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Abstract The development of pancreatic cancer requires recruitment and activation of different

macrophage populations. However, little is known about how macrophages are attracted to the

pancreas after injury or an oncogenic event, and how they crosstalk with lesion cells or other cells

of the lesion microenvironment. Here, we delineate the importance of CXCL10/CXCR3 signaling

during the early phase of murine pancreatic cancer. We show that CXCL10 is produced by

pancreatic precancerous lesion cells in response to IFNg signaling and that inflammatory

macrophages are recipients for this chemokine. CXCL10/CXCR3 signaling in macrophages

mediates their chemoattraction to the pancreas, enhances their proliferation, and maintains their

inflammatory identity. Blocking of CXCL10/CXCR3 signaling in vivo shifts macrophage populations

to a tumor-promoting (Ym1+, Fizz+, Arg1+) phenotype, increases fibrosis, and mediates

progression of lesions, highlighting the importance of this pathway in PDA development. This is

reversed when CXCL10 is overexpressed in PanIN cells.

Introduction
Pancreatic cancer is difficult to target because its fibrotic microenvironment not only acts as a barrier

for delivery of tumor cell targeting drugs, but it also generates an anti-inflammatory environment

and prevents immunotherapy (Balachandran et al., 2019). One of the current paradigms for treat-

ment of PDA focuses on combining chemotherapy with immune modulators that reprogram tumor-

promoting macrophages toward a pro-inflammatory phenotype (Bastea et al., 2019;

Mitchem et al., 2013; Pandey and Storz, 2019). A deeper understanding of the mechanisms that

play a role in macrophage polarization can provide insights to develop such new interventions.

Genetic mouse models have shown that pancreatic ductal adenocarcinoma (PDA) most likely orig-

inates from precancerous pancreatic intraepithelial neoplasm (PanIN) lesions (reviewed in

Storz, 2017). The development and progression of these early lesions is dependent on crosstalk

between a multitude of host cells in their microenvironment. Of these, inflammatory (M1-polarized)

and alternatively activated (M2-polarized) macrophages are the most consequential cell types.

The initial influx of macrophages, which induces local inflammation, occurs in response to an aber-

rant release of chemokines from pancreatic cells undergoing transformation (Liou et al., 2015).

However, local inflammation alone is not an efficient driver of oncogenic progression and requires

additional inflammatory signaling, genetic alterations, and downregulation of factors that maintain

acinar cell identity (Carrière et al., 2011; Cobo et al., 2018; Guerra et al., 2011; Guerra et al.,

2007).
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Inflammatory macrophages contribute to pre-neoplastic lesion formation via secretion of inflam-

matory mediators, which regulate reorganization of the acinar microenvironment and initiate acinar-

to-ductal metaplasia (ADM) (Liou et al., 2015; Liou et al., 2013; Sawey et al., 2007). While pro-

inflammatory M1 macrophages are important for the initiation of precancerous lesions, this popula-

tion dwindles and M2 macrophages become more predominant (Liou et al., 2017). These M2 mac-

rophages are chitinase-like protein 3 (Ym1/Chil3), arginase-1 (Arg1), resistin-like alpha (Fizz1/Retnla),

and interleukin-1 receptor antagonist protein (IL-1ra) positive and promote lesion growth, drive

fibrogenesis, and block T-cell infiltration (Bastea et al., 2019; Liou et al., 2017). Later, at the tumor

stage, alternatively activated macrophages represent approximately 85% of tumor-associated mac-

rophages (TAMs) in the microenvironment (Partecke et al., 2013). For full-blown pancreatic cancer,

tissue-resident macrophages have been suggested to shape fibrotic responses (Zhu et al., 2017),

while infiltrating monocytes generate an immunosuppressive environment (Zhang et al., 2017;

Zhu et al., 2017).

C-X-C motif chemokine 10 (CXCL10), also known as IFNg-induced protein 10 (IP-10), acts through

its cognate receptor C-X-C motif chemokine receptor 3 (CXCR3) (Groom and Luster, 2011) and

regulates the chemotaxis of CXCR3+ immune cells such as macrophages, T cells, and natural killer

(NK) cells (Luster and Ravetch, 1987; Tomita et al., 2016; Zhou et al., 2010). With respect to can-

cer aggressiveness and patient prognosis, the presence of CXCL10 and CXCR3 has shown conflict-

ing results depending on the type and stage of the disease (Fulton, 2009; Jacquelot et al., 2018;

Li et al., 2015). In pancreatic cancer, both CXCL10 and CXCR3 are expressed in tumor tissue

(Delitto et al., 2015), and their presence has been correlated with poor prognosis (Liu et al., 2011;

Lunardi et al., 2014). However, the role of CXCL10/CXCR3 signaling during early development of

the disease has not been addressed.

In our present study, we show that CXCL10, produced by precancerous lesions cells, is involved

in the onset of inflammation by chemoattracting macrophages. We further show that CXCL10 signal-

ing to CXCR3 is a key event for inflammatory macrophage identity and that inhibition of CXCL10/

CXCR3 signaling leads to a polarization shift to an alternatively activated phenotype. In vivo, we

demonstrate the importance of CXCL10/CXCR3 signaling in the maintenance of an inflammatory

microenvironment, and that its blockage drives tumor progression.

Results

Pre-neoplastic ADM and PanIN lesions produce CXCL10
To identify factors that are released by precancerous lesion cells, we performed a cytokine/chemo-

kine assay. Therefore, we used SM3 cells, which have been isolated from the precancerous epithe-

lium of a KC mouse and form lesions with PanIN features when cultivated on extracellular matrix

(Agbunag et al., 2006; Liou et al., 2017). In this screen limited to these in vitro lesion cells (Fig-

ure 1—figure supplement 1A), besides known factors such as C-C motif chemokine 5 (CCL5) and

metalloproteinase inhibitor 1 (TIMP-1), we found strong expression of CXCL10, which has previously

been identified as a chemoattractant for macrophages (Tomita et al., 2016; Zhou et al., 2010). We

then used fluorescent in situ hybridization (FISH) to determine whether Cxcl10 is produced in pan-

creatic precancerous lesion areas of Ptf1a/p48cre;LSL-KrasG12D (KC) mice. While Cxcl10 was unde-

tectable in normal adjacent acini (Figure 1—figure supplement 1B), we found significant expression

of Cxcl10 in ADM and PanIN1 lesions (Figure 1A). Quantification analyses of samples stained for

Cxcl10 mRNA by ISH indicated approximately fivefold higher expression in ADM than in PanIN

(Figure 1B, Figure 1—figure supplement 1C). Next, we isolated primary pancreatic acinar cells

from LSL-KrasG12D mice and adenovirally infected them with either GFP (control) or Cre-GFP, to test

whether Cxcl10 expression is upregulated during the KRasG12D-driven ADM process (Figure 1—fig-

ure supplement 1D). However, expression of KRasG12D was unable to increase Cxcl10 expression,

indicating an external stimulus as a driver.

CXCL10 (also IP-10, interferon gamma-inducible protein 10) expression has previously been

shown to be induced by interferon gamma (IFNg ) via activation of signal transducer and activator of

transcription 1 (STAT1) (Han et al., 2010; Luster and Ravetch, 1987). Therefore, we tested if this

pathway is active in PanIN cells. Treatment of SM3 cells with IFNg induced an over 60-fold increase

in Cxcl10 mRNA (Figure 1C), as well as increased CXCL10 protein production (Figure 1D) and

Pandey et al. eLife 2021;10:e60646. DOI: https://doi.org/10.7554/eLife.60646 2 of 24

Research article Cancer Biology Cell Biology

https://doi.org/10.7554/eLife.60646


A                                                                     B

C                                  D                                E

F                                      G                                     

ADM PanIN1

1

2

1 2

FISH: Cxcl10 DAPI FISH: Cxcl10 DAPIH&E H&E

11

kDa

75

WB: anti-pY701-STAT1

pY701-STAT1

46

WB: STAT1

STAT1

WB: anti-CXCL10

CXCL10

WB: GAPDH

GAPDH

75

IF: CD4 IF: CD8 IF: NKG2D

ISH: IFN /Ifng ISH: IFN /Ifng ISH: IFN /Ifng

11

46

WB: anti-CXCL10

CXCL10

WB: GAPDH

GAPDH

kDa

#
 O

f 
P

o
s

it
iv

e
 P

ix
e

ls
/A

re
a

[F
o

ld
 C

h
a
n
g

e
]

p48cre;LSL-KrasG12D

*

**

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
x
c
l1
0

 E
x

p
re

s
s

io
n

[F
o

ld
 C

h
a
n
g

e
]

*

qPCR
0

10

20

30

40

50

60

70

80
C

X
C

L
1

0
 i
n

 S
u

p
e

rn
a

ta
n

t
[F

o
ld

 C
h
a
n
g

e
]

ELISA
0

1

2

3

4

5

Figure 1. Pre-neoplastic ADM and PanIN lesions express CXCL10. (A) ‘Normal’ acinar cells (data shown in Figure 1—figure supplement 1B), ADM

areas and PanIN lesions of pancreata from KC mice were analyzed for Cxcl10 expression. Shown are representative pictures of H and E staining

(overview and marked region) and FISH for Cxcl10 mRNA expression (red dots) combined with DAPI in the marked regions. Images shown represent

whole-slide analysis of staining. The scale bar represents 100 mm. (B) Quantification of relative Cxcl10 expression (as determined by ISH shown in

Figure 1 continued on next page
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secretion (Figure 1E). To test whether CXCL10 expression is indeed mediated through STAT1 sig-

naling, we combined IFNg stimulation with the pan-JAK inhibitor NVP-BSK805. We found that IFNg

stimulation led to phosphorylation of STAT1 at Y701 (activating phosphorylation), increased expres-

sion of CXCL10, and that pre-treatment with NVP-BSK805 inhibited IFNg-induced pY701-STAT1 and

CXCL10 expression (Figure 1F). T cells and NK cells are known IFNg producers in the pancreatic

microenvironment (Brauner et al., 2010; Chapoval et al., 2001; Loos et al., 2009). To determine

whether these cells could be an in vivo source for IFNg in our mouse model, we performed an ISH

for Ifng combined with IHC for T-cell surface glycoprotein CD4 (CD4), T-cell surface glycoprotein

CD8 (CD8), or NKG2-D type II integral membrane protein (NKG2D) markers. As expected from pub-

lished data, we found both T cells and NK cells as a potential source for IFNg (Figure 1G).

Inflammatory macrophages are the recipients for CXCL10
With respect to early events leading to development of PDA, the influx of macrophages into the

pancreas has been demonstrated following injury and during development and progression of pan-

creatic lesions (Gea-Sorlı́ and Closa, 2009; Liou et al., 2015). Moreover, CXCL10 has been demon-

strated as a chemoattractant for macrophages along with other immune cells (Liu et al., 2011). This

prompted us to test whether macrophages are responsive to CXCL10. We found that non-polarized

peritoneal macrophages express high levels of the CXCL10 receptor Cxcr3, while M1-polarized

(inflammatory) macrophages express moderate levels, and M2-polarized (alternatively activated)

macrophages do not express this receptor (Figure 2A). Transwell invasion assays using both perito-

neal and bone marrow-derived macrophages suggest that CXCL10 can act as a chemoattractant for

M1-polarized macrophages (Figure 2B, Figure 2—figure supplement 1A). However, since tissue-

resident macrophages have been attributed important roles in established pancreatic cancer

(Zhu et al., 2017), we also determined if this population can be the recipients for CXCL10. Approxi-

mately 80% of tissue resident macrophages in normal mouse pancreas express CXCR3 (Figure 2—

figure supplement 1A), but when isolated, these cells do not proliferate in response to CXCL10

(Figure 2—figure supplement 1B). In sum, our in vitro data suggests that CXCL10 may drive the

chemoattraction of inflammatory macrophages to the pancreas.

Next, we determined if pancreatic macrophages or T cells express CXCR3 in KC mice. Therefore,

we sorted for pancreatic CD3+ or F4/80+ cells and then for the presence of CXCR3. We found that

approximately 40% of pancreatic macrophages in KC mice express CXCR3 (Figure 2C). Moreover,

an in situ IF-IHC analysis of pancreata of KC mice indicated that inflammatory (F4/80+;pY701-

STAT1+) macrophages express CXCR3, while alternatively activated (F4/80+;Ym1+) macrophages do

not express this receptor (Figure 2D), which also confirmed above in vitro data. An overlay between

an ISH for Cxcr3 and IF-IHC for inflammatory macrophages (CD68+;iNOS+) in human patient tumors

showed that ~70% of CXCR3+ cells are M1 macrophages and confirmed this population as a poten-

tial recipient for CXCL10 (Figure 2E,F).

Figure 1 continued

Figure 1—figure supplement 1C) in ‘normal’ acini, ADM, and PanIN regions of KC mice (n = 3 biological replicates) using a positive pixel algorithm on

whole slides for each mouse analyzed, using the image scope software. Statistical analysis was done using the Student’s t-test. *Statistical significance

as compared to ‘normal’ acini (for ADM p-value = 0.023; PanIN p-value = ns), **Statistical significance for PanIN as compared to ADM (p-value=0.033).

Error bars indicate standard deviation. (C, D, E) SM3 cells were stimulated with 10 ng/ml IFNg for 4 days and an increase in CXCL10 expression was

determined by qPCR (C), western blot (D), and in the media supernatants (E). For (C, D), results are representative of data from three independent,

reproducible experiments. Statistical analysis was done using the Student’s t-test. The asterisk indicates statistical significance (C: p-value < 0.0001; E:

p-value = 0.0004). Error bars indicate standard deviation. (E) shows two biological repeats. (F) SM3 cells were treated with NVP-BSK805 (10 mM, 1 hr)

and then stimulated with 10 ng/ml IFNg for 24 hr. Samples were subjected to SDS-PAGE and analyzed by western blotting for pY701-STAT1, STAT1,

and CXCL10 expression as indicated. Immunoblotting for GAPDH served as a control for equal loading. Results shown represent reproducible data

obtained from three independent experiments. (G) Pancreata of KC mice were subjected to IF-IHC for CD4, CD8, and NKG2D combined with FISH for

Ifng. Images shown are representative of IF and FISH done on 2 KC mice (biological replicates). The scale bar represents 10 mm.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Quantification of Cxcl10 in KC tissue and IFNV-stimulated SM3 cells (panels B, C, and E).

Figure supplement 1. CXCL10 expression in pancreatic precancerous lesion cells.

Figure supplement 1—source data 1. CXCL10 expression in Adeno-null-GFP and Adeno-cre-GFP infected cells (panel D).
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Figure 2. Inflammatory macrophages are the recipients for CXCL10. (A) Primary peritoneal macrophages were isolated and either left non-polarized or

were polarized to M1 and M2 macrophages. CXCR3 expression was determined by qPCR. Results shown are representative of reproducible data from

three independent experiments. Statistical analysis using the Student’s t-test indicates significance (marked by an asterisk). Error bars indicate standard

deviation. (B) Transwell assay. 0.5 � 105 non-polarized, M1- or M2-polarized peritoneal macrophages were plated into transwell inserts. 500 ng/ml

Figure 2 continued on next page
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CXCL10/CXCR3 signaling maintains the inflammatory phenotype of
macrophages
Next, we tested the impact of blocking CXCL10/CXCR3 signaling on the inflammatory macrophage

population. We isolated peritoneal primary macrophages, polarized them to inflammatory (F4/80+;

iNOS+) macrophages (Figure 3—figure supplement 1A), and then blocked CXCL10/CXCR3 signal-

ing with a CXCR3 neutralizing antibody (CXCR3 NAB). We found that upon CXCR3 neutralization,

M1 macrophages, although still iNOS positive, start to express Ym1 (Figure 3A), which we previ-

ously have identified as a bona fide marker for M2 alternatively activated macrophages in precancer-

ous abnormal pancreas lesions (Bastea et al., 2019). A more thorough analysis using qRT-PCR

indicated a significant decrease in CD38, which is a distinct M1 macrophage marker

(Jablonski et al., 2015), and an upregulation of Ym1, Arg1 and Fizz1 (Figure 3B), which are all

markers of the alternatively activated macrophage population that previously has been shown to

drive fibrosis during pancreatic lesion progression (Liou et al., 2017). CXCR3 neutralization in M1

macrophages also slightly increased Il4ra and Stat6 mRNA expression, and increased nuclear locali-

zation of active Y641-phosphorylated STAT6 (Figure 3—figure supplement 1B,C), which are addi-

tional indicators of M2 polarization (Yushi et al., 2016).

The interferon regulatory factors (IRFs) IRF4 and IRF5 have been shown to be key regulators of

macrophage polarization (Bastea et al., 2019; Günthner and Anders, 2013). M1-polarized macro-

phages subjected to CXCR3 inhibition upregulated IRF4, a transcription factor for M2 macrophage

polarization, and downregulated the M1 transcription factor IRF5 (Figure 3—figure supplement

1D), indicating a potential mechanism of how pancreatic macrophage populations may shift when

CXCR3 is blocked.

To test whether neutralization of CXCL10/CXCR3 signaling also decreases inflammatory macro-

phages in vivo, we treated KC mice with a CXCR3 neutralization antibody (CXCR3 NAB) or an iso-

type control IgG antibody over a period of 9 weeks (Figure 3—figure supplement 1E). While

overall numbers of macrophages remained unchanged (Figure 3—figure supplement 1F), IF-IHC

analyses for F4/80+;pY701-STAT1+ cells indicated a >50% decrease in inflammatory macrophages in

the CXCR3 NAB-treated mice (Figure 3C,D).

Neutralization of CXCL10/CXCR3 signaling increases
alternatively activated pancreatic macrophages, SMA-positive
fibroblasts, and areas of pancreatic lesions
We then determined if the decrease in inflammatory macrophages after neutralization of CXCL10/

CXCR3 signaling can lead to an increase in Ym1+ alternatively activated macrophages. The presence

of Ym1+ macrophages in the pancreas was increased by approximately threefold when KC mice

Figure 2 continued

CXCL10 in media was placed in the bottom wells, and chemoattraction of macrophages was determined after 20 hr. Data shown here represents

reproducible results from peritoneal macrophages obtained from three different mice (biological replicates). Statistical analysis using the Student’s

t-test indicates significance (marked by an asterisk) for nonpolarized (p-value=0.034) and M1 (p-value=0.0003) macrophages. Error bars indicate

standard deviation. (C) CD3+ T cells and F4/80+ macrophages were sorted from digested pancreas of KC mice using FACS and analyzed for the

expression of CXCR3. The bars indicate the percentage of CXCR3+ cells among the two cell types sorted. Data represents analyses done on three mice

(biological replicates). Statistical analysis was done using Student’s t-test. Error bars indicate standard deviation. (D) CXCR3 expression in M1 (F4/80+;

pSTAT1+) or M2 (F4/80+;Ym1+) macrophages in pancreatic tissue of KC mice was determined by immunofluorescence. Images shown here represent

whole slide analysis of staining done on the tissue of 2 KC mice (biological replicates). The scale bar indicates 10 mm. (E) Patient tumor tissue stained by

ISH for Cxcr3 and overlaying immunofluorescence for inflammatory (CD68+,iNOS+) macrophages. Images shown represent whole slide analysis of

staining done on the tissue from 10 patient samples. The scale bar indicates 100 mm. (F) Quantification of Cxcr3+;CD68+;iNOS+ cells in patient samples

(n = 10). Statistical analysis was done using Student’s t-test. Error bars indicate standard deviation.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Cxcr3 expression and migration in response to CXCL10 for polarized macrophages, CXCR3 expression in T cells and macrophages, and

quantification of CXCR3+ M1 macrophages (panels A, B, C, and F).

Figure supplement 1. M1-polarized BMD macrophages are chemoattracted to CXCL10, and tissue resident macrophages express CXCR3 but do not
proliferate in response to CXCL10.

Figure supplement 1—source data 1. Quantification of macrophage migration and proliferation in response to CXCL10, and percentage of macro-
phages which are CXCR3+ (panels A-C).
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Figure 3. CXCL10/CXCR3 signaling maintains the inflammatory phenotype of macrophages. (A) Peritoneal macrophages were isolated, polarized to

M1, and then treated with 500 mg/ml CXCR3 NAB or isotype control IgG. After 48 hr treatment, samples were analyzed for expression of iNOS or Ym1

using immunofluorescence. Images shown are representative of three independent experiments done on peritoneal macrophages obtained from three

mice (biological replicates). The scale bar indicates 100 mm. (B) Peritoneal macrophages were isolated, polarized to M1, and treated with 500 mg/ml

Figure 3 continued on next page
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were treated with a CXCR3 NAB, as compared to treatment with the isotype control IgG

(Figure 4A,B). Similar effects on this macrophage population were observed when KC mice were

treated with a CXCL10 NAB, as compared to treatment with the isotype control IgG (Figure 4—fig-

ure supplement 1A–C).

Previously, Ym1+ macrophages in the KC animal model have been shown to drive fibrosis during

pancreatic cancer development (Liou et al., 2017), and after neutralization of CXCR3, or alterna-

tively neutralization of CXCL10, we observed a correlating increase in fibrosis (Figure 4C,D and Fig-

ure 4—figure supplement 1D,E). In line with increased presence of alternatively activated

macrophages and increased fibrosis, abnormal areas (lesions and stroma) increased approximately

twofold when KC mice were treated with CXCR3 NAB (Figure 4E,F). Of note, neutralization of

CXCR3 in non-transgenic (ntg) mice did not show any change in the normal pancreatic tissue

(Figure 4E). Quantification of different lesion types from both treatment groups indicated slight, but

not statistically significant differences in the distribution of ADM (80.7 ± 3.8% in control-treated ver-

sus 75.2 ± 4% CXCR3 NAB-treated) and PanIN1 (19.3 ± 3.8% in control-treated versus 24.6 ± 4%

CXCR3 NAB-treated) lesions (Figure 4G).

Neutralization of CXCL10/CXCR3 signaling does not significantly affect
the presence of T cells
In addition to macrophages, T cells can be chemoattracted via CXCR3 signaling (Dufour et al.,

2002). Since approximately 15% of CD3+ T cells express CXCR3 in our KC animal model (see

Figure 2C), we also tested the effect of CXCL10/CXCR3 neutralization on T-cell populations in pan-

creata of KC mice. After neutralization of CXCR3, we detected a slight (approximately 20%)

decrease in pancreatic CD3+ cells (Figure 4—figure supplement 2A), but did not observe any

changes in NK (NKG2D+;CD3�) cells (Figure 4—figure supplement 2B) or production of IFNg (Fig-

ure 4—figure supplement 2C). Moreover, neutralization of CXCL10 did not result in a decrease of

CD3+;CD4+ or CD3+;CD8+ T cells (Figure 4—figure supplement 2D,E).

T cells do not contribute to CXCL10/CXCR3-mediated effects on
macrophage populations or abnormal pancreatic lesions
To test whether effects on macrophage populations or abnormal pancreatic lesion areas are due to

the presence of T cells, we performed a T-cell depletion followed by CXCR3 neutralization (Fig-

ure 4—figure supplement 3A). T cells in KC mice were depleted using previously described anti-

bodies that target CD8a and CD4 (Laky and Kruisbeek, 2016). Regardless of T cells being

depleted or present (Figure 4—figure supplement 3B), CXCR3 neutralization increased abnormal

pancreatic area (Figure 4—figure supplement 3C), decreased M1 macrophages (Figure 4—figure

supplement 3D), and increased Ym1+ macrophages (Figure 4—figure supplement 3E). Moreover,

Figure 3 continued

CXCR3 NAB or isotype control IgG. After 48 hr, samples were analyzed by qPCR for expression of M1 macrophage marker Cd38 and M2 macrophage

markers Ym1/Chil3, Arg1, and Fizz1/Retnla. Results shown are representative of three independent experiments done on peritoneal macrophages

obtained from three mice (biological replicates). Statistical analysis using the Student’s t-test indicates significance (marked by an asterisk, Cd38:

p-value=0.0009, Ym1/Chil3: p-value<0.0001, Arg1: p-value<0.0001, Fizz1/Retnla: p-value<0.0001). Error bars indicate standard deviation. (C) Pancreatic

abnormal areas from KC mice treated with CXCR3 NAB or isotype control IgG were analyzed for presence of inflammatory macrophages (co-

immunofluorescence for F4/80 and pY701-STAT1). Shown is a representative area from staining and analysis done on three mice per group. The H and

E staining highlights the region analyzed. The scale bar indicates 50 mm. (D) Quantification of pY701-STAT1+ macrophages in pancreata from KC mice

(n = 3 mice per treatment group) treated with CXCR3 NAB or isotype control IgG. Cells were counted in three representative fields per mouse. The

arcsin transformation was done on the proportion of macrophages which were pY701-STAT1+. Statistical analysis using the Student’s t-test indicates

significance between biological replicates (indicated by an asterisk, p-value=0.0004). Error bars indicate standard deviation.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. qPCR forCd38,Ym1/Chil3,Arg1, and Fizz1/Retnlain M1 polarized macrophages treated with CXCR3 NAB or isotype control IgG, and

quantification of pY701-STAT1+ macrophages in KC mice treated with CXCR3 NAB or isotype control IgG (panels B and D).

Figure supplement 1. Neutralization of CXCR3 shifts macrophages to M2 polarization.

Figure supplement 1—source data 1. qPCR forIl4ra,Stat6,Irf4, andIrf6in M1 polarized peritoneal macrophages treated with CXCR3 NAB or isotype
control IgG, and quantification of macrophages in KC mice treated with CXCR3 NAB or isotype control IgG (panels B, D, and F).
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Figure 4. Neutralization of CXCR3 signaling increases alternatively activated pancreatic macrophages and progresses pancreatic lesions. (A) Pancreatic

abnormal areas from KC mice treated with CXCR3 NAB or isotype control IgG were analyzed by IHC for presence of Ym1+ macrophages. Shown is a

representative area and H and E staining on serial sections of the tissue. The scale bar indicates 100 mm. (B) Quantification of Ym1+ macrophages in

pancreata from KC mice (n = 3 mice per treatment group) treated with CXCR3 NAB or isotype control IgG. Ym1+ cells were counted in three

representative fields per mouse, and reported as the fold change relative to the average of the isotype control IgG treatment group. Statistical analysis

was done using the Student’s t-test. The asterisk indicates statistical significance (p-value=0.025). Error bars indicate standard deviation. (C) Pancreatic

abnormal areas from KC mice treated with CXCR3 NAB or isotype control IgG were analyzed by IHC for the fibrosis marker smooth muscle actin (SMA).

Shown is a representative area and H and E staining on serial sections of the tissue. The scale bar indicates 100 mm. (D) Quantification of SMA content

in pancreata from KC mice (n = 3 per treatment group) treated with CXCR3 NAB or isotype control IgG. Quantification was performed with the Image

scope positive pixel algorithm. Abnormal areas were manually traced on the tissue, and the algorithm was run. The resulting pixel values were divided

by the area analyzed to obtain staining per area of abnormal tissue. Statistical analysis was done using the Student’s t-test. The asterisk indicates

statistical significance (p-value=0.038). Error bars indicate standard deviation. (E) Representative images of H and E stained pancreata from non-

transgenic (ntg) or KC mice treated with CXCR3 NAB or isotype control IgG. The scale bar indicates 100 mm. (F) Quantification of the abnormal

pancreatic surface area in pancreata from KC mice (n = 4 per treatment group) treated with CXCR3 NAB or isotype control IgG. For quantification,

abnormal areas were manually traced out and values were normalized to the total pancreatic area to obtain abnormal area per area of pancreatic tissue

analyzed. For statistical analysis, data were transformed via arcsin transformation before a t-test was performed. The asterisk indicates statistical

significance (p-value=0.037). Error bars indicate standard deviation. (G) Pie graph showing the percentage distribution of the types of lesions found in

the abnormal surface areas of mice from both treatment groups. Percentages (with standard error) shown are from analysis done on four mice per

group.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Quantification of Ym1, SMA, abnormal area, and lesion type in CXCR3 NAB and isotype control IgG treated KC mice (panels B, D, F,

and G).

Figure supplement 1. Neutralization of CXCL10 increases alternatively activated macrophages and fibrosis.

Figure supplement 1—source data 1. Quantification of Ym1+ cells and SMA content in KC mice treated with CXCL10 NAB or isotype control IgG
(panels C and E).

Figure 4 continued on next page

Pandey et al. eLife 2021;10:e60646. DOI: https://doi.org/10.7554/eLife.60646 9 of 24

Research article Cancer Biology Cell Biology

https://doi.org/10.7554/eLife.60646


T-cell depletion led to a slight but non-significant decrease in Ifng, suggesting that T cells are not

the only source for IFNg in this experimental system (Figure 4—figure supplement 3F).

To rigorously test a direct effect of CXCL10/CXCR3 signaling on macrophages in a system absent

of T cells, we expressed CXCL10 in SM3 PanIN cells and implanted them into the pancreas of T cell-

deficient athymic nude mice (Figure 4—figure supplement 3G). Therefore, we infected SM3 PanIN

cells (described in Liou et al., 2017) with a lentivirus carrying CXCL10 (SM3-CXCL10) or a control

lentivirus carrying eGFP (SM3-control), tested them for secretion of CXCL10 (Figure 4—figure sup-

plement 3H), and generated PanIN organoids by plating them in Matrigel for 2 days (Figure 4—fig-

ure supplement 3I). Organoids were recovered from Matrigel and, together with activated stellate

cells, implanted into the pancreas of nude mice. Two weeks after implantation, SM3-CXCL10

implanted mice had approximately half as much abnormal tissue area (lesions and fibrosis) as com-

pared to SM3-control implanted mice (Figure 5A,B). Analysis of SMA content showed significantly

reduced fibrosis in the SM3-CXCL10 implanted mice (Figure 5C). As expected from the reverse

experiment in which we had blocked CXCR3 (Figure 3D), expression of CXCL10 increased the pres-

ence of F4/80+ macrophages (Figure 5D). Further analysis of macrophage polarization types indi-

cated an increase of M1 and a decrease of M2 phenotypes when CXCL10 was present (Figure 5E).

Discussion
While inflammatory and alternatively activated macrophages have important functions in different

stages of pancreatic cancer development (Stone and Beatty, 2019; Storz, 2017), little is known

about how these populations are regulated after injury or an oncogenic event, and how they cross-

talk with lesion cells or other cells of the lesion microenvironment. In this study, we delineate the

importance of CXCL10/CXCR3 signaling during the early phase of pancreatic cancer development.

The CXCL10/CXCR3 signaling axis has been implicated in generating inflammation in various dis-

eases including pancreatitis (Lee et al., 2017; Liu et al., 2011; Singh et al., 2007). This is because it

regulates the chemotaxis of CXCR3+ immune cells such as macrophages, T cells, and NK cells

(Luster and Ravetch, 1987; Taub et al., 1993; Tomita et al., 2016; Zhou et al., 2010). With respect

to cancer, gastric cancer patients with upregulated CXCR3 expression showed better survival

(Chen et al., 2019; Li et al., 2015). Also, high expression of CXCL10 and other CXCR3 ligands in

ovarian, esophageal, and non-small cell lung carcinoma indicate favorable prognoses

(Bronger et al., 2016; Cao et al., 2017; Sato et al., 2016). In contrast, in pancreatic cancer, expres-

sion of both CXCL10 and CXCR3 in tumor tissue has been correlated with a poor prognosis

(Liu et al., 2011; Lunardi et al., 2014) mostly due to increased chemoresistance (Delitto et al.,

2015). However, the role of CXCL10/CXCR3 signaling during early development of the disease has

not been addressed.

Using the KC mouse model, we show that CXCL10 is produced by cells of precancerous ADM

and PanIN1 lesions (Figure 1A,B). CXCL10 is also known as interferon gamma-inducible protein-10

(IP-10) (Luster et al., 1985; Ohmori and Hamilton, 1993), suggesting IFNg as a potential factor suf-

ficient to drive CXCL10 expression. Indeed, SM3 PanIN cells showed upregulation of CXCL10

expression in response to IFNg (Figure 1C–E). This was mediated through JAK-STAT1 signaling

(Figure 1F), which has been previously described to be upregulated and activated via IFNg in acinar

cells (Gallmeier et al., 2005). Many cell types, including T cells and NK cells in the pancreatic micro-

environment, have been shown to secrete IFNg (Brauner et al., 2010; Castro et al., 2018;

Corthay et al., 2005; Fogar et al., 2011), and analysis for CD4+, CD8+, and NKG2D+ cells indicated

T cells and NK cells in the vicinity of lesions as a potential source for IFNg in our model (Figure 1G).

Figure 4 continued

Figure supplement 2. Neutralization of CXCL10/CXCR3 signaling does not significantly affect the presence of T cells.

Figure supplement 2—source data 1. Quantification of T cells, NK cells, and IFNV/Ifngin KC mice treated with CXCL10 NAB or isotype control IgG
(panels A-C), and T cell quantification in KC mice treated with CXCL10 NAB or isotype control IgG.

Figure supplement 3. T cells do not contribute to CXCL10/CXCR3-mediated effects on macrophage populations or abnormal pancreatic lesions.

Figure supplement 3—source data 1. Quantification of T cells, abnormal tissue area, macrophages, and IFNV/Ifngin T cell depletion experiments
(panels B-F), and secretion of CXCL10 in lentivirally-infected SM3 PanIN organoids (panel H).
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Figure 5. Overexpression of CXCL10 in pancreatic lesions increases inflammatory macrophages and decreases lesion formation in the pancreas. (A)

Athymic nude mice were orthotopically implanted with PanIN organoids obtained from lentivirally infected SM3-CXCL10 or SM3-control cells (see

Figure 4—figure supplement 3G–I). Mice were euthanized 2 weeks post-surgery, and pancreatic tissue was analyzed. Shown are representative

images of abnormal areas in the pancreas. The scale bar represents 500 mm. (B) Abnormal areas (lesions and stroma) were manually traced for

Figure 5 continued on next page
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Our in vitro data implicate peritoneal or bone-marrow-derived inflammatory macrophages as

major recipients for CXCL10, where CXCL10 can act as a chemoattractant (Figure 2B, Figure 2—fig-

ure supplement 1A). This is important because influx of macrophages is a major driver of pancreatic

inflammation (Gea-Sorlı́ and Closa, 2009). This correlates with in vivo data showing that in the KC

model CXCR3 is expressed by pancreatic inflammatory macrophages, but not by Ym1+ M2 macro-

phages (Figure 2D). In patient tissue, we found that approximately 70% of CXCR3 expressing cells

are inflammatory (CD68+;iNOS+) macrophages (Figure 2E,F).

Unlike other factors contributing to macrophage chemoattraction into the pancreas, such as

sICAM1 (Liou et al., 2015), the expression of CXCL10 from acinar cells is not driven by the activation

of oncogenic KRas (Figure 1—figure supplement 1D). This finding is supported by other studies

that have shown CXCL10 upregulation in chronic pancreatitis patients, which occurs in the absence

of oncogenic mutations (Singh et al., 2007).

The importance of CXCL10/CXCR3 signaling in inflammatory macrophages is underscored by the

fact that blocking this interaction causes them to lose their identity, as evident by upregulation of

markers for alternatively activated macrophages (Figure 3A–C). Even though neutralizing CXCR3

did not simultaneously decrease iNOS expression while increasing M2 markers (Figure 3A, Fig-

ure 3—figure supplement 1B), there was a marked drop in Cd38, a distinct marker for M1 polarized

macrophages (Jablonski et al., 2015), indicating a loss in M1 identity (Figure 3B). Mechanistically,

this shift in polarization upon CXCR3 neutralization may be explained by upregulation of the M2

transcription factor Irf4 and downregulation of the M1 transcription factor Irf5 (Figure 3—figure

supplement 1D). Interestingly, the resulting alternatively activated macrophage population is char-

acterized by expression of markers (Ym1, Fizz1, Arg1) that previously have been attributed to a sub-

set of pancreatic macrophages (usually described as Ym1+ macrophages) that drive fibrinogenesis

and tumor progression (Liou et al., 2017).

In support of this explant data, neutralizing CXCR3 in vivo also led to a decrease in inflammatory

(F4/80+;pY701-STAT1+) macrophages (Figure 3C,D) and an increase in Ym1+ macrophages

(Figure 4A,B). This accompanied increased fibrosis at the pancreatic lesion areas and more abnor-

mal regions in the pancreas overall (Figure 4C, D, and F). Our data is in line with a recent study in

which it was reported that Cxcr3�/� mice show an abundance of M2 macrophages in breast tumors

(Oghumu et al., 2014). Specifically, similar to what we observed after CXCR3 neutralization, Cxcr3�/

� macrophages from these mice had reduced ability to upregulate iNOS and showed a predisposi-

tion for M2 polarization (Oghumu et al., 2014). Since there are other ligands described that can

engage the receptor CXCR3 (Van Raemdonck et al., 2015), we also neutralized CXCL10 in KC mice

and found similar trends of increased presence of Ym1+ macrophages and increased fibrosis (Fig-

ure 4—figure supplement 1). In a reverse experiment, enhanced expression of CXCL10 in PanIN

Figure 5 continued

quantification and normalized to total pancreatic area analyzed (n = 3 mice per group). For statistical analysis, data were transformed via arcsin

transformation before a t-test was performed. The asterisk indicates statistical significance (p-value=0.011). Error bars indicate standard deviation. (C)

Fibrotic content was analyzed using SMA as a marker (n = 3 mice per group). Quantification was performed with the Image scope positive pixel

algorithm as described in Figure 4 and normalized to the total areas analyzed. Statistical analysis was done using the Student’s t-test. The asterisk

indicates statistical significance (p-value=0.032). Error bars indicate standard deviation. (D) Tissue was analyzed for infiltration of total macrophages

between groups using F4/80 as a marker (n = 3 mice per group). Staining was quantified using the positive pixel algorithm and normalized to the total

areas analyzed. Statistical analysis was done using the Student’s t-test. The asterisk indicates statistical significance (p-value=0.0096). Error bars indicate

standard deviation. (E) Detailed analysis of tissue with F4/80 and pY701-STAT1 (M1 macrophage population) and Ym1 (M2 macrophage population).

Quantification was performed either manually (M1) on three representative fields for each mouse tissue analyzed or using the positive pixel algorithm

(M2) and then normalized to the total areas analyzed (n = 3 mice per group). Statistical analysis was done using Student’s t-test. The asterisk indicates

statistical significance (M1: p-value=0.019, M2: p-value=0.028). Error bars indicate standard deviation. (F) Schematic diagram of how CXCL10/CXCR3

signaling impacts pancreatic lesion progression. IFNg released from immune cells (T and NK) in the pancreatic tissue stimulates CXCL10 release from

early lesions (ADM, PanIN1). CXCL10 stimulates chemoattraction and proliferation of peritoneal macrophages and helps maintain their inflammatory

phenotype. Blocking the ligand–receptor interaction with a CXCR3 NAB leads to loss of M1 identity, resulting in an increase in the Ym1+ macrophage

population, along with more lesions and a higher fibrotic content.

The online version of this article includes the following source data for figure 5:

Source data 1. Quantification of abnormal area, SMA, F4/80, M1 macrophages, and M2 macrophages in athymic nude mice orthotpically implanted

with lentivirally infected SM3-CXCL10 or SM3-control PanIN organoids (panels B-E).
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cells significantly decreased overall abnormal lesion areas, fibrosis, and presence of M2 macro-

phages, but increased the presence of M1 macrophages (Figure 5).

CXCL10 is known to chemoattract cell types other than macrophages, mainly T cells, and approxi-

mately 15% of pancreatic T cells in KC mice are positive for CXCR3 (Figure 2C). However, our in

vivo study in which we overexpressed CXCL10 in PanIN cells and observed reverse effects to CXCR3

or CXCL10 neutralization was performed in nude mice which lack T cells (Figure 4—figure supple-

ment 2). In addition, depletion of CD4+ and CD8+ T cells in immunocompetent KC mice had no

impact on total abnormal tissue area or M1 and M2 macrophage abundance after CXCR3 neutraliza-

tion (Figure 4—figure supplement 3A–E). Taken together these data suggest no significant role for

T cells in CXCL10/CXCR3-driven development of pancreatic cancer.

During pancreatic cancer development, inflammatory macrophages are predominantly located at

ADM lesions, driving the transdifferentiation process (Liou et al., 2015; Liou et al., 2013). Our data

now indicate that cells undergoing ADM (and to some extent low-grade PanIN) express CXCL10 to

chemoattract inflammatory macrophages and that CXCL10/CXCR3 signaling is crucial for the suste-

nance of their inflammatory identity (Figure 5F). More progressed PanIN1 lesions have been shown

to express the anti-inflammatory cytokine interleukin-13 (IL-13), which causes a polarization shift

from M1 toward an alternatively activated, Ym1+ phenotype (Liou et al., 2017). Given the impor-

tance of CXCL10/CXCR3 interaction in the maintenance of the inflammatory identity of macrophages

in our study, the reduced CXCL10 expression by PanIN as compared to ADM lesions (Figure 1A,B)

may leave macrophages more susceptible to M2 polarization by cytokines like IL-13.

Considering our results, use of agonists for the receptor CXCR3 at stages of low-grade lesions

may be useful to modulate macrophage polarization in the microenvironment such that a predomi-

nantly inflammatory population (M1) can be sustained. However, it needs to be noted that in pancre-

atic cancer expression of both CXCL10 and CXCR3 in tumor tissue have been correlated with

metastasis and poor prognosis (Cannon et al., 2020; Hirth et al., 2020; Liu et al., 2011;

Lunardi et al., 2014; Romero et al., 2020). Therefore, it is unclear if treatment of pancreatic tumors

with a CXCR3 agonist will result in a polarization switch of tumor-associated macrophages that ren-

ders the lesion microenvironment less supportive for tumors, and increases efficiency of chemother-

apy, or if it has a tumor-promoting effect. This will be addressed in future studies.

Materials and methods

Cells, antibodies, and reagents
SM3 primary duct-like cells were isolated from pancreata of 6 week old KC mice as previously

described (Agbunag et al., 2006; Liou et al., 2017). The genotype of these cells has been verified,

and cells are routinely tested for mycoplasma infection. SM3 cells were maintained in DMEM/F12

media (Sigma-Aldrich, St. Louis, MO) containing 5% Nu Serum IV culture supplement (Corning,

Corning, NY), 25 mg/ml bovine pituitary extract (Gibco/Thermo Scientific, Waltham, MA), 20 ng/ml

EGF, 0.1 mg/ml soybean trypsin inhibitor type I (AMRESCO, Solon, OH), 5 mg/ml D-glucose (Sigma-

Aldrich), 1.22 mg/ml nicotinamide (Sigma-Aldrich), 5 nM triiodo-L-thyronine (Sigma-Aldrich), 1 mM

dexamethasone (Sigma-Aldrich), 100 ng/ml cholera toxin (Sigma-Aldrich), 5 ml/l insulin-transferrin-

selenium (Corning), and 100 U/ml penicillin/streptomycin (Gibco/Thermo Scientific). Collagenase I

was from MilliporeSigma (St. Louis, MO). Rat tail collagen I was from BD Biosciences (San Diego,

CA). All antibodies used for western blotting, immunohistochemistry and immunofluorescence were

from the following sources: Peprotech (Rocky Hill, NJ), Abcam (Cambridge, MA), Cell Signaling

Technologies (Danvers, MA), Dako (Santa Clara, CA), STEMCELL Technologies (Vancouver, Canada),

Biorad (Hercules, CA), and LifeSpan BioSciences (Seattle, WA), BD Biosciences (Franklin Lakes, NJ),

BioLegend (San Diego, CA), GeneTex (Irvine, CA), Miltenyi Biotec (Auburn, CA) and are described in

detail in Key Resources Table. All neutralizing antibodies that have been used in animal studies are

described in detail in Materials and methods section for these experiments as well as in Key Resour-

ces Table. Secondary HRP-linked anti-mouse or anti-rabbit antibodies were from Jackson ImmunoR-

esearch (West Grove, PA). DAPI and LPS were from Sigma-Aldrich. IL4, IFNg , and CXCL10 were

from PeproTech (Rocky Hill, NJ).
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Isolation of primary macrophages (peritoneal or bone marrow derived)
and polarization
Peritoneal macrophages: Non-transgenic mice were injected with 2–3 ml of 5% aged thioglycollate.

Five days later, mice were euthanized and peritoneal macrophages were collected immediately. A

small incision was made in the peritoneum and RPMI-1640 media with 10% FBS was flushed through

the peritoneal cavity using a sterile transfer pipette. The peritoneal wash was centrifuged, washed

with fresh RPMI1640 + 10% FBS media, and cells were plated onto 10 cm dishes. After 2–3 hr, once

macrophages completely adhered to the plates, cells were washed two to three times to remove

non-adherent cells and fresh media was added. Cells were allowed to acclimatize overnight before

harvesting and experimental manipulation. Bone marrow-derived macrophages (BMDM): Femurs of

non-transgenic mice were cut proximal to the joints on both ends and washed twice in cold, sterile

PBS (without calcium and magnesium) to remove excess blood and muscle. Using forceps, the bones

were held over a sterile 50 ml tube, and the bone cavity was flushed twice with 5 ml cold PBS using

a 25G needle and syringe. The bones were discarded, and the bone marrow was pelleted (10 min,

500 � g, RT), then gently resuspended to single cells in 10 ml warm macrophage complete medium

(DMEM-F12 with L-glutamine + 10% FBS + 100 U/ml penicillin + 100 mg/ml streptomycin + 100 U/ml

of M-CSF) (Zhang et al., 2008). After counting, 4 � 105 cells were added to 10 cm dishes in 10 ml

macrophage complete medium. On days 3 and 5, 5 ml of medium was replaced with fresh complete

medium. On day 7, the cells were polarized. Polarization of peritoneal or bone marrow-derived mac-

rophages to M1 or M2 phenotypes was obtained by stimulation with LPS + IFNg (M1 polarization)

and/or with IL-4 (M2 polarization) for 24 hr as previously described (Liou et al., 2017).

Isolation of pancreas tissue resident macrophages
Pancreata from 8 week old, non-transgenic mice were harvested by washing the pancreas in HBSS,

mincing the tissue, centrifuging (931 � g, 4˚C, 2 min), and then dissociating the tissue in collagenase

(2 mg/ml, 5 ml, 37˚C, 20 min, 220 rpm). To stop dissociation, HBSS + 5% FBS was added to the pan-

creas–collagenase mixture and washed two additional times with HBSS + 5% FBS (931 � g, 4˚C, 2

min). Pancreas cells were then filtered through 500 mm and 105 mm meshes prior to adding the cell

suspension to HBSS + 30% FBS and centrifuging (233 � g, 4˚C, 2 min) to obtain a cell pellet. Cells

were then labeled with F4/80 magnetic beads (Miltenyi Biotec, Auburn, CA) to isolate pancreas-resi-

dent macrophages. Cells were filtered through a 40 mm mesh to obtain a single-cell suspension, and

then cells were incubated with F4/80 magnetic beads in MACS buffer (15 min, 4˚C, as per

the manufacturer’s instructions) (MACS buffer: PBS, 0.5% BSA, 2 mM EDTA). Cells were washed with

MACS buffer (300 � g, 4˚C, 10 min), filtered through 40 mm mesh, and then applied to pre-washed

LS Columns (Miltenyi Biotec, Auburn, CA). Per column instructions, magnetically labeled cells were

acquired and plated in DMEM-F12 + 10% FBS + 1% L-glutamine + penicillin/streptomycin + 0.1 mg/

ml macrophage colony stimulating factor (Peprotech, Rocky Hill, NJ).

Genetic animal model and treatments
Ptf1a/p48cre/+ and LSL-KrasG12D/+ mouse strains and genotyping of mice have been described previ-

ously (Liou et al., 2015). Seven to 8 week old Ptf1a/p48cre;LSL-KrasG12D (KC) or non-transgenic (ntg)

mice with the same background were injected intraperitoneally (IP) with a CXCR3 neutralizing anti-

body (CXCR3 NAB; BE0249) (Bio X Cell, West Lebanon, NH) or an isotype control IgG; BE0091 (Bio

X Cell) at 200 mg/mouse for 9 weeks. Males and females were randomly allocated to different groups

since there are no sex-based differences observed in this model. All animal experiments were con-

ducted under IACUC-approved protocols (A50214-14-R17, A30615-15-R18) and were run in accor-

dance with institutional guidance and regulation.

For T-cell depletion, 6 week old Ptf1a/p48cre;LSL-KrasG12D mice were intraperitoneally injected

with both anti-mouse CD4 (BP0003, Bio X Cell) and anti-mouse CD8a (BP0061, Bio X Cell) antibod-

ies, or their IgG2b isotype control (BP0090, Bio X Cell). Two hundred micrograms of each antibody

was injected per mouse for five consecutive days. After T-cell depletion, mice were segregated into

different groups and injected with CXCR3 NAB (BE0249, Bio X Cell) or IgG isotype control antibod-

ies (BE0091, Bio X Cell).
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Human pancreatic tissue samples
Patient tissues were obtained from archival materials in accordance with institutional guidelines and

prior institutional review board (IRB) approval.

Immunofluorescence on cells and tissue
For paraffin-embedded tissue, slide sections were deparaffinized, and antigen retrieval was per-

formed with 10 mM sodium citrate buffer (pH 6.0) for 25 min at 100˚C. Then, they were treated with

3% H2O2 for 15 min at room temperature, rinsed with PBS, and blocked with serum-free Protein

Block (DAKO, Santa Clara, CA) for 1 hr at room temperature. Slides were incubated with primary

antibodies diluted in 150 ml per slide of Antibody Diluent (Dako) overnight. Slides were washed three

times with 0.5% Tween20 in PBS and incubated with appropriate Alexa-Fluor labeled secondary anti-

bodies (Invitrogen, Carlsbad, CA) at 1:500 and DAPI at 125 mg/ml for 1 hr. Slides were washed three

times with 0.5% Tween20 in PBS followed by cover-slipping with PermaFluor mounting media

(Thermo Fisher Scientific, Waltham, MA). For imaging, whole slides were scanned using the Aperio

fluorescence scanner (Leica, Buffalo Grove, IL) or the Pannoramic 250 Flash III (3DHISTECH).

For cellular staining, cells grown in ibidi chamber slides were washed with cold PBS and fixed

with 4% paraformaldehyde (PFA) for 15 min at 37˚C. Fixed cells were washed with PBS and permea-

bilized with 0.1% Triton X-100 for 10 min at room temperature. Then, cells were blocked with 3%

BSA + 0.05% Tween in PBS for 30 min at room temperature. Incubation with primary antibodies was

done overnight at 4˚C. Cells were washed with PBS and incubated with secondary antibodies at

1:500 and DAPI at 125 mg/ml for 2 hr. Cells were washed, and mounting media was added to the

wells, followed by imaging on a fluorescence microscope (Carl Zeiss, Thornwood, NY).

Flow cytometry
Murine pancreata were resected, and tissue was dissociated using the mouse tumor dissociation kit

(Miltenyi, Bergisch Gladbach, Germany) per the manufacturer’s protocol. Dissociated tissue was

sequentially passed through 500 mm (Repligen, Boston, MA), 105 mm (Repligen), and 40 mm (Thermo

Fisher Scientific) filters to acquire a single-cell suspension before magnetic isolation of CD45+ cells.

Cells were incubated with CD45+ MicroBeads (Miltenyi) followed by magnetic separation using LS

Columns (Miltenyi) on a QuadroMACS magnet (Miltenyi) per the manufacturer’s protocol. CD45+

cells were then labeled with LIVE/DEAD Fixable Violet Dead Cell Stain Kit (Thermo Fisher Scientific)

before subsequent fixation and staining using the PerFix-nc kit (Beckman Coulter, Brea, CA) as per

the manufacturer’s protocol. Antibodies are described in detail in Key Resources Table. The Attune

NxT (Thermo Fisher Scientific) was used for multicolor flow cytometric detection, and analysis was

done using FlowJo (BD Biosciences).

In situ hybridization
The procedure for ISH has been described in detail previously (Bastea et al., 2019). Briefly, ISH was

performed using RNAscope Assay 2.5 HD Reagent Kit–Brown or RNAscope Multiplex Fluorescent

Reagent Kit v2 (Advanced Cell Diagnostics, Hayward, CA). Formalin-fixed, paraffin-embedded

(FFPE) sections (5 mm) were baked at 60˚C for 1 hr, deparaffinized in xylene for 15 min, dehydrated

in 100% ethanol, and dried at room temperature overnight in a desiccator. Next day, slides were

treated with hydrogen peroxide for 10 min, followed by target retrieval for 8 min. Protease treat-

ment was done for 15 min at 40˚C in a hybridization oven. Next, slides were incubated with the

appropriate probe for 2 hr. RNAscope target probes used were Cxcl10 (Mm-Cxcl10 408921), Cxcr3

(Mm-Cxcr3 4025110), CXCR3 (Hs-CXCR3 539251), and Ifng (Mm-Ifng 311391). After probe hybrid-

ization, amplification steps were followed according to the manufacturer’s protocol, except Amp

5 step, which was modified to 1 hr incubation in the DAB procedure (RNAscope Assay 2.5 HD

Reagent Kit–Brown). Slides were counterstained with hematoxylin, dehydrated, and mounted.

When followed by IF, slides were treated with boiling 10 mM citrate buffer (pH 6.0) for 10 min to

repeat antigen retrieval and the regular IF protocol was followed. Primary antibodies were used at

concentrations listed in Key Resources Table.

For the fluorescent detection (RNAscope Multiplex Fluorescent Reagent Kit v2), following AMP1,

2 and 3 steps according to the manufacturer’s protocol, probes were labeled using the Opal 690 flu-

orophore reagent pack (Perkin Elmer, Waltham, MA). Next, regular IF procedure was performed for
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co-staining. Samples were counterstained with DAPI and mounted. For imaging, whole slides were

scanned at 40� magnification using the Aperio fluorescence scanner (Leica).

Isolation of primary acinar cells
Pancreas was removed quickly following euthanasia and placed in cold HBSS media. After washing

in cold HBSS media twice, pancreas was minced into small 1–5 mm pieces and digested with colla-

genase I in a 37˚C shaker for 20 min. After 20 min, the digestion was stopped by adding an equal

volume of cold HBSS media with 5% FBS. The digested pieces were passed through a 500 mm mesh.

More 5% FBS media was passed through the mesh with digested pieces to further strain them. The

filtrate was then passed through a 105 mm mesh. The filtrate from this step was added dropwise to a

tube containing HBSS media with 30% FBS. The cell suspension was centrifuged at 205 � g for 2

min at 4˚C. Acinar cells were then resuspended in complete Waymouth’s media (1% FBS, 0.1 mg/ml

soybean trypsin inhibitor, 1 mg/ml dexamethasone).

3D collagen explant culture of pancreatic acinar cells
Cell culture plates were coated with collagen I in Waymouth media without supplements. Freshly iso-

lated primary pancreatic acinar cells were added as a mixture with collagen I/Waymouth media on

the top of this layer (3D on-top method). Furthermore, Waymouth complete media was added on

top of the cell/gel mixture and replaced the following day and then every other day. When inhibi-

tors, peptides, or proteins were added, the compound of interest was added to both, the cell/gel

mixture and the media on top. To express proteins using adenovirus, acinar cells were infected with

adenovirus of interest and incubated for 3–5 hr before embedding in the collagen I/Waymouth

media mixture. At day 6 or 7 (dependent on time course of duct formation), numbers of ducts were

counted under a microscope, and photos were taken to document structures.

Adenoviral infection of acinar cells
For adenoviral infection, Adeno-cre-GFP or Adeno-null-GFP viruses (Vector Biolabs, Malvern, PA)

were added to the resuspended acinar cells in Waymouth’s complete media in a non-adherent dish.

Infection was carried out for 3 hr with gentle swirling every 15 min during the first hour. After the 3

hr infection, cell suspension was mixed with Rat tail collagen-Type I (BD Biosciences, San Jose, CA)

and plated.

Lentiviral infection of PanIN lesion cells, organoid formation, and
orthotopic implantation in athymic nude mice
SM3 PanIN cells were infected using control lenti-eGFP (LPP-EGFP-Lv105-025-C) or lenti-cxcl10

(LPP-Mm03214-Lv105-100) lentiviral particles (Genecopoeia, Rockville, MD) with 5 mg/ml of poly-

brene (Santa Cruz Biotechnology, Dallas, TX) at 70–80% confluency. Infected cells were incubated at

4˚C for 2 hr and then at 37˚C overnight. On the following day, media containing lentiviral particles

and polybrene was removed and replaced with fresh media to allow the cells to recover. Next day,

selection media containing 2.5 mg/ml puromycin was added to the cells and was replaced every 2–3

days. After 11 days of selection, cells were harvested and embedded in Matrigel (Corning, Corning,

NY) with regular media without puromycin. After 2 days, cells formed duct-like PanIN organoid

structures. Using a non-enzymatic cell dissociation reagent (Corning), PanIN organoids were har-

vested and mixed with activated primary pancreatic stellate cells at a ratio of 1:4. Cell mixture was

resuspended in phenol-red free Matrigel, and 50 ml (25,000 organoid cells + 100,000 activated pri-

mary stellate cells) was injected directly into the pancreas of athymic nude (Foxn1nu) mice (Jackson

laboratory, Bar Harbor, ME). Wound was closed using 4–0 Vicryl sutures and 7 mm wound clips.

After 1 week of recovery, wound clips were removed, and ultrasound imaging was performed to

ensure implantation of cells.

RNA extraction and quantitative PCR
Cells were washed with cold PBS, and RNA extraction was done using the RNeasy PLUS Mini Kit

(Qiagen, Germantown, MD). cDNA was prepared using the High Capacity cDNA RT Kit (Applied

Biosystems, Foster City, CA). TaqMan Fast Mix 2x (Applied Biosystems) was used to prepare qPCR

along with the primer/probe sets described in Key Resources Table. Reactions were run on the
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QuantStudio 7 Flex Real-Time PCR System (Applied Biosystems). All CT values were normalized to

Gapdh, and the DDCT method was used to calculate fold changes.

Protein isolation and western blot
Cells were washed with cold PBS (140 mM NaCl, 2.7 mM KCl, 8 mM Na2HPO4, and 1.5 mM KH2PO4

[pH 7.2]) twice and lysed using RIPA buffer with a protease inhibitor cocktail (Sigma-Aldrich). Lysates

were incubated on ice for 30 min followed by centrifugation at 13,000 rpm for 15 min at 4˚C on a

table top centrifuge. Protein supernatant was separated from cell debris, and concentration was

measured using the BioRad Protein Assay (BioRad, Hercules, CA). Samples were run on SDS-PAGE

gels and transferred to nitrocellulose membranes. Proteins of interest were detected using the

appropriate primary antibodies at indicated concentrations (Key Resources Table) and horseradish

peroxidase (HRP)-conjugated secondary antibodies.

Transwell chemoattraction assays
Peritoneal or bone marrow-derived macrophages were seeded in serum-free RPMI media on 5 mm

transwell permeable inserts (Corning, Corning, NY). Six hundred microliters of control media or

media containing 500 ng/ml of CXCL10 was placed in the bottom wells. Experiments were con-

ducted in triplicates for each condition. Cells were incubated for the indicated time. Inserts were

then carefully removed, washed with PBS, and fixed in 4% PFA for 15 min at 37˚C. After gently wash-

ing the inserts twice, cells were permeabilized with 0.1% Triton X-100 for 10 min at room tempera-

ture and stained with DAPI for counting.

MTT proliferation assay
Proliferation of pancreas-resident macrophages was analyzed via MTT assay (Sigma, St. Louis, MO),

where wells were incubated with MTT labeling reagent (4 hr, 37˚C, 5% CO2). Following MTT label-

ing, cells were incubated with solubilization solution (10% SDS in 0.01 M HCl) overnight (37˚C, 5%

CO2), and absorbance was read the following morning at 500 nm (Synergy HT plate reader, BioTek,

Winooski, VT).

Cytokine array
The cytokines secreted by SM3 cells were determined using the Proteome Profiler Mouse Cytokine

Array Kit (R and D Systems) according to the manufacturer’s instructions.

Quantification and statistical analysis
All cell biological and biochemical experiments have been performed at least three times. For animal

experiments, if not stated otherwise in the figure legends, pancreatic samples from n = 3 mice have

been used for quantification analyses. IHC data was quantified by manual counting of positive cells

or by using the Aperio Positive Pixel Count Algorithm. Data are presented as mean ± standard devi-

ation (SD). If not stated otherwise in the figure legends, p-values were acquired with the unpaired

student’s t-test with Welch’s correction using Graph Pad software (GraphPad Inc, La Jolla, CA). For

all experiments in which pancreatic areas were compared, we transformed the data via arcsin trans-

formation (ASIN(SQRT(proportion of abnormal tissue area to total tissue area))*180/PI) before a

t-test was performed. p<0.05 was considered statistically significant.
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Appendix 1

Appendix 1—key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody anti-CD3
(Rabbit polyclonal)

Abcam Cat# ab5690, RRID:
AB_305055

IHC (1:400), IF (1:400)

Antibody Anti-CD3 (Rat monoclonal) Abcam Cat# ab11089,
RRID:AB_2889189

IF (1:200)

Antibody anti-CD3 (Rat monoclonal) BioLegend Cat# 100222, RRID:
AB_2242784

FC (0.2 mg/1 � 106

cells)

Antibody anti-CD4 (Rabbit monoclonal) Abcam Cat# ab183685,
RRID:AB_2686917

IF (1:1000)

Antibody anti-CD4 (Rat monoclonal) BioLegend Cat# 100456, RRID:
AB_2565845

FC (0.2 mg/1 � 106

cells)

Antibody anti-CD45 (Rat monoclonal) BioLegend Cat# 103137, RRID:
AB_2561392

FC (0.3 mg/1 � 106

cells)

Antibody anti-CD45 Microbeads (Rat
monoclonal)

Miltenyi Biotec Cat# 130-052-301,
RRID:AB_2877061

MACS (10 mL/1 � 107

cells)

Antibody anti-CD68 (Mouse monoclonal) DAKO/Agilent Cat# M0876, RRID:
AB_2074844

IF (1:100)

Antibody anti-CD8 alpha (Rabbit
monoclonal)

Abcam Cat# ab209775,
RRID:AB_2860566

IF (1:500)

Antibody anti-CD8a (Rat monoclonal) BioLegend Cat# 100747, RRID:
AB_11219594

FC (0.2 mg/1 � 106

cells)

Antibody anti-CD80 (Armenian hamster
monoclonal)

BioLegend Cat# 104705, RRID:
AB_313126

FC (1 mg/1 � 106

cells)

Antibody anti-CXCL10 (Rabbit polyclonal) PeproTech Cat# 500-P129bt-
50ug, RRID:AB_
148105

WB (1:2000)

Antibody anti-CXCR3 (Rabbit polyclonal) LifeSpan
Biosciences

Cat# LS-C332293,
RRID:AB_2891301

IF (1:50)

Antibody anti-CXCR3 (Armenian hamster
monoclonal)

BD Biosciences Cat# 742274, RRID:
AB_2871450

FC (0.2 mg/1 � 106

cells)

Antibody anti-F4/80 (Rat monoclonal) Bio-Rad Cat# MCA497R,
RRID:AB_323279

IHC (1:250), IF (1:250)

Antibody anti-F4/80 (Rat monoclonal) BioLegend Cat# 123133, RRID:
AB_2562305

FC (0.3 mg/1 � 106

cells)

Antibody anti-F4/80 MicroBeads (Mouse
monclonal)

Miltenyi Biotec Cat# 130-110-443,
RRID:AB_2858241

MACS (10 ml/1 � 107

cells)

Antibody anti-GAPDH (Rabbit monoclonal) Cell Signaling
Technology

Cat# 5174, RRID:
AB_10622025

WB (1:1000)

Antibody anti-iNOS (Rabbit polyclonal) Abcam Cat# ab3523, RRID:
AB_303872

IF (1:200)

Antibody anti-iNOS (Mouse monoclonal) Abcam Cat# ab49999,
RRID:AB_881438

IF (1:100)

Antibody anti-NKG2D (Rabbit polyclonal) GeneTex Cat# GTX50988,
RRID:AB_2891302

IF (1:200)

Antibody anti-SMA (Rabbit polyclonal) Abcam Cat# ab5694, RRID:
AB_2223021

IHC (1:200)

Antibody anti-pY641-STAT6 (Rabbit
monoclonal)

Cell Signaling
Technology

Cat# 56554, RRID:
AB_2799514

IF (1:400)

Continued on next page
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody anti-pY701-STAT1 (Rabbit
monoclonal)

Cell Signaling
Technology

Cat# 9167, RRID:
AB_561284

IF (1:400)

Antibody anti-pY701-STAT1 (Mouse
monoclonal)

Abcam Cat# ab29045,
RRID:AB_778096

IF (1:200), WB
(1:1000)

Antibody anti-STAT1 (Rabbit polyclonal) Cell Signaling
Technology

Cat# 9172, RRID:
AB_2198300

WB (1:1000)

Antibody anti-YM1 (Rabbit polyclonal) STEMCELL
Technologies

Cat# 60130, RRID:
AB_2868482

IF (1:200)

Antibody anti-YM1/2 (Rabbit monoclonal) Abcam Cat# ab205491,
RRID:AB_2891303

FC (1 mg/1 � 106

cells), IF (1:100)

Antibody CXCL10 neutralizing antibody
(NAB; Rat monoclonal)

R and D Systems Cat# MAB466,
RRID:AB_2292486

CXCL10 NAB

Antibody Isotype control IgG2A antibody
(Rat monoclonal)

R and D Systems Cat# MAB006,
RRID:AB_357349

CXCL10 NAB control

Antibody CXCR3 neutralizing antibody
(NAB; Armenian hamster
monoclonal)

Bio X Cell Cat# BE0249, RRID:
AB_2687730

CXCR3 NAB

Antibody Isotype control IgG antibody
(Armenian hamster polyclonal)

Bio X Cell Cat# BE0091, RRID:
AB_1107773

CXCR3 NAB control

Antibody anti-CD4 (Rat monoclonal) Bio X Cell Cat# BP0003-1,
RRID:AB_2891358

T-cell depletion

Antibody anti-CD8a (Rat monoclonal) Bio X Cell Cat# BP0061, RRID:
AB_2891359

T-cell depletion

Antibody Isotype control IgG2b antibody
(Rat monoclonal)

Bio X Cell Cat# BP0090, RRID:
AB_2891360

T-cell depletion
control

Cell line (Mus
musculus)

SM3 Agbunag et al.,
2006;
Liou et al., 2017

Primary duct-like
cells
from KC mouse

Chemical
compound, drug

NVP-BSK805 Selleckchem Cat# S2686 pan-JAK inhibitor

Commercial assay
or kit

Mouse tumor dissociation kit Miltenyi Biotec Cat# 130-096-730

Commercial assay
or kit

RNAscope Assay 2.5 HD
Reagent Kit- Brown

Advanced Cell
Diagnostics

In situ hybridization
(brown)

Commercial assay
or kit

RNAscope Multiplex
Fluorescent Reagent Kit v2

Advanced Cell
Diagnostics

In situ hybridization
(fluorescent)

Peptide,
recombinant
protein

Recombinant murine CXCL10 Peprotech Cat# 250–16

Peptide,
recombinant
protein

Recombinant murine IL-4 Peprotech Cat# 214–14

Peptide,
recombinant
protein

Recombinant murine IFNV Peprotech Cat# 315–05

Sequence-based
reagent

Arg1 TaqMan (Thermo
Fisher Scientific)

Mm00475988_m1 qPCR probe

Sequence-based
reagent

Chil3 TaqMan (Thermo
Fisher Scientific)

Mm00657889_mH qPCR probe

Sequence-based
reagent

Cxcl10 TaqMan (Thermo
Fisher Scientific)

Mm00445235_m1 qPCR probe

Continued on next page
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Appendix 1—key resources table continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Sequence-based
reagent

Cxcr3 TaqMan (Thermo
Fisher Scientific)

Mm99999054_s1 qPCR probe

Sequence-based
reagent

Irf4 TaqMan (Thermo
Fisher Scientific)

Mm00516431_m1 qPCR probe

Sequence-based
reagent

Irf5 TaqMan (Thermo
Fisher Scientific)

Mm00496477_m1 qPCR probe

Sequence-based
reagent

Gapdh TaqMan (Thermo
Fisher Scientific)

Mm99999915_g1 qPCR probe

Sequence-based
reagent

Retnla TaqMan (Thermo
Fisher Scientific)

Mm0045109_m1 qPCR probe

Software,
algorithm

Aperio ImageScope Leica Biosystems Tissue analysis

Software,
algorithm

Aperio ImageScope
Positive Pixel
Algorithm

Leica Biosystems Tissue analysis

Software,
algorithm

FlowJo BD Biosciences Flow cytometry
analysis

Software,
algorithm

GraphPad GraphPad, Inc Statistical analysis

Other Aperio AT2
Digital Scanner

Leica Biosystems Brightfield tissue
scans

Other Aperio FL Slide Scanner Leica Biosystems Fluorescent tissue
scans

Other Pannoramic 250 Flash III 3DHISTECH Fluorescent tissue
scans

Other Attune NxT Flow Cytometer Thermo Fisher
Scientific

Other Cxcl10 ISH probe (mouse) Advanced Cell
Diagnostics

Cat# 408921 In situ hybridization
probe

Other Cxcr3 ISH probe (mouse) Advanced Cell
Diagnostics

Cat# 402511 In situ hybridization
probe

Other Cxcr3 ISH probe (human) Advanced Cell
Diagnostics

Cat#539251 In situ hybridization
probe

Other Ifng ISH probe (mouse) Advanced Cell
Diagnostics

Cat# 311391 In situ hybridization
probe

Other Lipopolysaccharides (LPS) Sigma-Aldrich Cat# L4391 Lipopolysaccharides
from Escherichia coli
O111:B4; g-
irradiated;
suitable for cell
culture

Other Adeno-Cre-GFP Vector Biolabs Cat# 1700 Adenovirus

Other Adeno-Null-GFP Vector Biolabs Cat# 1300 Adenovirus

Other CXCL10 GeneCopoeia LPP-EGFP-
Lv105-025-C

Lentiviral particles

Other eGFP (control) GeneCopoeia LPP-Mm03214
-Lv105-100

Lentiviral particles

Other Proteome
Profiler Mouse
Cytokine Array Kit

R and D Systems Cat# ARY006 Cytokine array
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