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Sarcopenia and osteoporosis are common musculoskeletal comorbidities of chronic
obstructive pulmonary disease (COPD) that seriously affect the quality of life and prognosis
of the patient. In addition to spatially mechanical interactions, muscle and bone can also
serve as endocrine organs by producing myokines and osteokines to regulate muscle and
bone functions, respectively. As positive and negative regulators of skeletal muscles, the
myokines irisin and myostatin not only promote/inhibit the differentiation and growth of
skeletal muscles, but also regulate bone metabolism. Both irisin and myostatin have been
shown to be dysregulated and associated with exercise and skeletal muscle dysfunction
in COPD. During exercise, skeletal muscles produce a large amount of IL-6 which acts as
a myokine, exerting at least two different conflicting functions depending on physiological
or pathological conditions. Remarkably, IL-6 is highly expressed in COPD, and considered
to be a biomarker of systemic inflammation, which is associated with both sarcopenia and
bone loss. For osteokines, receptor activator of nuclear factor kappa-B ligand (RANKL), a
classical regulator of bone metabolism, was recently found to play a critical role in skeletal
muscle atrophy induced by chronic cigarette smoke (CS) exposure. In this focused review,
we described evidence for myokines and osteokines in the pathogenesis of skeletal
muscle dysfunction/sarcopenia and osteoporosis in COPD, and proposed muscle-bone
crosstalk as an important mechanism underlying the coexistence of muscle and bone
diseases in COPD.
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INTRODUCTION

Chronic obstructive pulmonary disease (COPD) is a prevalent chronic airway disease characterized
by persistent airflow limitation and varying respiratory symptoms including chronic cough with or
without sputum production, and exertional dyspnea which limits physical activity of the patient.
The major risk factor for COPD is cigarette smoking, which leads to airway inflammation and
alveolar destruction (emphysema), the pathological hallmark of the disease (1). COPD is now
viewed as a systemic disease with significant comorbidities, such as sarcopenia, osteoporosis,
cardiovascular diseases, lung cancer, gastroesophageal reflux, metabolic syndrome, anxiety and
depression. These comorbidities contribute markedly to the mortality of COPD, and therefore their
assessment and management are an integral part of COPD (1).

Skeletal muscle dysfunction/sarcopenia and osteoporosis are common in COPD, and their
pathogenic mechanisms are believed to be associated with systemic inflammation (2). Muscle and
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bone are closely linked spatially. In addition to mechanical
interactions, they also serve as endocrine organs to secrete
myokines and osteokines to regulate bone metabolism
and skeletal muscle growth and functions, respectively.
In recent years, the role of muscle-bone crosstalk in the
development of skeletal muscle dysfunction/sarcopenia or
osteoporosis has attracted great attention (3), but its
involvement in musculoskeletal comorbidities of COPD still
awaits investigation. In this focused review, we searched for the
studies of osteoporosis and skeletal muscle dysfunction/
sarcopenia in COPD, and for muscle-bone crosstalk in general
in the past 20 years. We described evidence for myokines and
osteokines in the pathogenesis of skeletal muscle dysfunction/
sarcopenia and osteoporosis in COPD, and put forward muscle-
bone crosstalk as an important mechanism underlying the
coexistence of muscle and bone diseases in COPD, aiming to
promote research in this fields.
SKELETAL MUSCLE AND BONE
COMORBIDITIES IN COPD

Sarcopenia is an age-related progressive and systemic skeletal
muscle disease associated with increased likelihood of adverse
consequences such as falls, fractures, physical disability,
hospitalizations and mortality (4). The European Working
Group on Sarcopenia in Older People (EWGSOP) developed a
practical clinical definition and diagnostic criteria for sarcopenia
based on three criteria: muscle quantity or mass, muscle strength,
and physical performance (4), which has been adopted by many
studies. A meta-analysis reported that the overall pooled
prevalence estimate of sarcopenia in people with COPD was
27.5% (95%CI, 18.4%–36.5%) (5), and the prevalence increased
with age, degree of airflow limitation and severity of disease (6).
Moreover, with the same degree of airway obstruction,
sarcopenia is more prevalent in individuals with emphysema
than in those with airway-type COPD (7). Skeletal muscle
dysfunction occurs in patients with COPD and affects both
respiratory and nonrespiratory muscles. Compared with upper
extremities, skeletal muscle dysfunction is more significant in
lower extremities (such as quadriceps femoris), which
compromises the ambulatory capacity of COPD patients and
has devastating effects on their daily lives (8). Until present, most
studies on skeletal muscle dysfunctions in COPD have mainly
focused on certain skeletal muscle groups, which often cannot
accurately reflect the real prevalence and severity of the disease.
For example, one study showed that there was no difference in
the prevalence of sarcopenia between stable COPD patients with
or without quadriceps weakness, and nearly 1/3 of those with
sarcopenia had preserved quadriceps strength (6). Therefore, it is
recommended that patients with COPD should be evaluated
comprehensively based on the diagnostic criteria for sarcopenia.
Currently, multiple studies have shown that sarcopenia/skeletal
muscle dysfunction in COPD is associated with more severe
airflow obstruction, emphysema, dyspnea score (modified British
medical research council, mMRC), decreased quality of life and
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exercise capacity, frequent exacerbations and increased mortality
(9–11). Exercise training is currently the most effective non-
pharmacological intervention to improve skeletal muscle
function in COPD. COPD patients with sarcopenia respond
well to pulmonary rehabilitation, similar to those without
sarcopenia (6), with improvement in exercise ability, upper
and lower extremity strength, functional performance and
health status.

Osteoporosis, a systemic skeletal disease characterized by low
bone mineral density(BMD) and/or microarchitectural
deterioration of bone, is another common comorbidity of
COPD, which is associated with increased bone fragility/
fracture, lower mobility and alteration in postural balance (12).
A latest meta-analysis reported that the overall pooled prevalence
of osteoporosis in patients with COPD was 38% (95%CI, 34%-
43%), and BMI<18.5 kg/m2 and the presence of sarcopenia were
significant risk factors for osteoporosis in COPD (13).
Osteoporosis in COPD patients is usually asymptomatic, and
often diagnosed until bone fractures occur, and therefore the
prevalence of osteoporosis in COPD is often under-estimated.
The risk of bone fracture depends on bone strength, which is
comprised of BMD and bone quality, and BMD accounts for
about 70% of bone strength (14). Due to the lack of precise
evaluation of bone quality, the diagnosis of osteoporosis mainly
depends on BMD, however, simply measuring BMD cannot fully
reflect the risk of bone fracture. Thus, although BMD is
decreased as Global Initiative for Chronic Obstructive Lung
Disease(GOLD) stage advances in COPD patients, the
prevalence of bone fracture appears to be independent of the
GOLD stage, and the actual prevalence is higher than that
predicted by BMD (15). It was reported that about 40% of
patients with COPD suffered at least one event of vertebral
fracture (16), with thoracic fracture as the most common (17).
Vertebral fracture can cause back pain, thoracic deformities,
kyphosis and height loss, leading to impaired pulmonary
function (18). In addition, low BMD/osteoporosis and related
fractures are also associated with emphysema, frequent
exacerbations (19), increased hospitalization rates and
mortality (20), and decreased quality of life in patients with
COPD (21).
MUSCLE-BONE CROSSTALK

Skeletal muscle dysfunction/sarcopenia can be caused by an
imbalance of muscle protein synthesis and degradation,
inflammation, mitochondrial dysfunction, myosatellite cell
injury and disturbed calcium homeostasis (8, 22). There are
many common risk factors between sarcopenia and osteoporosis
in COPD, including systemic inflammation (such as enhanced
tumor necrosis factor (TNF)-a and IL-6), cigarette smoking,
hypoxemia and/or hypercapnia, malnutrition, oxidative stress
and reduced level of physical activity (8, 23). Up to 70% of COPD
patients with osteoporosis also show signs of muscle wasting
(24), and sarcopenia is also an independent risk factor for
osteoporosis in patients with COPD (13). Therefore, we
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hypothesize that there are interactions between muscle and bone
comorbidities in COPD.

Skeletal muscle and bone are inextricably linked genetically,
molecularly, and mechanically, and they are closely connected
spatially (25). They have various functions in common, such as
maintaining posture, locomotion, promoting breathing,
protecting internal organs and coordinating overall energy
consumption. Studies have also shown that muscle and bone
can serve as endocrine organs in producing myokines and
osteokines, respectively, which can interact within the so-called
muscle-bone unit (26).

Biomechanical Action of Muscle-Bone
There is a close mechanical relationship between skeletal muscle
and bone, with the bone providing the muscle with a point of
attachment and acting as a lever, and the muscle acting as a pulley
to move the body (25). The coordination of muscle mass and
bone mass is achieved by mechanical signals produced by muscle
strength that transmits anabolic activity in adjacent bones (27).
When the stimulus exceeds a certain threshold of mechanical
strain, it can induce bone anabolism and enhance bone hardness,
while preventing bone damage caused by increased mechanical
load. Conversely, if the stimulus is below this threshold of
mechanical strain, bone resorption will occur in related bone
tissues (27). In daily activities, the mechanical relationship
between muscle and bone occurs all the time, and exercise
training is just one of the manifestations of the mechanical
connection between muscle and bone. Exercise can produce
mechanical signals through the physical connection between
muscle and bone to affect bone remodeling. Although exercise
training was generally considered to be beneficial for improving
the loss of muscle mass and bone mass in most cases, some studies
indicated that the role of exercise on improving bone loss was
controversial. For example, studies showed that resistance
training was associated with the improvement of femur bone
mass (28), while endurance training might not improve bone
mass (29). One study even showed that transient endurance
exercise promoted bone resorption and stimulated upregulation
of sclerostin, a bone formation inhibiting protein (30). From the
biomechanical view, the decrease of muscle mass and function
will lead to the reduction of mechanical load on the bone, and
eventually lead to bone loss, which is consistent with the
coexistence of sarcopenia and osteoporosis in many
pathological conditions. However, the loss of bone mass cannot
fully explain sarcopenia, nor does muscle atrophy fully explain
osteoporosis (31). This suggests that there are other mechanisms
of muscle-bone crosstalk besides biomechanical action.

Biochemical Action of Muscle-Bone
Muscle and bone are two major components of the
musculoskeletal system, and they are closely related in
embryonic development, postnatal growth and development,
and aging (31). In addition to their mechanical connection, the
chemical crosstalk between muscle and bone has become a hot
topic of research in recent years. Accumulating evidence
indicates that muscle and bone can secrete cytokines to act on
Frontiers in Endocrinology | www.frontiersin.org 3
each other in autocrine, paracrine or endocrine manners. A
variety of myokines and osteokines have been found to play
critical roles in this muscle-bone crosstalk, including myokines
such as myostatin, irisin, IL-6, and osteokines such as RANKL,
OPG and osteocalcin.

Myokines
Myostatin
Myostatin, also known as growth differentiation factor 8 (GDF-8),
belongs to the transforming growth factor (TGF)-b superfamily.
Myostatin can inhibit the proliferation and differentiation of
myoblasts and promote muscle atrophy, and is a potent negative
regulator of skeletal muscle growth and development (32).
Myostatin signals through the activin type IIB receptor
(ACVR2B or ActRIIB), which is widely expressed and forms a
heterodimer with activin-like kinase 4 (ALK4, also known as
ACVR1B) or ALK5 (also known as TGF-bR1) (33). The
intracellular serine/threonine kinase domain of ALK4 and ALK5
phosphorylates SMAD Family Member 2 (Smad2) and Smad3,
and then forms a complex with Smad4. The complex translocats to
the nucleus to regulate the transcription of genes involved in the
proliferation and differentiation of skeletal muscle precursor cells
(34, 35), and in protein degradation pathways in mature myofibers
(36). The activation of Smad2 and Smad3 by myostatin can also
inhibit the Akt/mammalian target of rapamycin (mTOR) pathway
in response to pro-growth signals, and therefore, suppresses
protein synthesis (37) (Figure 1). Earlier studies also confirmed
that human and animals with a mutation in the myostatin genes
showed a remarkable growth in muscle mass. A decoy receptor
(ACVR2B/Fc) was found to be a potent inhibitor of myostatin and
as a result, could induce marked muscle growth when given
systemically to wild type mice and microgravity-exposed mice
respectively (38). Furthermore, studies showed that the expression
of myostatin mRNA was downregulated in skeletal muscles after
acute exercise and was even further decreased over long-term
physical activity in sedentary men, and the expression of
myostatin in muscles was associated with an impaired insulin
sensitivity (39), suggesting that downregulation of myostatin in
response to exercise may improve muscle performance.

Myostatin also promotes osteoclast development and inhibits
bone formation (40). Myostatin alone cannot induce bone
marrow-derived macrophages to form osteoclasts, but the
presence of myostatin with classical signals [RANKL and
macrophage colony-stimulating factor (M-CSF)] dramatically
improved the ability of osteoclast precursors to differentiate
into mature osteoclasts in vitro (40). On the gene expression
level, myostatin can increase the nuclear translocation of Smad2-
dependent nuclear factor of activated T cells, cytoplasmic 1
(NFATc1) and subsequently up-regulate the expression of
osteoclast differentiation genes (40). The role of myostatin in
osteoclast differentiation has also been confirmed in animal
models. For instance, deficiency or pharmacological inhibition
of myostatin prominently diminished osteoclast formation and
promoted bone destruction in the human TNF-a transgenic
(hTNFtg) mouse model of rheumatoid arthritis as well as in the
serum-transfer-induced arthritis model (40). Furthermore,
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myostatin may also influence the expression of other cytokines in
muscle-bone crosstalk. Knockout of myostatin genes in mice, for
example, resulted in enhanced expression of irisin in
muscles (41).

Irisin
Irisin is a newly discovered myokine, mainly derived from
skeletal muscles (42). Irisin is proteolytically cleaved from the
fibronectin type III domain-containing protein 5 (FNDC5) gene
products and secreted into the blood (42). Irisin is regulated by
exercise, and its plasma concentration increases in a dose-
dependent manner with increase in aerobic exercise intensity
(43). In a meta-analysis, Fox et al. evaluated the effect of an acute
bout of exercise (including aerobic and/or resistance exercise) on
circulating irisin levels, and found that the circulating irisin levels
boosted by 15% (95%CI: 10.8%-19.3%) after exercise compared
to baseline (44). The expression of irisin is regulated by
peroxisome proliferator-activated receptor g-coactivator 1a
(PGC-1a) and Smad3. In contrast to wild type mice, Smad3-/-

mice showed higher serum and skeletal muscle FNDC5 protein
Frontiers in Endocrinology | www.frontiersin.org 4
levels with the same exercise protocol (45). TGF-b binds to TGF-
bR1/TGF-bR2 complex, and Smad3 is phosphorylated and
translocated into the nucleus to bind the promoters of PGC-1a
and FNDC5 to suppress their transcription, and suppression of
FNDC5 transcription and protein leads to decrease in circulating
irisin in vitro (45) (Figure 2).

Irisin plays a positive role in regulating muscle mass by
promoting differentiation of myoblasts (46). In last few years,
several important studies have found that irisin was also a pivotal
regulator of bone metabolism. Colaianni et al. found that male
C57BL/6 mice injected with recombinant irisin (100mg/kg, once
a week) for a month showed increased cortical tissue BMD of
femora and tibia, accompanied by increased osteoblast numbers
(47). Irisin promoted the differentiation of bone marrow stem
cell-derived osteoblasts in vitro (47). Up till now, most studies
support the role of irisin in promoting bone formation, such as in
inflammatory bowel disease, hind-limb unloading, and
microgravity (weightlessness) induced bone loss models, and
exogenous administration of recombinant irisin alleviated bone
loss (48–50). Nevertheless, a more recent study, firstly identified
FIGURE 1 | The main mechanisms of muscle-bone crosstalk. 1) IL-17 secreted by Th17 cells induces RANKL expression in mice, which combines with RANK on the
surface of osteoclasts to activate TRAF6 and c-Fos to induce osteoclastogenesis, and eventually, bone resorption occurs. OPG, the decoy receptor of RANKL, can
prevent RANKL from activating RANK in the extracellular environment, thereby inhibiting osteoclast formation and bone loss; 2) During exercise, the muscle-derived IL-6
(mIL-6) acts on the IL-6 receptor on the surface of osteoblasts and increases the production of RANKL, subsequently promoting osteoclast differentiation and the
secretion of bioactive osteocalcin through RANKL/RANK pathway in osteoclasts. In turn, osteocalcin also enhances the production of mIL-6 during exercise. Thus, a
feed-forward loop between muscle and bone favors exercise adaptations. 3) Myostatin signals through ActRIIB, which forms a heterodimer with ALK 4/5. The intracellular
ALK4/5 phosphorylates SMAD2 and SMAD3, and then forms a complex with SMAD4. The complex translocates to the nucleus to regulate the transcription of genes
involved in the proliferation and differentiation of skeletal muscle precursor cells. The activation of SMAD2 and 3 by myostatin also inhibits the Akt/mTOR pathway in
response to pro-growth signals, and therefore, suppresses protein synthesis. Ultimately, myostatin contributes to muscle atrophy. 4) Irisin produced by skeletal muscles
during exercise acts on integrin aV/b on the surface of osteocytes to promote sclerostin production, leading to bone resorption. 5) IL-6 can also promote the generation
of IL-17.
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integrin aV/b5 as the receptor of irisin, found that genetic
deletion of FNDC5/irisin completely blocked trabecular bone
loss in mouse models of osteoporosis caused by ovariectomy
(51). Irisin induced up-regulated expression of sclerostin and
receptor activator of nuclear factor kappa-B ligand (RANKL)
through integrin aV/b5 in the osteocyte membrane, thereby
promoting bone resorption (51) (Figure 1). This discovery
prompted discussion to re-examine the role of irisin in muscle-
bone crosstalk (52).

Interleukin 6 (IL-6)
IL-6 is a classical pro-inflammatory cytokine mainly produced by
T lymphocytes and macrophages. Skeletal muscles can also
produce a large amount of IL-6 in response to muscle
contraction, which is released into blood stream during
exercise, and therefore IL-6 is also regarded as a myokine. In
skeletal muscles, IL-6 acts as a pleiotropic factor and appears to
have at least two different conflicting functions (53). In exercise
and physiological conditions, IL-6 produced by skeletal muscles
is increased for several hours in the circulation, which promotes
the activation of the signal transducer and activator of
transcription 3-suppressor of cytokine signaling 3 (Stat3-
SOCS3) signaling pathway through autocrine effects and plays
a positive role in regulating the myogenic differentiation (54, 55).
However, in pathological conditions, including muscular
dystrophy and chronic inflammatory diseases, there is a
chronic and lasting elevation of the circulating IL-6. Although
Frontiers in Endocrinology | www.frontiersin.org 5
Stat3-SOCS3 signaling is also activated in the target skeletal
muscle under these pathological conditions, the autocrine loop of
regulation in the action of IL-6 is totally lost (53). Besides, IL-6
combined with other molecules negatively regulates muscle
differentiation and promotes muscle atrophy (53). Although
IL-6 is a well-known pro-inflammatory cytokine, it can also
exert anti-inflammatory effects under certain conditions. For
instance, the exercise-induced rise in IL-6 promoted production
of IL-1 receptor antagonist (IL-1ra) and IL-10 (54), which
stimulated an anti-inflammatory systemic environment during
exercise. A recent study confirmed through genetic means that
the vast majority of circulating IL-6 detectable during exercise
originated from muscles (56), and the magnitude of exercise-
induced elevation of plasma IL-6 depended on exercise mode,
intensity and duration, as well as energy availability (54, 57).
Furthermore, it’s reported that the amount of regular physical
activity was negatively associated with the basal circulating IL-6
levels (54), that is to say, the less physical activity, the higher
basal plasma IL-6. This regulation was attributed to the effects of
training adaptations. However, it also has been demonstrated
that acute exercise upregulated IL-6 receptor (IL-6R) gene
expression in skeletal muscles, and long-term training
increased basal IL-6R mRNA levels (57). Therefore, the
downregulation of systemic levels of IL-6 induced by exercise
training may be compensated for the enhanced production of IL-
6R, suggesting a sensitization of skeletal muscles to IL-6 at rest.
Meanwhile, it is worth noting that IL-6 signals in osteoblasts to
FIGURE 2 | Schematic diagram of muscle-bone crosstalk in COPD. In COPD, the serum levels of irisin are decreased, while myostatin and RANKL are up-regulated in both
circulation and skeletal muscles. The raised expression of RANKL induced by chronic cigarette smoke exposure contributes to muscle atrophy/skeletal muscle dysfunction
through the RANKL/RANK pathway. The figure also shows the specific signaling pathway of irisin and RANKL. TGF-b binds to TGF-bR1/TGF-bR2 complex, and Smad3 is
phosphorylated and translocated into the nucleus to bind the promoters of PGC-1a and FNDC5 to suppress their transcription, and suppression of FNDC5 transcription and
protein leads to decrease in circulating irisin in vitro. RANKL activates the homologous receptor RANK on the surface of osteoclasts and osteoclast precursors, and activated
RANK causes the recruitment of the adapter protein TRAF6, leading to NF-kB activation and translation of NF-kB to the nucleus. NF-kB increases the expression of c-Fos,
and c-Fos interacts with NFATc1 to trigger the transcription of osteoclastogenic genes.
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promote cell differentiation and the release of bioactive osteocalcin
into circulation, and the muscle-derived IL-6 (mIL-6) promotes
nutrient uptake and catabolism in myofibers during exercise in an
osteocalcin-dependent manner, thus enhancing exercise capacity
(56). In addition to regulating muscle growth and enhancing
exercise capacity, IL-6 appears to induce bone resorption through
RANKL-dependent enhanced osteoclastogenesis/osteoblast
differentiation (58) (Figure 1) as well as via osteoblast-derived
prostaglandia E2 (PGE2)-dependent osteoclast activation (59, 60).

Osteokines
RANKL and Osteoprotegerin(OPG)
RANKL is produced by osteoblasts, stromal cells, and other types
of cells under the regulation of various hormones and cytokines.
Osteoblasts and stromal cells also produce OPG-the decoy
receptor of RANKL. Both RANKL and OPG belong to the
TNF family. RANKL activates the homologous receptor RANK
on the surface of osteoclasts and osteoclast precursors, and
activated RANK causes the recruitment of the adapter protein
TNF receptor associated factor 6 (TRAF6), leading to NF-kB
activation and translation of NF-kB to the nucleus. NF-kB
increases the expression of c-Fos and c-Fos interacts with
NFATc1 to trigger the transcription of osteoclastogenic genes
(61), which contributes to bone resorption and osteoporosis.
OPG can prevent RANKL from activating RANK in the
extracellular environment, thereby inhibiting osteoclast
formation and bone loss (61) (Figure 2). In wild-type mouse
models, RANKL and RANK are expressed in both bones and
muscles, and RANKL is particularly highly expressed in
oxidative muscles like the soleus dominated by type I fibers
(62). In huRANKL transgenic mice, the overexpression of
huRANKL not only induced bone loss, but also resulted in
decreased leg muscle, lower maximal speed and limb force,
decreased number of both type I and II myofibers, and
impaired glucose metabolism (62). These changes were
associated with the increased levels of antimyogenic and
inflammatory gene expression in muscles, such as myostatin
and protein tyrosine phosphatase receptor-g (62). In mouse
models, intervention with OPG-Fc (an inhibitor of both
RANKL and TNF-related apoptosis-inducing ligand) and
denosumab (a selective RANKL inhibitor) rescued muscle
weakness to the similar levels, suggesting that the effect of
RANKL on muscle is mainly mediated by RANK signals (62).
In postmenopausal women, the elevated expression of RANKL
plays a pivotal role in the development of osteoporosis (63).
Denosumab treatment not only improved BMD and reduced the
risk of fracture, but also, interestingly, increased the appendicular
lean mass and grip strength (62, 64).

Osteocalcin
Osteocalcin is a small g-carboxyglutamate protein expressed by
osteoblasts, and is only expressed in the late differentiation stage
of osteoblasts and after the arrest of proliferation, under the
regulation of Runx2/Cbfa1 transcription factor (65). g-
carboxylation occurs on three glutamate residues of osteocalcin
before osteocalcin is secreted by osteoblasts. The post-
translational modification increases the affinity of osteocalcin
Frontiers in Endocrinology | www.frontiersin.org 6
to hydroxyapatite. Therefore, the majority of the osteocalcin
secreted by osteoblasts is stored in bone matrix, which
constitutes the most abundant non-collagenous polypeptides
(66). Osteocalcin in circulation exists in two forms: g-
carboxylated osteocalcin and uncarboxylated osteocalcin, and
only uncarboxylated osteocalcin plays the role of endocrine
hormone (67). In the process of bone resorption under acidic
conditions, osteoclasts decarboxylate g-carboxylated osteocalcin
in bone matrix, activate and release bioactive osteocalcin into
blood (68). The effects of osteocalcin on bone metabolism remain
controversial from studies in vivo and in vitro. It is speculated
that osteocalcin plays a dual role. On the one hand, osteocalcin is
a biochemical marker of bone turnover and can regulate bone
remodeling by regulating the activity of osteoblasts and
osteoclasts. On the other hand, it is a regulator of bone
mineralization (69).

Previous studies explored the role of osteocalcin in regulating
glucose homeostasis, insulin sensitivity and energy metabolism
(68, 70). In recent years, more studies have found that
osteocalcin plays an important role in regulating muscle
quantity, muscle function, and movement adaptability (71). It
has been identified that G-protein coupled receptor C family 6a
(Gprc6a) is the osteocalcin receptor on cells, which is highly
expressed in skeletal muscles, especially in the oxidative muscles
that require long-term work, such as the soleus muscle (71).
Uncarboxylated osteocalcin could promote myoblast
proliferation through the PI3K/Akt/p38 MAPK pathway, or
through the Gprc6a-ERK1/2 signaling pathway in vitro (72).
Mera et al. demonstrated a notable decrease in muscle mass in
Gprc6a-deficient mice, and the administration of osteocalcin
ameliorated muscle mass in wild type 9-month-old mice (73),
suggesting that osteocalcin signaling in myofibers is necessary for
maintaining muscle quantity in elderly mice, partly due to the
promotion of protein synthesis in the myotubes. In early
adulthood, circulating osteocalcin levels begin to decline
sharply, especially during aging; Circulating osteocalcin levels
in women and men reach their lowest levels before the age of 30
and 50, respectively (71). Interestingly, exercise has been shown
to increase circulating osteocalcin levels. For example, a bout
endurance aerobic-based exercise in 3-month-old mice (74) and
a 45-minute exercise in young women (71) significantly
increased circulating osteocalcin levels. Osteocalcin not only
favors the uptake and catabolism of glucose and fatty acids in
myofibers, but also enhances the production of mIL-6 during
exercise, a myokine that promotes the secretion of bioactive
osteocalcin (Figure 1), while exogenous osteocalcin
administration improved the exercise capacity of mice (71).
Hence, it’s possible that osteocalcin signaling in myofibers may
be a novel and promising means to attenuate the age-related
decline in muscle function.

Other Cytokines
In addition to the molecules described above, muscle and bone
also produce other myokines and osteokines (75, 76), such as
insulin-like growth factor (IGF)-1, fibroblast growth factor
(FGF)-2, PGE2, IL-7, IL-15, beta-aminoisobutyric acid
(BAIBA), TGF-b, and sclerostin, which form a delicate
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network in muscle-bone crosstalk. Whether one or more of these
molecules are involved in musculoskeletal comorbidities of
COPD still needs further investigation, so we will not
introduce these cytokines in more details here. We mostly
focused on those involved in bone and muscle comorbidities in
COPD, and those believed to play key roles in muscle-
bone crosstalk.
MUSCLE-BONE CROSSTALK IN COPD

Aging, chronic inflammation, inactivity, bed rest and other
pathological conditions in COPD result in the loss of muscle
and bone mass and functional impairment. Although the clinical
significance of sarcopenia and osteoporosis is well recognized,
the molecular mechanisms under these pathological conditions
remain to be investigated. However, myokines and osteokines
potentially involved in muscle-bone crosstalk in COPD have
newly been revealed, including IL-6, irisin, myostatin, RANKL,
osteocalcin, etc.

It is well known that COPD is characterized by both local and
systemic inflammation, and IL-6, as a key pro-inflammatory
cytokine, is highly expressed in patients with COPD. Elevated
circulating IL-6 levels are associated with decreased forced
expiratory volume in one second (FEV1), strength of
quadriceps femoris and exercise capacity in COPD patients
(77). In a 3-year study of inflammatory markers in patients
with COPD, elevated serum IL-6 was found to predict increased
mortality (78). However, as described in the previous section, IL-
6 is also a myokine that plays both anti-inflammatory and pro-
inflammatory roles in skeletal muscles. It can regulate the
differentiation of osteoclasts and enhance exercise adaptability.
From the perspective of muscle-bone crosstalk, the role of IL-6 in
COPD should be re-examined.

Some studies have examined the expression of irisin in COPD,
and its association with emphysema and exercise. Compared with
healthy controls, COPD patients showed decreased level of serum
irisin which was positively correlated with physical activity (79).
Exercise training raised circulating irisin in a chronic cigarette
smoke (CS)-exposure induced mouse model of COPD (80). In
patients with COPD, serum irisin levels were significantly
correlated with diffusing capacity of lung for carbon monoxide/
alveolar volume (DLCO/VA) and percentage of low-attenuation
area (LAA%) (81). Interestingly, an experimental study showed that
irisin ameliorated emphysema in a CS-induced model of COPD in
mice, in which irisin played an anti-oxidative role through nuclear
factor erythroid 2-related factor 2 (Nrf2, a transcription factor with
antioxidant properties) and heme oxygenase-1 (HO-1, an
antioxidant in the antioxidant pathway) (80). In vitro, irisin was
found to promote the expression of Nrf2 and decrease apoptosis
induced by CS exposure in A549 cells (81). These findings suggest
that irisin, in addition to its role as a myokine, may be also involved
in the pathogenesis of emphysema induced by epithelial apoptosis
in COPD.

Myostatin is a negative regulator of skeletal muscle growth
and development, and some studies have reported dysregulated
Frontiers in Endocrinology | www.frontiersin.org 7
expression of myostatin in COPD and its association with
skeletal muscle dysfunction. Serum myostatin levels were
elevated, and negatively correlated with total muscle mass in
male COPD patients (82), and myostatin mRNA expression was
also elevated in skeletal muscles from COPD patients (83).
Myostatin maintains the satellite cells (SCs) in quiescent state,
and its absence can trigger the activation of SCs (84). In addition,
inhibition of myostatin alleviated muscle atrophy by
upregulating muscle regeneration markers in limb muscles of
rats (85). A recent study found that the markers of muscle
regeneration (Pax-7, Myf-5, MyoD and myogenia) and the
numbers of Pax-7+/Myf-5- SCs in the vastus lateralis of
sarcopenic COPD patients were decreased, while markers of
muscle injury and the myostatin level were increased (86). In a
clinical study of sarcopenic COPD patients, Bimagrumab (an
ACVR2 inhibitor that blocks the myostatin pathway) was found
to safely increase skeletal muscle mass in patients with COPD,
but no improvement in muscle function or physical performance
was observed (87). Clinically, pulmonary rehabilitation is the
most effective non-pharmacological treatment for COPD
patients at present. Pulmonary rehabilitation was found to
improve quadriceps femoris strength and physical performance
(88) and decrease myostatin expression in quadriceps femoris
(89). Moreover, resistance training can not only attenuate the
expression of myostatin in skeletal muscles, but also up-regulate
the proportion of myogenin/MyoD, and safely and effectively
counteract skeletal muscle dysfunction in acute exacerbation of
COPD (90).

Latest studies also indicate that osteokines play critical roles
in muscle-bone crosstalk in COPD. BMD was found to be
associated with the imbalance of RANKL/OPG and systemic
inflammation in peripheral blood of patients with COPD (91).
In addition, in IL-17A knockout mice, bone loss induced by
chronic CS exposure was attenuated, with downregulation of
RANKL, suggesting that IL-17 promoted bone resorption by
inducing RANKL expression in this model (92). Our most recent
study found that chronic CS exposure induced skeletal muscle
atrophy and muscle weakness in mice, with up-regulated
expression of RANKL and its receptor RANK in skeletal
muscles. RANKL neutrolization attenuated skeletal muscle
dysfunction and reduced the expression of myostatin and
MuFR1/Atrogin1. In vitro, CS extract induced up-regulation of
RANKL/RANK in skeletal muscle cells, and blocking RANKL
down-regulated myostatin expression (93). These results indicate
that the RANKL/RANK pathway plays a key role in skeletal
muscle atrophy induced by chronic CS exposure.

To our knowledge, there are few studies on osteocalcin in
COPD, and it is only used as a marker of bone turnover or bone
formation (94, 95), without further investigation on the
mechanism of osteocalcin in the muscle-bone crosstalk of
COPD. As mentioned earlier, osteocalcin does play a role in
muscle-bone crosstalk during exercise. During exercise, a
feedback loop between bone (via osteocalcin) and muscle (via
IL-6) enhances exercise adaptation: osteocalcin promotes
nutrient absorption and catabolism of myofibers, and
osteocalcin can trigger IL-6 expression and secretion in skeletal
September 2021 | Volume 12 | Article 724911
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muscles. IL-6 also enhances the production of bioactive
osteocalcin (56). The roles of osteocalcin and IL-6 in muscle-
bone comorbidities of COPD deserve further investigation.
Based on the evidence available to date, we propose a muscle-
bone crosstalk mechanism for skeletal muscle dysfunction/
sarcopenia and osteoporosis in COPD, as shown in Figure 2.
CONCLUSION

COPD is a major cause of chronic morbidity and mortality
worldwide, with many people dying prematurely from the
disease or its complications. Sarcopenia and osteoporosis, as
important comorbidities of COPD, are associated with COPD
severity and prognosis. Currently, themechanisms underlying the
muscle-bone relationship inCOPD is still unclear, and there is still
a lack of comprehensive and systematic measures to improve the
condition and prognosis of COPDand its comorbidities in clinical
practice. Fortunately, studies have revealed the potential role of
muscle-bone crosstalk involvingmyokines andosteokines, such as
IL-6, irisin, myostatin, RANKL/RANK and osteocalcin, in the
development of sarcopenia and osteoporosis in COPD.
Identification of key molecules in the pathogenesis of
Frontiers in Endocrinology | www.frontiersin.org 8
musculoskeletal diseases holds promise for precision therapy of
comorbidities in COPD. Importantly, rehabilitation is now the
most effective non-pharmacological therapy for improving
outcomes of COPD (1), but its impact on the delicate network
of myokines and osteokines is underappreciated. Further
understanding of muscle-bone crosstalk in physical exercise in
COPD may shed light on implementation of better modalities of
non-pharcological management for a disease currently without a
pharmalogical cure.
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