analysed the differentially expressed IRGs via gene ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, en-

abled by the clusterProfiler package in R software [39].

Screening of prognosis-specific IRGs

We combined and analysed the patients’ clinical information and the gene expression

of IRGs, using OS as the outcome index. Samples with an OS time of less than 30 days

and incomplete clinical information were omitted, and we finally retained 343 samples

in the TCGA dataset and 221 samples in the GSE14520 dataset to construct the model.

Detailed epidemiological information of the two cohorts is displayed in Table 1. The

significance level of univariate Cox regression analysis was set to P < 0.05 and displayed

in the form of a forest plot.

Transcription factor (TF) regulatory network

TF protein are critical regulators of gene switches [40]. The Cistrome Cancer database

(http://cistrome.org/CistromeCancer/CancerTarget/) combines the cancer genomics

data in TCGA with the chromatin analysis data in the Cistrome Data Browser, enabling

cancer researchers to explore how TFs regulate the degree of gene expression [41]. To

explore the regulatory mechanisms of prognosis-related IRGs, we built a regulatory net-

work covering differentially expressed TFs and IRGs using Cytoscape software version

3.7.1 (Cytoscape Consortium; https://cytoscape.org/) [42]. We also conducted protein–

protein interaction (PPI) analysis using the Search Tool for the Retrieval of Interacting

Genes/Proteins (STRING; STRING Consortium; https://string-db.org/) to evaluate in-

teractions among all of the TFs. Using the cytoHubba package in Cytoscape, we also

performed topological analysis of these key TFs and ranked the top 10 by the “degree”

criterion [43].

Construction of IPMs and validation model

The glmnet package was utilized to build a multivariate least absolute shrinkage and se-

lection operator (Lasso) Cox proportional hazards regression model, and the cv.glmnet

function was used to create 1000 random iterations. We obtained the best modelling

parameters through 10-fold cross-validation and the default “deviance”, hence con-

structing an IPM of the IRGs [44]. The calculation formula was as follows:
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Table 1 Clinical information in training and validation groups

Characteristics Training group (N = 343) Testing group (N = 221)

High risk Low risk High risk Low risk

Age

<60 78 79 119 59

≥ 60 93 93 23 20

Gender

Male 117 116 125 66

Female 54 56 17 13

ALT (>/<=50 U/L)

high – – 60 31

low – – 82 47

Unknown 0 1

Main Tumor Size (>/<=5 cm)

Large – – 57 23

Small – – 84 56

Unknown – – 1 0

Multinodular

Y – – 34 11

N – – 108 68

Cirrhosis

Y – – 133 70

N – – 9 9

Unknown – –

CLIP staging

0 – – 54 53

1 – – 47 27

2 – – 30 5

3 – – 7 2

4 – – 1 2

5 – – 1 0

9 – – 2 0

Grade

G1 15 38 – –

G2 74 87 – –

G3 71 41 – –

G4 9 3 – –

Unknown 2 3 – –

TNM Stage

T1 58 104 45 48

T2 49 28 54 23

T3 50 30 41 8

T4 2 1 2 0

Unknown 12 9

T

T1 61 107 – –
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risk score ¼
X∞

n¼1

βn � ∈n
� �

where β represents the weight of each gene, and ∈ is the standardized expression

value of each gene. According to the median value of the risk score, the entire TCGA

dataset was divided into two groups. We also divided the GSE14520 data set into high-

and low- risk groups according to the median in the training set. We applied Kaplan-

Meier (K-M) survival analyses curves to see if there were any differences between these

two groups. At the same time, we displayed the risk scores, survival status, and gene ex-

pression levels of patients in the high-risk and low-risk groups.

Construction and validation of the prognosis-related nomogram

We built 1-, 3-, and 5-year nomograms of key genes in the IPM using the rms packages

in R software. To evaluate the sensitivity and specificity of our IPM, we drew time-

dependent receiver operating characteristic (ROCs) curves and calibration curves, and

calculated a concordance index (C-index) using the survivalROC installation package in

Table 1 Clinical information in training and validation groups (Continued)

Characteristics Training group (N = 343) Testing group (N = 221)

High risk Low risk High risk Low risk

T2 55 29 – –

T3 46 29 – –

T4 9 4 – –

Unknown 0 3 – –

N

N0 121 118 – –

N1 3 0 – –

Unknown 47 54 – –

M

M0 125 120 – –

M1 2 1 – –

Unknown 44 51 – –

BCLC staging

0 – – 14 6

1 – – 84 64

2 – – 18 4

3 – – 24 5

9 – – 2 0

AFP (>/<=300 ng/ml)

High – – 70 30

Low – – 70 48

Unknown – – 2 1

Abbreviations: TCGA-LIHC The Cancer Genome Atlas, Liver Hepatocellular Carcinoma; ALT Alanine Transaminase; CLIP
staging Cancer of the Liver Italian Program staging; TNM Stage: Tumor Node Metastasis stage; BCLC staging Barcelona
Clinic Liver Cancer staging; AFP Alpha Fetoprotein
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R software [45]. When the C-index is between 0.5–0.7, it proves that the prognostic

performance of the model is statistically acceptable; and when C-index > 0.7, we con-

sidered the predictive power of our model has a high degree of discrimination [46].

Correlations between risk score and clinical features

Similarly, we analysed the significance of risk score correlated with clinical factors in

multivariate and univariate analyses, and constructed a nomogram to evaluate

practical-application value of the nomogram. The clinical factors in the training set in-

clude age, gender, TNM staging and grade; the clinical information in the testing set in-

clude gender, age, alanine transaminase (ALT) (>/<=50 U/L), main tumour size (>/<=5

cm), multinodular, cirrhosis, tumour node metastasis (TNM) staging, Barcelona Clinic

Liver Cancer (BCLC) staging, Cancer of the Liver Italian Program (CLIP) staging and

alpha fetoprotein (AFP) (>/<=300 ng/ml). In addition, the time-independent ROC curve

and C-index value were used to assess its prognostic performance, too. We further ana-

lysed the correlation of various clinical factors with gene expression levels and risk

scores in the IPM.

Gene set enrichment analysis

GSEA v4.0.1 software was used to further identify different biological processes be-

tween the low-risk and high-risk groups constructed by the seven IRGs in HCC. We

carried out gene set enrichment analysis (GSEA, https://www.gsea-msigdb.org/gsea/

index.jsp) to explore the enriched items of the two groups [47] and “c2.all.v7.4.sym-

bols.gmt” was chosen as the reference gene set. P < 0.05 and false discovery rate < 0.25

were used as the screening criteria.

Relationship between risk sore and immune cell infiltration

The Tumour Immune Estimation Resource online database (TIMER, http://cistrome.

org/TIMER/) can estimate the infiltration abundance of six common types of immune

cells-B cells, Cluster of Differentiation 4-positive (CD4+) T cells, Cluster of Differenti-

ation 8-positive (CD8+) T cells, neutrophils, TAMs, and dendritic cells (DCs)-and pro-

vide a comprehensive resource on immune infiltration of various cancer types [17].

Hence, we performed Pearson correlation analysis between risk score and the content

of six types of immune cells.

Verification of immune-related signatures

We analysed genetic alterations in seven IRGs associated with prognosis. The data

were obtained from the cBio Cancer Genomics Portal (cBioPortal, http://www.

cbioportal.org/), which is of great utility in exploring multidimensional genomic in-

formation [48]. The human protein atlas project (HPA, https://www.proteinatlas.

org/) is used to evaluate the protein level differences of each IRGs [49]. To obtain

the effect on HCC survival of high and low expression of these genes in HCC, we

input them into the Kaplan Meier Plotter (K-M, https://kmplot.com/analysis/), a

website providing gene chips and RNA sequencing data sources from the GEO and

TCGA for several cancers [48, 50]. P < 0.05 was considered to be statistically
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significant. We calculated OS, disease-free survival (DFS), progression-free survival

(PFS), and relapse-free survival (RFS) rates for HCC.

Statistical analysis

Most of the statistical analyses was performed using R software and online databases.

PPI network analysis was completed and the diagram of mechanism regulation between

TFs and IRGs was created using Cytoscape. Pearson correlation analysis was used to

analyse the correlation between risk score and clinical factors and the degree of im-

mune cell infiltration. In addition, we used the cBioPortal and K-M Plotter to analyse

the genetic changes and survival differences of genes, respectively.

Results
Differentially expressed OS-related DEGs in HCC

The flowchart in Fig. 1 clearly illustrates our analytic process. According to our

screening criteria (|log FC| > 2, adjusted P < 0.05), the limma package identified

2068 DEGs in common between HCC and normal liver tissue. These DEGs in-

cluded 1991 upregulated and 77 downregulated genes (Fig. 2a, d). From this

group of genes, we extracted 116 differentially expressed IRGs, including 96 up-

regulated and 20 downregulated genes (Fig. 2b, e). Finally, we obtained 100 IRGs

that exist both in the TCGA and GSE14520 dataset for model construction.

The results of IRGs enrichment analysis were more common in the inflammatory path-

way, including “positive regulation of secretion by cell,” “positive regulation of secretion,”

“antimicrobial humoral response” and “defense response to bacterium” in biological pro-

cesses. In the meantime, these genes participated in “secretory granule lumen,” “Cytoplas-

mic vesicle lumen,” and “vesicle lumen” in cell components; and played a main role in the

regulation of various receptor ligands, cytokines, cytokine receptors, hormones, or chemo-

kines in molecular functions. Also, these IRGs could be involved in the composition of

signal pathways such as “Cytokine-cytokine receptor interaction,” “Axon guidance,”

“TGF-beta signaling pathway,” “Viral protein interaction with cytokine and cytokine re-

ceptor,” and “Hippo signaling pathway” (Fig. 3). The above enriched items are all related

to immunity or tumour, indicating that these 100 IRGs may play a role in regulating HCC

by regulating some immunological process.

Establishment and validation of a seven-gene prognostic signature based on the

prognosis of HCC

We included a total of 343 patient cases (OS > 30 days) from TCGA in the survival ana-

lysis; OS was selected as the primary endpoint for this study. Applying the univariate

Cox regression model (P < 0.05), we used the 100 IRGs to identify the DEGs associated

with OS in HCC. We identified 30 OS-related DEGs, which were considered to be sig-

nificant genes associated with HCC (Fig. 4).

Using Lasso Cox multivariate analysis, we then developed an IPM based on seven

genes: FABP6, MAPT, BIRC5, PLXNA1, CSPG5, SPP1 and STC2. The hazard ratios of

all these DEGs were > 1, meaning that all were considered oncogenes. According to the

following formula:
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Fig. 1 Flowchart presenting the process of establishing the seven-gene signature and prognostic
nomogram for HCC. Abbreviations: HCC: hepatocellular carcinoma; TCGA-LIHC: The Cancer Genome Atlas,
Liver Hepatocellular Carcinoma; GEO: Gene Expression Omnibus; IMMPORT: Immunology Database and
Analysis Portal; DEG: differentially expressed gene; TF: transcription factor; ROC: Receiver operating
characteristic; IRG: immune-related gene; LASSO: Least Absolute Shrinkage and Selection Operator; GSEA:
Gene Set Enrichment Analysis
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risk score ¼ 0:103ð Þ � FABP6 standardized expression value½ �þ
0:0214ð Þ �MAPT standardized expression value½ �þ
0:161ð Þ � BICR5 standardized expression value½ �

0:0421ð Þ � PLXNA1 standardized expression value½ �þ
0:244ð Þ � CSPG5 standardized expression value½ �þ
0:0497ð Þ � SPP1 standardized expression value½ �þ
0:174ð Þ � STG2 standardized expression value½ �

we calculated the risk score of each sample and then automatically divided all of the

patients in TCGA into high- and low-risk groups according to median risk value. The

K-M survival curve showed a significantly worse prognosis in the high-risk group (P =

8.135e− 07; Fig. 5a). The heatmap shows that as the risk score increases, the expression

of IRGs gradually increases, thus indicating that high expression of these genes is a risk

factor for HCC prognosis (Fig. 5b). In addition, the survival risks of these patients grad-

ually increased as risk scores increased, and the number of survivors decreased signifi-

cantly (Fig. 5c, d). Finally, we get the same results in the GSE14520 dataset, indicating

that our model has a high degree of credibility (Fig. 5e-h).

Meanwhile, we constructed a nomogram of the seven IRGs and evaluated the prog-

nostic value of the seven-gene model based on the time-dependent ROC curve and the

C-index value. The 1-, 3-, and 5-year risk prediction area under ROC curves (AUCs)

Type
Type

N

T

−5

0

5

10

Type
Type

N

T

−5

0

5

BA

C D

Fig. 2 The filter results of differentially expressed immune related genes (IRGs) and transcription factors
(TFs) between 374 hepatocellular carcinoma (HCC) and 50 para-tumor samples. a Heatmap and Volcano
plot (c) of differentially expressed IRGs; (b) Heatmap and volcano plot (D) of differentially expressed TFs.
Green and red dots separately represent low and high expression of IRGs and TFs in HCC, and black dots
represent genes that are not differentially expressed
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for OS were 0.780, 0.699, and 0.685, respectively, and the C-index is 0.72, 95% [confi-

dence interval (CI): 0.68, 0.77] and 0.62, 95% [CI: 0.57, 0.68], respectively. The above re-

sults indicated that the seven signatures performed well in predicting the OS of HCC,

and we obtained the same results in testing set, too (Fig. 6).

TF regulatory network

To explore the clinical significance of pivotal IRGs and the corresponding underlying

molecular mechanisms, we examined the expression profiles of 318 TFs and found that

31 genes were differentially expressed between HCC and non-tumour HCC samples

(|log FC| > 2, P < 0.05), and they were related to OS in HCC patients. Then, we estab-

lished a regulatory network based on these 31 TFs and 9 IRGs that had proven signifi-

cant in univariate analysis. Correlation coefficients > 0.4 and P-values ≤0.001 were set

as screening criteria. The TF-based regulatory diagram in Fig. 7 clearly illustrates the

regulatory relationship between these IRGs (Fig. 7).

Fig. 3 Functional-enrichment analysis of the 100 common differentially expressed genes. a Biological
processes analysis, (b): Cell components analysis; (c): Molecular functions analysis; (d) Pathway analysis of
the top 30 most important entries in the Kyoto Encyclopedia of Genes and Genomes. Significance gradually
increases from blue to red; the thickness of the line represents the degree of correlation between the two
points, and the size of the circle represents the number of genes enriched on the entry
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Evaluation of prognostic factors associated with OS in HCC

We included 219 patients with complete clinical information in the TCGA-LIHC data-

set. As important clinical indicators, gender, age, grade, and TNM staging were in-

cluded in our study to identify prognostic factors. We used univariate and multivariate

Cox regression analysis to determine prognostic factors associated with OS in HCC.

Univariate analysis showed that risk score, TNM staging, T stage, and M stage were

significantly correlated with OS (P < 0.05). Based on univariate-analysis results with P <

0.669, we further included these parameters in multivariate Cox regression analysis for

analysis. Multivariate analysis showed that risk score (P < 0.001) was an independent

risk factor (Fig. 8a, b), further demonstrating that our IPM’s impact on the patient’s

prognosis is not disturbed by other clinical factors, and it is an independent prognostic

factor of OS in HCC patients.

The clinical information of 242 HCC patients who meet the criteria in the GSE14520

dataset includes age, ALT (>/<=50 U/L), main tumour size (>/<=5 cm), multinodular

cirrhosis, TNM staging, BCLC staging, CLIP staging and AFP (>/<=300 ng/ml) were in-

cluded in the analysis. Univariate analysis showed that risk score, main tumour size, cir-

rhosis, TNM staging, BCLC staging, CLIP staging and AFP were related to OS; while

multinodular, cirrhosis, BCLC staging, CLIP staging and risk score were independent

prognostic risk factors in multivariate analysis (Fig. 8c, d).

Construction and validation of a prognostic nomogram

We used a stepwise Cox regression model to establish a prognostic nomogram based

on the 219 eligible HCC patients with complete clinical information in the TCGA–

ULBP2
COLEC10
MMP12
S100P
COLEC12
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FABP6
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FABP5
FABP4
MAPT
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BIRC5
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0.026
0.014
0.045

pvalue
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Fig. 4 Forest plot of significant genes in univariate cox regression analysis (The red squares on the right
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LIHC dataset for predicting survival at 1, 3 and 5 years. Risk score, age, sex, TNM stage,

T stage, N stage, and M stage were all nomogram parameters. The AUCs of OS at 1, 3

and 5 years were 0.791, 0.760 and 0.793, respectively. The C-index was values were 0.78

(95% CI: 0.72, 0.84) and 0.73 and (95% CI: 0.68, 0.78) in the training and testing groups,

respectively. The results of the clinical factors showed that the AUC values of T stage,

TNM stage, and risk score were the highest at 0.757, 0.750, and 0.791, respectively,

which suggested that the IPM had moderate prognostic performance (Fig. 9). The cali-

bration curve further showed that the nomogram performed well in predicting the OS

of HCC patients in the training group. However, the difference between the predicted

survival rate and the actual survival rate in the calibration curve of the testing group

was large, suggesting that the performance of the prognostic model may need to be fur-

ther verified (Fig. 10).

Gene set enrichment analysis

We performed GSEA in the training group to identify the differences between the

high-risk and low-risk groups. Among them, the high-risk group had 41 significantly

Fig. 5 Construction of seven immune-related prognostic signatures for HCC. a: Kaplan-Meier curve for low-
and high-risk populations in training group; (b): The distribution of risk score in patients in training group;
(c): Survival status of patients with HCC in training group; (d): Heatmap of the expression levels of seven
immune-related genes (IRGs) of patients in training group; (e): Kaplan-Meier curve for low- and high-risk
populations in testing group; (F): The distribution of risk score in patients in testing group; (g): Survival
status of patients with HCC in training group; (H): Heatmap of the expression levels of seven IRGs of
patients in testing group
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enriched pathways, and the low-risk group had 12 significantly enriched pathways. The

enrichment pathways in high-risk groups are mostly related to tumours (bladder can-

cer, small cell lung cancer, non-small cell lung cancer, pancreatic cancer and colorectal

cancer) or tumour-related pathways (“p53 signaling pathway”, “nucleotide-binding

oligomerization domain (NOD) -like receptor signaling pathway”, “Notch signaling

pathway”, “VEGF signaling pathway” and “Pathways in cancer”), and metabolic or meta-

bolic disease-related pathways (pyrimidine metabolism, purine metabolism and N-

Glycan biosynthesis); the enrichment pathways in the low-risk group are mostly related

to metabolism (fatty acid metabolism, valine leucine and isoleucine degradation, drug

metabolism cytochrome P450 and tryptophan metabolism), complement and coagula-

tion cascades and the PPAR string pathway (Fig. 11).
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Fig. 6 The establishment and verification of gene-related nomograms in the training (a, c) and verification
(b, d) groups for predicting 1-year, 3-year, and 5-year survival rates of HCC patients
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The correlation between clinical factors and gene signature in IPM

We analysed the relationship between genetic characteristics and clinical parameters

(Table 2) in training group. Compared with patients with Stage I/II, G1/G2, and T1/T2

in HCC, patients with Stage III/IV, G3/G4, and T3/T4 have higher levels of BICR5 gene

expression and risk score. Female has higher expression level of PLXNA1 than male,

while G3/G4 and stage III/IV have higher expression level of PLXNA1 gene. Those of

patients in Stage III and IV were higher in SPP1 expression than those of patients in

Stage I and II, a difference that was statistically significant. Patients in stage N0 had

higher expression of FABP6 and MAPT than patients in stage N1, probably due to the

large difference in the number of samples between the two groups. In terms of survival

time, patients with HCC in T1/T2 and Stage I/II were significantly higher than those

with the disease in T3/T4 and stage III/IV.

Association between the degree of immune infiltration and risk score

To further study whether risk score in this IPM could affect the abundance of immune

cells in the TME, we performed a correlation analysis between six types of common

immune cells and risk score. In Fig. 12 we can see that the correlation coefficients of

risk score and neutrophils, TAMs and dendritic are all above 0.2; B cells, CD4+ T cells

and CD8+ T cells and risk scores is less than 0.2, but it is relatively close to 0.2. The re-

sults showed that all immune cells were positively correlated with risk score to a statis-

tically significant degree (Fig. 12; P < 0.05), which implying that the higher the degree

of immune infiltration, the worse the prognosis of the patient.
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Fig. 8 (a, c) Univariate and (b, d) multivariate Cox regression analysis of the correlation between risk score
and clinical factors in training (a, b) and testing (c, d) group
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Verification of hub genes using online website

Based on the above analysis results, we can see that the model has a high clinical appli-

cation value, so we conducted a study of the molecular characteristics of the IRGs in

the IPM. We analysed the genetic-variation results of the genes FABP6, MAPT, BIRC5,

PLXNA1, CSPG5, SPP1 and STC2. Of the 349 patients included in the cBioPortal, 120

(34.38%) showed genetic changes in these seven genes. With mRNA high (21.49%) was

the most common genetic variation, amplification (6.5%) and missense mutation

(1.69%) being the next most common (Fig. 13a). We further analysed the differences in

the expression of these genes at the protein level. As shown in Fig. 11b, except for

FABP6, the other genes were all highly expressed in HCC tissues.
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Fig. 9 The establishment and verification of clinical-related nomograms in the training (a-c) and verification
(d-f) groups for predicting 1-year, 3-year, and 5-year survival rates of HCC patients
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To confirm that multi-gene signatures have better prognostic performance than a

single-gene signature, we performed a K-M survival analysis of the seven IRGs in this

IPM (Fig. 14). Almost all of the P-values were < 0.05, and the c-indexes in ROC curves

were lower than in IPM, further proving the importance of these seven IRGs. Since

these seven IRGs were found to be oncogenes, the high expression of genes is often as-

sociated with poor prognosis, which is basically consistent with the conclusions we

have obtained before. However, patients with high expression of FABP6 had longer PFS

and RFS. Our conclusions regarding FABP6 was unclear, and further research might be

needed to verify them. In short, the abnormal stomatic mutations, expression and sur-

vival differences of these seven IRGs in HCC may help explain their important applica-

tion value.

Discussion
Components of the TME, the environment in which tumour cells grow, include inflam-

matory cells, fibroblasts, myofibroblasts, neuroendocrine cells, adipocytes, and extracel-

lular matrix [51]. The TME is inseparable from the growth, invasion, metastasis, and

prognosis of tumour cells [45]. Unlike cancer cell genes and epigenetic mechanisms,

the matrix population in the TME is relatively stable genetically; therefore, having
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Fig. 10 Calibration curve of nomogram in the training set and testing set. The X-axis is the predicted
survival rate, and the Y-axis is the actual survival rate. a, b, c: 1-year, 3-years, and 5-year calibration curves in
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potential therapeutic value. A growing number of studies have begun to focus on the

regulatory mechanism of the TME on HCC [45]. Although major results have been

achieved, identifying suitable immunotherapeutic targets in complex TME components

requires the joint efforts of multiple research teams. The application of molecular prog-

nostic models and the identification of target genes can be described as molecular ther-

apeutics that may provide effective approaches in the future [3]. Fortunately, the open

source TCGA and GEO databases have accumulated an abundance of genomic infor-

mation, providing a simpler and more reliable way to predict prognosis in cancer. Our

study intended to identify IRGs from the TCGA and ImmPort databases that were sig-

nificant to HCC prognosis, and further verified the results in the GSE14520 dataset.

Fig. 11 Representative pathways of significant enrichment in the model by Gene set enrichment analysis
(high-risk group above, low-risk group below)

Table 2 The relationship between clinical factors and risk scores or the expression of seven
prognostic related immune genes in hepatocellular carcinoma

ID (t/P) Age Gender Grade Stage T M N

Futime 1.613
(0.110)

0.772
(0.442)

0.59 (0.556) 2.533
(0.012)

2.572
(0.011)

1.716
(0.212)

0.661 (0.570)

FABP6 0.727
(0.469)

−0.295
(0.768)

−1.975
(0.050)

− 1.163
(0.247)

− 1.23
(0.222)

− 0.363
(0.750)

2.93 (0.017)

MAPT 0.599
(0.550)

1.337
(0.184)

0.556 (0.579) −1.101
(0.273)

−1.373
(0.173)

0.935
(0.439)

11.791 (4.946e-
14)

BIRC5 −1.645
(0.102)

0.294
(0.769)

−3.054
(0.003)

−2.601
(0.011)

−2.563
(0.012)

2.133
(0.124)

−1.121 (0.374)

PLXNA1 −0.668
(0.506)

2.563
(0.012)

−2.456
(0.015)

−2.198
(0.030)

−1.61 (0.110) 1.044
(0.400)

−3.213 (0.082)

CSPG5 −0.632
(0.529)

−0.448
(0.655)

−1.902
(0.059)

−1.288
(0.201)

− 1.383
(0.170)

2.511
(0.055)

0.868 (0.466)

SPP1 0.514
(0.608)

−1.584
(0.116)

−1.325
(0.187)

−2.061
(0.042)

− 1.843
(0.068)

−0.535
(0.646)

−0.174 (0.878)

STC2 1.179
(0.242)

0.715
(0.476)

−1.356
(0.177)

−1.599
(0.113)

− 1.504
(0.136)

−0.943
(0.444)

−0.177 (0.875)

Risk
Score

−0.09
(0.929)

−0.146
(0.884)

−3.027
(0.003)

−2.955
(0.004)

−2.819
(0.006)

− 0.362
(0.750)

− 1.56 (0.226)

Note: t t value of student’s t test, P: P-value of student’s t test
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The identification of these IRGs and the construction of the IPM might provide new

ideas for immunotherapy in HCC. Finding and developing novel targets with potential

value for immunotherapy is very important; after experimental verification and clinical

trials, it can strengthen current immunotherapeutic regimes.

In the current study, we obtained 2068 HCC-related DEGs from TCGA and finally

retained 100 IRGs that also existed in the GEO database for model construction. After

identifying the common DEGs in the training set and testing set, we used only the IRGs

to construct a Cox model for predicting OS. Incorporating clinical factors and genome

information into Lasso regression analysis is indeed a better modelling method, and it

is also the current trend of machine learning. However, doing this makes it difficult for

us to externally verify the model because the clinical information contained in each

data set is different, and there are certain limitations in selecting limited clinical factors.

In addition, each type of tumour has different susceptibility factors and important indi-

cators. Taking lung cancer as an example, attention needs to be paid to the influence of

radon, asbestos, second-hand smoke and other factors, while in HCC, attention needs

to be paid to hepatitis history, liver cirrhosis and AFP. Therefore, these models may

not be generalizable to other types of cancer. Konstantina Kourou [52] summarized

and analysed a number of studies that incorporated clinical factors and genomic infor-

mation into models, but their research lacks external verification or testing of the pre-

dictive performance of the models.

In this case, other clinical information was omitted since we sought to create a simple

but powerful model that could be externally verified by various data sets. Then, we

evaluated the model, including the AUC curve and C-index, as well as the calibration

plot, and made comparisons with the prognostic model constructed based on the risk

score and other clinical factors to prove the advantages of the proposed modelling

Fig. 12 Pearson correlation analysis between risk score and infiltration abundances of six types of immune
cells. a B cells, (b) Cluster of Differentiation 4–positive (CD4+) T cells, (c) CD8+ T cells, (d) neutrophils, (e)
macrophages, and (f) dendritic cells
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scheme. With the development of high-throughput sequencing technology and the

generalization of clinical genetic testing, the use of genomic information to construct a

predictive model for the simple prognostic analysis of patients will bring certain con-

venience to the clinic. Perhaps with the continuous improvement of various public da-

tabases, the joint modelling and analysis of clinical information and multiomics data

will also become a trend.

Further gene function analysis results showed that all of the IRGs were mainly

enriched in the positive regulation of secretion by cells, secretory granule lumen, recep-

tor ligand activity, and cytokine-cytokine receptor interaction (Fig. 3). Specifically, these

IRGs are mainly involved in various immune regulation processes (such as positive

Fig. 13 Genetic alterations landscape (a) and expression in the translational level (b) of the seven-
prognostic immune-related genes in hepatocellular carcinoma
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regulation of secretion by cells, positive regulation of secretion, antimicrobial humoral

response, defence response to bacteria and humoral immune response) and take part in

the composition of the secreted granule lumen, cytoplasmic vesicle lumen, and vesicle

lumen; these IRGs regulate various receptors, ligands, growth factors, cytokines, and

chemokines. In addition, they were mainly enriched in cytokine-cytokine receptor in-

teractions, axon guidance, the TGF-beta signalling pathway, viral protein interactions

with cytokines and cytokine receptors, and the Hippo signaling pathway. Most of the

above items are related to immunity and inflammation, and the rest are classic signal-

ling pathways in tumours. Jian Chen et al. reported that dysregulation of the TGF-beta

signalling pathway plays a key role in immune regulation, inflammation and fibrogen-

esis in HCC [53]. Disorders of the Hippo signalling pathway are present in various tu-

mours, including liver cancer [54], breast cancer [55] and lung cancer [56]. At present,

immune checkpoint inhibitors can greatly improve the prognosis of HCC. However,

the specific mechanism of the immune system affecting HCC are unclear, and further

experiments is needed to confirm our conclusion.

In our research, we reached a nearly consistent conclusion with other researcher’s

prognostic models: there were significant differences in OS between the high-risk and

low-risk groups, the prognosis of the high-risk group was worse (Fig. 5a, p = 8.135 ×

10− 7), and the same conclusion was reached in the testing set (Fig. 5a, p = 1.2535 ×

10− 3). The patient’s risk score for HCC progressively increases as the expression levels

of the genes in the risk signature increase, and the prognosis of HCC worsens as the

risk score increases. More importantly, we constructed a nomogram based on these

seven IRGs to quantitatively analyse the prognosis of HCC patients. The AUCs for 1-,

3-, and 5-year OS were 0.780, 0.699 and 0.685, respectively, and the C-index was 0.72

(95% CI: 0.68–0.77). HCC is a highly heterogeneous disease, and its prognosis is af-

fected by many factors. We only included and analysed genes related to immunity and

ignored the influence of other factors on HCC. Hence, our model does not show a high

prognostic performance in predicting the long-term survival rate of patients, which is

also one of the inherent defects of the model. We further analysed the risk score and

clinically related factors in univariate and multivariate analyses and found that the risk

score was associated with higher grade (P = 0.003) and stage III/IV disease (P = 0.004),

which indicated that our prognostic model was more significant in advanced HCC pa-

tients. We believe that genetic detection should not be considered independently of in-

dividual characteristics. Therefore, we also constructed a nomogram combining the

risk score and clinical factors, which can easily predict the 1-year, 3-year and 5-year OS

of patients. It should be noted that the AUC values were all higher than 0.7. Compared

with other clinical factors, the AUC value of the nomogram corresponding to risk score

was the highest (AUC = 0.791), and the C-index was 0.78 (95% CI: 0.72–0.84). In

addition, when we analysed the risk score combined with clinical factors, the C-index

of the test dataset was 0.73 (95% CI: 0.67–0.78), indicating that our IPM has a modest

prognostic performance in the test dataset. In the GSE14520 dataset, a series of test re-

sults were basically consistent with those in the TCGA dataset. Although the AUC

values reached above 0.5 (Fig. 6), the same effect as that in the training set was not

achieved, which may be because the samples in the GSE14520 dataset were from China.

Generally, the model constructed in this study has certain advantages in the quantita-

tive prediction of patient prognosis and adjustment of the treatment plan.
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Our research results showed that the risk score is the only meaningful indicator in

multiple analyses, which indicates that the risk score may have a better predictive abil-

ity for the OS of HCC. However, the standard error of an estimate does not tell us

about the estimate’s contribution to a prediction model. Nonsignificant coefficients can

still have very high predictive power, and vice versa. In addition, a significant covariate

doesn’t imply a reliable estimation of survival; thus, we still need to assess the model.

Next, we performed the same analysis in the test dataset and obtained the same conclu-

sion. In addition, we evaluated our model with the AUC curve, C-index and calibration

curve, which suggested that our model has good prognostic performance. To further

verify the prognostic performance of the risk score, we compared the AUC value of the
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Fig. 14 Overall survival, progression-free survival, disease-free survival, and relapse-free survival Kaplan-Meier
curves of seven prognosis-related IRGs (From top to bottom: BIRC5, CSPG5, FABP6, MAPT, PLXNA1, SPP1,
STC2). Black curve represents low expression; red curve represents high expression
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model constructed by the risk score with that of the model constructed by other clin-

ical factors (Fig. 9b, e), and the results indicated that the risk score may be a good pre-

dictor of HCC survival. In addition, compared with a single gene, prognostic models

based on multiple genes can better analyse the prognosis of patients. To develop a sim-

ple and effective method for evaluating the prognosis of HCC patients and find poten-

tial immunotherapy targets, we established a prognostic model based on the seven

IRGs. Of course, ours is not the first IPM for HCC. Wen-jie Wang et al. constructed a

prognostic model of 16 IRGs and a ceRNA network to predict the prognosis of HCC

[57]; Junyu Long et.al developed a HCC immune prognostic model related to TP53

[28]; and Dengchuan Wang et al. reported a four-gene signature prognostic model re-

lated to immune infiltration through coexpression analysis [57]. Recently, an increasing

number of researchers have begun to recognize the significance of the TME in HCC,

and IPMs have also received extensive attention. Compared with other prognostic

models, our IPM has the following advantages. (1) We have not only established a

seven-gene prognostic model of IRGs but also showed that the model can be independ-

ent of other clinical factors and is positively correlated with the degree of immune infil-

tration, which can provide valuable prognostic information for optimizing the

individual treatment of HCC patients. Additionally, we constructed a gene nomogram

and clinically related nomogram to quantitatively evaluate the 1-, 3-, and 5-year OS of

patients. (2) We constructed a TF regulatory network, performed GSEA and analysed

the possible mechanisms of the IRGs in the IPM related to HCC tumour infiltration,

which can contribute to exploring the immunotherapy mechanism of HCC. (3) We

performed gene mutation analysis and protein expression level analysis on the genes in

this IPM, and also analysed the survival differences between patients with high and low

expression levels of the IRGs. The conclusions obtained further confirmed the potential

of IRGs in the model as a prognostic marker of HCC.

The signatures in this IPM have good prognosis performance, which could be poten-

tial prognosis and therapeutic targets for HCC. BIRC5, commonly known as Survivin,

is the most effective molecule in inhibitor-of-apoptosis [58]. Experimental investigation

showed that BIRC5 can promote the expression of VEGF, which in turn promotes

angiogenesis in the tumour stromal [59]. PLXNA1 (Plexin-A1) is expressed in DC and

participates in the interaction between T cells and DC, and may be involved in regulat-

ing the rearrangement of the cytoskeleton during the interaction between T cells and

DC [60]. CSPG5 is only expressed in the human brain, and a study showed that it has a

new function that binds to ERBB3 tyrosine kinase [61], and the ERBB3 somatic muta-

tion is a potential tumour driver [62]. However, few studies have focused on its rele-

vance to HCC immunotherapy. Ying Zhu et al. found that SPP1 can activate the CSF1-

CSF1R pathway in tumour-associated TAMs and promote the expression of PD-L1 in

HCC, and there is a positive correlation between SPP1 and PD-L1, TAM expression.

On the other hand, SPP1 can induce endothelial cells and upregulate VEGF-induced

migration of endothelial cells, having a synergistic effect with VEGF in tumour angio-

genesis [63]. MAPT is mainly expressed in nerve cells, and more commonly studied in

geriatric diseases such as various neurodegenerative diseases including Alzheimer’s dis-

ease [64]. Previous investigation identified that MAPT is overexpressed in certain can-

cers, and participate in the resistance of various tumours to taxane drugs [65], and its

specific mechanism of action still needs further study. FABP6 is involved in the bile
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acid metabolic process and is related to the bile acid intestinal circulation [66]. STC

plays a vital role in tumour growth, invasion, apoptosis and metastasis, and promotes

local angiogenesis through the VEGF/VEGFR2 signalling pathway [67]. Hongwei Cheng

et al. showed that the high expression of STC2 is related to the poor prognosis of HCC

[68]. To further confirm the application value of these IRGs in HCC, we analysed the

survival rates of groups with high- and low- expression levels of these seven genes and

evaluated whether there was significance in patients’ OS, DSS, PFS, and RFS rates. The

results showed that there were some contradictions in the survival analysis of FABP6.

Also, the results of immunohistochemistry in the HPA database showed that except

FABP6, the protein levels of other IRGs were significantly different between HCC tis-

sues and normal liver tissues, and they were highly expressed in HCC, which was con-

sistent with our conclusion. At present, FABP6 has not been reported in

immunotherapy of HCC, which may be potential therapeutic targets for HCC. We then

used the seven IRGs from the cBioPortal to obtain information about genetic muta-

tions. The mutation rates of these seven IRGs are more than 4%, which may be useful

for clinical research in the future. Collectively, these findings indicated that the seven

IRGs have the potential to predict the prognosis of HCC.

To explore the potential molecular mechanisms associated with these IRGs, we con-

structed a TF-mediated regulatory network to screen out important TFs that might

regulate identified the hub IRGs. BIRC5, PLXNA1 and CSPG5 were the core IRGs in

this network; all three were positively regulated by 13 core TFs, of which EZH2 could

positively regulate the expression of BIRC5, PLXNA1 and CSPG5. EZH2, the hub TF in

our PPI analysis (Fig. 6a), is shown in the network diagram (based on the degree rank-

ing criterion). An accumulating number of studies show that EZH2 is closely associated

with of epigenetics [69], immunity [70], metastasis [71], angiogenesis [72] and apoptosis

[73]. In addition, our GSEA results showed that these seven IRGs play an important

role in tumour regulation in the high-risk and low-risk groups through immune meta-

bolic pathways. Gaia Giannone demonstrated that immune metabolic disorders play an

important role in acquired resistance to the TME and immune checkpoint inhibitors

[74]. At present, the VEGF signalling pathway is widely used in the immunotherapy of

HCC [75] and may be involved in cell proliferation, growth and apoptosis processes as

well as the regulation of the PPAR and TP53 signalling pathways [76]. NOD-like recep-

tor X1 can induce HCC cell apoptosis by regulating the PI3K-AKT signaling pathway

[77]. The inhibition or promotion of the Notch signalling pathway in different tumours

depends on the TME. The cross-talk between the Notch signalling pathway and p53

gene plays an important role in HCC and may be a potential target for HCC treatment

[78]. Of particular note, based on the above studies, we found that EZH2 and BIRC5

can inhibit HCC cell apoptosis and are closely related to VEGF-mediated angiogenesis.

Interestingly, in the regulatory network of TFs, EZH2 positively regulated BIRC5, with

a correlation coefficient of 0.72 (p = 3.76 × 10− 57). STG and SPP1 are associated with

the VEGF signalling pathway, PLXNA1 and SPP1 are associated with DCs or TAMs;

CSPG5 is associated with common somatic mutation sites. The application values of

MAPT and FABP6 in HCC need further experimental confirmation. In this case, we

boldly speculate that EZH2 may mediate the angiogenesis of the VEGF signalling path-

way through regulating the expression of the seven IRGs, which may be the possible

mechanism of this predictive model related to immune infiltration in high-risk patients.
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In low-risk patients, we found that the mechanism of these seven IRGs related to the

immune infiltration of HCC is related to metabolism. However, the specific mechanism

remains to be further explored. The combination of antiangiogenic drugs and tumour

immunotherapy will show great prospects in the near future. However, further insights

by validation with immunohistochemistry analysis are needed to understand whether

the VEGF signaling pathway is linked to high-risk groups.

To further assess the immune microenvironment of HCC, we also analysed the cor-

relation between risk score and the following six types of immune cells: B cells, CD4+

T cells, CD8+ T cells, neutrophils, TAMs, and DCs. The results showed that for these

six cell types, the degree of immune infiltration was positively correlated with the risk

score, and the correlations between all immune cells and the risk score were statisti-

cally significant (P < 0.05). These results indicated that these cells have a high level of

immune infiltration in high-risk patients. TAMs are phagocytes, which are the body’s

first line of defence against external threats; they can produce proinflammatory re-

sponses to pathogens and repair damaged tissues. However, cytokines and chemokines

expressed by TAMs can inhibit antitumour immunity and promote tumour progression

[79]. The expression of M1 macrophages in HCC can promote tumour formation by

promoting the expression of PD-L1, and their infiltration degree is positively correlated

with the expression of PD-L1. On the other hand, Ying Zhu et al. found that there was

a positive correlation between the expression of SPP1 and PD-L1 and the infiltration of

TAMs in HCC tissues, which played an important role in the immune microenviron-

ment of HCC [80]. All these results suggested that our high-risk patients may benefit

from PD-L1 treatment. Li Li et al. [81] illustrated that the CXCR2-CXCL1 axis can

regulate neutrophil infiltration in HCC; this axis is an independent prognostic factor

for HCC and may be a potential target for anti-HCC therapy. Overexpression of

CXCL5 is associated with neutrophil infiltration and poor prognosis of HCC [82]. Wei

Y et al. showed that the depletion of B cells can prevent the production of TAMs and

increase the antitumour T cell response to inhibit the growth of HCC [83]. Several

studies indicated that high infiltration levels of immunosuppressive TAMs and regula-

tory T cells are associated with reduced OS and can increase the aggressiveness of

HCC [84, 85]. Research by Zhou ZJ et al. [86] illustrated that the high infiltration level

of plasmacytoid DCs is related to the poor prognosis of HCC, and plasmacytoid DC in-

filtration in HCC can promote tumour progression by promoting the immunosuppres-

sion of CD4+ type 1 T regulatory (Tr1) cells [87], which is basically consistent with our

research conclusions. The occurrence and development of HCC involve interactions

between various immune cells, and participates in the regulation of HCC immunother-

apy through a complex mechanism. Our IPM may be a predictor of increased infiltra-

tion of HCC immune cells. However, the correlation coefficient between the infiltration

abundance of CD4+ T cells and CD8+ T cells and the risk score was less than 0.4. In

addition, studies have shown that CD4+ T cells and CD8+ T cells can suppress the oc-

currence and proliferation of HCC due to their antitumour immune response [88];

however, another study indicated that the proportion and absolute number of CD4+ T

cells in the area surrounding HCC tumour tissue increases significantly and could pro-

mote the progression of HCC [89]. Shinji Itoh et al. showed that the presence of

CD8+T cells is associated with longer OS [90]. Although our conclusion is basically

consistent with that of previous studies in terms of the immune infiltration of HCC,
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the differences we found were not was not related to any biologically relevant levels

that should be interpreted outside this analysis in the future. Overall, this study can

provide direction and guidance for the mechanism of immune cells in HCC, but the

specific mechanism remains to be elucidated by further basic research.

We systematically and comprehensively analysed the application value of our IPM for

HCC, which could provide new insights for the treatment of this disease. However, the

current study still has certain limitations. The IPM constructed based on the TCGA

database has the best predictive performance in the training set. In the testing set, the

risk score is not the best indicator to predict the OS of HCC. Limited by clinical factors

in the testing group, our model still needs to be further validated in other datasets. Al-

though we increased the reliability of our conclusions by combining multiple datasets,

evaluating various aspects of the IPM, and verifying our results using the GSE14520

database. Most of the studies are plagued by a lack of validation in vitro and in vivo val-

idation experiments, and further evidence provided by a well-designed clinical study is

needed. It is also essential to use relevant basic experiments to further explain the

mechanism of HCC immunotherapy. On the other hand, we have studied six major im-

mune cells, the correlation between immune cells and the risk score was weak, and the

association between more immune cell subtypes and HCC is still unclear. Therefore,

we suggest that further individual studies and discussions should be conducted in the

future. We believe that the era of HCC immunotherapy will soon be realized, and we

look forward to it.

Conclusion
To sum up, we constructed an IPM with seven prognostic IRGs by combining different

data types from multiple databases. Individuals with HCC were automatically classified

into high-risk and low-risk groups based on their risk scores, with gene expression as

an independent variable. In addition, we established gene-related and clinical factor-

related nomograms to facilitate more-comprehensive prognostic assessments of HCC

patients. Finally, the results of the association between infiltration abundance of com-

mon immune cells in the TME and risk score showed that our IPM could predict the

TME to a certain extent. This model will be a reliable tool for predicting prognosis in

HCC by combining genomic characteristics, immune infiltration abundance, and clin-

ical factors.
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