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The  dynamics  of  H5N1  influenza  virus  pathogenesis  are  multifaceted  and  can  be  seen  as  an  emergent
property  that  cannot  be  comprehended  without  looking  at the  system  as a whole.  In past  years,  most  of  the
high-throughput  studies  on  H5N1–host  interactions  have  focused  on the  host  transcriptomic  response,
at  the  cellular  or the  lung  tissue  level.  These  studies  pointed  out  that the  dynamics  and  magnitude  of
the  innate  immune  response  and  immune  cell  infiltration  is critical  to  H5N1  pathogenesis.  However,
viral–host  interactions  are  multidimensional  and  advances  in  technologies  are  creating  new  possibilities
to  systematically  measure  additional  levels  of  ’omic  data  (e.g.  proteomic,  metabolomic,  and  RNA  profiling)
at  each  temporal  and  spatial  scale  (from  the  single  cell  to  the  organism)  of the  host  response.  Natural
host  genetic  variation  represents  another  dimension  of  the  host  response  that  determines  pathogenesis.
Systems  biology  models  of  H5N1  disease  aim  at understanding  and  predicting  pathogenesis  through

integration  of these  different  dimensions  by  using  intensive  computational  modeling.  In  this  review,
we  describe  the importance  of  ’omic  studies  for providing  a more  comprehensive  view  of  infection  and
mathematical  models  that  are  being  developed  to  integrate  these  data. This  review  provides  a  roadmap
for  what  needs  to be  done  in  the  future  and  what  computational  strategies  should  be  used  to  build  a
global  model  of  H5N1  pathogenesis.  It is  time  for systems  biology  of H5N1  pathogenesis  to  take  center
stage  as  the  field  moves  toward  a more  comprehensive  view  of  virus–host  interactions.
. Introduction

Highly pathogenic avian influenza (HPAI) H5N1 virus is endemic
mong wild birds and there are ongoing cases of avian-to-human
nfection, mostly in Southeast Asia. Since 2003, a total of 358
eaths out of 607 laboratory-confirmed cases have been reported
WHO, 2012). Although human-to-human transmission of H5N1
as been rare so far, recent studies have shown that some avian
5N1 strains only require a few mutations to acquire the capacity

or airborne transmission between mammals, thereby constituting
 major threat for human health (Herfst et al., 2012; Imai et al.,
012). Given the high mortality associated with H5N1 infection
nd the risk of an impending influenza pandemic, it is crucial to
nderstand the underlying mechanisms of viral pathogenesis in
rder to better manage patient care and develop more effective
ntiviral therapeutics. H5N1 pathogenesis has been extensively
tudied, but even with the sum of current knowledge, we still
ack a quantitative model of molecular events leading to disease

t the organismal level. Systems biology allows examination of
ost–pathogen interactions at several scales, including the whole
rganism, the target organ, and the cellular level. We  believe this
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approach holds promise to building models that are able to handle
known information about H5N1 and to discover emergent prop-
erties of H5N1–host interactions that appear when the system
is considered as a whole. The goal of such a model is to reveal
major regulators of H5N1 pathogenesis and predict the effect of
their disruption on disease outcome, which in turn would acceler-
ate development of novel immunomodulatory therapeutics. In this
review, we describe the contribution of ’omic studies to our com-
prehension of H5N1 pathogenesis, the goal of systems biology in
H5N1 research, and the different data and models that need to be
developed to help reach that goal.

2. From transcriptomic profiling to systems biology

Human patients with severe H5N1 disease typically develop
a viral primary pneumonia progressing rapidly to acute respira-
tory distress syndrome (ARDS) (Abdel-Ghafar et al., 2008). Among
the mechanisms that contribute to H5N1 pathogenesis, an aber-
rant immune response is thought to play a significant role in the
development of severe respiratory disease that may  ultimately lead
to death (reviewed in (Peiris et al., 2009)). The term “cytokine

storm” is often associated with H5N1, referring to an uncontrolled
inflammatory response (Tisoncik et al., 2012). High serum levels of
macrophage and neutrophil chemoattractant chemokines (CXCL10,
CXCL2, IL-8) and both pro- and anti-inflammatory cytokines (e.g.

dx.doi.org/10.1016/j.virusres.2013.02.011
http://www.sciencedirect.com/science/journal/01681702
http://www.elsevier.com/locate/virusres
mailto:honey@u.washington.edu
dx.doi.org/10.1016/j.virusres.2013.02.011
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L-6, IL-10, and IFN-�) were found in human patients infected with
5N1 (To et al., 2001; Peiris et al., 2004; de Jong et al., 2006). Over

he past decade, global transcriptional profiling of infected lungs
rom several mammalian models has been used to characterize the
ost response to influenza virus at the primary site of viral replica-
ion. Here, we focus on lung transcriptomic data for H5N1 infection
ssessed primarily in the mouse model.

.1. What have we learned from H5N1 in vivo transcriptomic
tudies?

.1.1. H5N1 virulence is a function of the level and kinetics of the
nflammatory response

The host response to H5N1 has been studied in non-human pri-
ate (Baskin et al., 2009; Cillóniz et al., 2009; Shinya et al., 2012),
ouse (Cilloniz et al., 2010; Fornek et al., 2009) and ferret models

Cameron et al., 2008). In all three models, extreme virulence of
nfluenza virus has been repeatedly associated with increased host
esponses, in particular, early and sustained induction of inflamma-
ory responses (summarized in Fig. 1). These studies highlighted the
mportance of timing and magnitude of inflammatory and innate
mmune gene expression induced early during infection.

The mouse is the primary model for evaluating host responses to
nfluenza virus, for cost and practical reasons, as well as availability
f reagents and extensive data about mouse genetics. The mouse
enome was sequenced 10 years ago (Waterston et al., 2002) and
s now extremely well annotated, thanks to several international
ollaborative projects such as FANTOM (Okazaki et al., 2002), the
nternational Knockout Mouse Consortium (Skarnes et al., 2011)
nd the Collaborative Cross (Churchill et al., 2004). In general,
his animal model is thought to reflect H5N1 human disease (Lu
t al., 1999; Maines et al., 2005). Human H5N1 isolates are highly
athogenic in mice without prior adaptation, in part due to pref-
rential recognition of avian-type �2,3 sialic acid (SA) receptors
redominantly expressed in the mouse respiratory tract (Ibricevic
t al., 2006). Cilloniz et al. (2010) showed that early activation
f inflammatory response genes correlate with disease severity
uring A/Viet Nam/1203/2005 (H5N1) virus (VN1203) infection,

ncluding increased expression of inflammasome components and
enes associated with viral sensing, neutrophil activation, NF-�B
ignaling, and chemokine signaling. In mice, VN1203 disseminates
nto brain and spleen tissues, and genes associated with extrapul-

onary dissemination were associated with sustained activation
f inflammatory responses and altered hematological function and
ipoxin signaling.

An enhanced and early inflammatory response has been
bserved in all animal models infected with highly pathogenic
5N1 or 1918 H1N1 influenza viruses (Baskin et al., 2009; Cameron
t al., 2008; Chang et al., 2011; Cilloniz et al., 2010; Cillóniz et al.,
009; Shinya et al., 2012), which would argue that the same path-
ays may  be activated after infection with lethal and non-lethal

iruses, but only at a higher magnitude and with different kinetics
or the lethal virus infections. However, infection with non-lethal
iruses may  also induce different protective pathways, as cell
rowth or lipid metabolism pathways, which would then allow
he animal to clear the virus and recover from infection (Cameron
t al., 2008; Go et al., 2012; Josset et al., 2012a). In a meta-analysis
f mouse host responses that considered different mouse genetic
ackgrounds and different respiratory viruses with varying lev-
ls of pathogenicity, Chang et al. (2011) identified two  different
ypes of gene signatures differentiating high and low pathogenicity
iruses. One gene signature had anti-correlated expression in the

wo virus groups; genes up-regulated by highly pathogenic viruses
ere associated with inflammation and apoptosis, while down-

egulated genes were associated with cytochrome P450 pathway.
he second gene signature involved genes that had magnitude
h 178 (2013) 151– 167

differences in their levels of expression, with mainly chemokines
that were more up-regulated after infection with highly pathogenic
viruses. In this study, the ‘magnitude’ signature differentiated the
two virus groups the best and it was also a better predictor for dis-
tinguishing lethal vs. non-lethal influenza infection. However, these
signatures were derived using the two groups of viruses regardless
of time post-infection, and may  therefore have missed temporal
transitional differences contributing to pathogenesis.

2.1.2. Virulence factors of H5N1 impact the immune response in
the lung

The mouse model has also been used to elucidate the impact
of specific H5N1 virulence factors on the host response. The PB2
protein is one of three subunits of the viral polymerase and the
residue at position 627 is one of the best characterized viral deter-
minants of host range and virulence (Boivin et al., 2010). An H5N1
virus from the 1997 outbreak in Hong Kong possessing lysine at
position 627 (627K), A/Hong Kong/483/97 (HK483), was  found to
be lethal in mice, whereas an H5N1 virus that contained a glutamic
acid residue at this position, A/Hong Kong/486/97 (HK486), was
non-lethal (Hatta et al., 2001). Fornek et al. (2009) investigated how
the presence of lysine at position 627 of the PB2 protein affects the
host response to H5N1 in lung and spleen. Increased pathogenicity
and dissemination was  observed for HK483 and HK486 PB2-E627K
viruses, which was associated with enhanced viral replication, acti-
vation of immune, inflammatory and apoptosis responses and also
the lack of induction of genes required for TCR signaling in the lung.
In the spleen, genes involved in NK cell cytotoxicity, antigen pre-
sentation and interferon (IFN) signaling were more highly induced
in response to HK483 and HK486 PB2-E627K viruses compared to
HK486 (Fornek et al., 2009).

The PB1-F2 protein is a small accessory protein expressed by
influenza virus, depending on the strain, that was first described
in 2001 (Chen et al., 2001) and shown to have pleiotropic effects
on apoptosis, inflammation, and regulation of the viral polymerase
(reviewed in Krumbholz et al. (2011)). Deletion of PB1-F2 dimin-
ished the pathogenicity of mouse-adapted H1N1 in mice (Zamarin
et al., 2006), whereas a single N66S mutation in PB1-F2 of Hong
Kong/156/1997 (H5N1) resulted in increased virulence of mouse-
adapted A/WSN/1933 (H1N1; WSN) virus expressing PB1-F2 N66S
of H5N1 virus (Conenello et al., 2007). Global pulmonary transcrip-
tional profiling of C57BL/6J mice infected with reassortant PB1-F2
66N or 66S variants revealed that increased pathogenicity of the
66S variant was  associated with a delayed induction of innate
immune responses at 1 dpi, and after 3 dpi, increased expression
of several pro-inflammatory cytokines could be responsible for the
higher trafficking of monocytes and granulocytes into the mouse
lung (Conenello et al., 2011). Deletion of PB1-F2 from WSN  is asso-
ciated with decreased virulence in mice and a decrease in host
responses, in particular genes linked to cell death, inflammatory
response and neutrophil chemotaxis, with minimal impact on viral
replication (Le Goffic et al., 2011).

While different functions have been described for PB2 627 and
PB1-F2 variants in infected cells, these studies demonstrate that
their deletion had a similar impact on host responses in vivo,
namely by decreasing the inflammatory response (Fig. 1). Atten-
uation of the inflammatory response observed in vivo with these
viral mutants could be the result of the deletion of a virulence fac-
tor or the modulation of a molecular determinant of pathogenesis,
though it may  also be the consequence of attenuated fitness of these
viruses. Therefore, interest in in vivo global ’omics using mutant

viruses to better understand the molecular function of virulence
factors may  be ambiguous, and mechanistic studies or protein-
protein interaction screens may  bring more information about their
role for driving specific interactions with the host.



L. Josset et al. / Virus Research 178 (2013) 151– 167 153

Fig. 1. Induction of host inflammatory response in mice infected with H5N1 depends on the viral strain, viral dosage, and host genetic background, and is associated with
pathogenicity. The heatmap represents mean expression levels (in log2 fold change, log2FC) for significantly up-regulated inflammatory response genes. Genes were selected
based  on their GO annotation (GO:0006954, “inflammatory response”) and statistical analysis vs. time-matched mocks ((|log2 FC|  > 1, Student t-test q value < 0.05 for at least
o 0), Con
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.2. Host response to H5N1 infection is multidimensional

The use of functional genomics in characterizing the global
ost response to H5N1 virus has revealed that the dynamics and
agnitude of the innate immune response to infection, as well

s immune cell infiltration, is a crucial aspect of pathogenesis.
n addition, because most transcriptomic data are publicly avail-
ble and easily accessible on Gene Expression Omnibus (GEO,
ttp://www.ncbi.nlm.nih.gov/geo/), these data can be re-examined
y meta-analysis aimed at identifying host response characteristics
f respiratory virus pathogenicity (Chang et al., 2011), or to com-
are new microarray results of emerging influenza viruses, such as
he 2009 pandemic H1N1 influenza virus, with virulence charac-
eristics of other viruses (Josset et al., 2012a).

Despite the advantage of profiling the whole transcriptome,
ene expression changes in response to H5N1 represents only a
ingle facet of the host response. Other types of ’omics might bring
ifferent insights on H5N1 pathogenesis. For instance, influenza
iruses also modulate post-transcriptional regulation and trans-
ation, which cannot be addressed by transcriptomics alone, but
equires integration of proteomic data and regulatory RNA pro-
ling. At a lower complexity level, studies at the single molecule

evel, such as interaction between the viral hemagglutinin (HA)
nd SA cellular receptors or neuraminidase (NA) enzymatic activ-
ty, also provide an understanding of H5N1 virulence (Fig. 2). Aside
rom the molecular dimension, studies on H5N1-host interactions
lso need to include the different levels of physiological scales of
he host response, from the single infected cell to the lung to the
rganism. In addition, the time scales that span these physiolog-
cal levels are very different, from milliseconds for the induction
f a signaling cascade or protein-protein interactions, to minutes

nd hours for the induction of the expression of antiviral genes,
o days and weeks for the development of innate immunity and
ransition to adaptive immune responses. Finally, a fourth dimen-
ion that is crucial in shaping the host response to H5N1 infection
enello et al. (2011), Fornek et al. (2009) and McDermott et al. (2011).

is host genetics. This parameter can be studied from the single
gene level, using approaches like RNA interference or single gene
knock-out (KO) mice, to multifactorial levels of complexity that are
present in the human genome and the natural genetic variation
can be studied in a mouse resource called the Collaborative Cross
(CC). The recognition that we  cannot predict the behavior of a living
organism by looking at biological properties individually is bring-
ing the field of systems biology to the forefront of infectious disease
research.

2.3. What is systems biology?

Systems biology is an evolving field that uses an interdis-
ciplinary approach aimed at understanding and predicting the
properties of a living system through systematic quantification
of all its components and intensive mathematical and compu-
tational modeling to find emergent properties of the system.
Emergent properties cannot be entirely explained by the sum of
their individual components, that is, at each level, new properties
and rules emerge that cannot be predicted by observations and
full knowledge of the lower levels (Novikoff, 1945). Virulence is
an example of an emergent property applied to H5N1 research,
which cannot be explained by looking at each of the viral viru-
lence factors in isolation, nor by examining a narrow range of host
factors.

In infectious disease research, the main goal of systems biol-
ogy is to model and describe in an unbiased manner host-pathogen
interactions at every scale of the organism (Tisoncik and Katze,
2010) (Fig. 2). Each component of the system is measured using
high-throughput ’omic techniques, such as transcriptomic, pro-
teomic, and metabolomics, and in theory examined from the

cellular level to the whole organism at each temporal scale.
These measures have to be integrated with single molecule mod-
els of host-virus interactions. Mathematical and computational
methods are then developed to analyze these different data

http://www.ncbi.nlm.nih.gov/geo/
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Fig. 2. Systems biology of H5N1-infected lung. Systems biology is an interdisciplinary approach aimed at understanding and predicting the properties of a living system
through systematic quantification of all its components and intensive mathematical and computational modeling to find emergent properties of the system. The host
response to H5N1 is multidimensional, with several physiological scales involved (from cells to tissue to organism), involved at different temporal scales: from seconds,
H5N1 HA SA receptor engagement; minutes representing activation of pathogen recognition receptors (e.g. RIG-I and TLR); hours representing production of cytokines; to
days  representing adaptive immune responses. Several molecular scales need to be modeled, from the single molecule to increasing systems complexity of diverse ’omics
(e.g.  transcriptomics, proteomics, and metabolomics). Finally, the host-genetics dimension has to be integrated and can be studied using KO (knockout) and CC (Collaborative
C analyz
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ross) mouse models. Mathematical and computational methods are developed to 

ypes and integrate them in a meaningful model. The aim of
his approach is to understand and predict the properties of
5N1 infection, with the overarching goal to find master regula-
ors, such as individual genes, cellular interactions or pathways
f the host response that could be targeted for new antiviral
herapy.
e these different data types from each of these scales.

3. Using ’omics to model the host response to H5N1

To date, an extensive undertaking by the Systems Virol-

ogy Center (http://www.systemsvirology.org) at the Univer-
sity of Washington has generated comprehensive ’omics data
sets for H5N1 infected samples, providing access to the

http://www.systemsvirology.org/
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ifferent levels of the host response (Aderem et al., 2011). In paral-
el, system biology methods are being developed to analyze these
ata together. However, successful integration of these ’omics has
een quite limited in the H5N1 field, mainly because of the chal-

enges to obtain consistent data, as well as the need for powerful
athematical algorithms that can handle the high dimensionality

omics data.

.1. Generating different types of ’omics data for H5N1

.1.1. Proteomic and phosphoproteomic profiling
The proteomic field has been rapidly evolving to allow quan-

ification of a larger number of proteins with greater accuracy
Aebersold and Mann, 2003; Cox and Mann, 2011). However, pro-
eomic technologies still have certain limitations, mainly related to
he difficulty to detect low-abundance, hydrophobic or basic pro-
eins (Garbis et al., 2005). Proteomic data usually have incomplete
roteome coverage and restricted dynamic range, which makes
hese data challenging to analyze (Schulze and Usadel, 2010). There
re only a few studies about host proteomic changes in response
o H5N1 infection, likely due to these limitations, while there is
bundant transcriptomic data available.

Consistent with transcriptomic findings, Brown et al. (2010)
ave shown increased virulence of VN1203 in cynomolgus
acaques was associated with elevated pulmonary levels of

nflammatory proteins, complement, and proteins reflecting cell
roliferation, while proteins related to metabolism were decreased,
s compared to animals infected with seasonal H1N1 virus
A/Texas/36/91) or a reassortant H1N1 virus containing r1918 HA
nd NA (Brown et al., 2010). In an in vitro system, proteomics of pri-
ary human monocyte-derived macrophages infected with a HPAI
/Vietnam/3212/04 (H5N1) virus revealed significant changes in
ibosomal protein abundance and elongation factors at 1 and 3 hpi,
hich may  contribute to efficient viral replication (Cheung et al.,

012). An increase in the level of some ribosomal proteins was also
ound later during infection (6–12 hpi) of macrophages with H3N2
iruses, together with dramatic changes in the nuclear proteome
nd an increase in lysosomal and IFN-response proteins (Lietzen
t al., 2011).

Other proteomic approaches include studies of interactomics
nd phosphoproteomics. High-throughput proteomic approaches
ave been used to identify cellular factors interacting with viral pro-
eins in the cell (Jorba et al., 2008) and in the viral particle (Mayer
t al., 2007). A pull-down study of H5N1 PA coupled with mass
pectrometry identified new partners of the viral polymerase and
n particular, PA was found to be associated with mitochondrial
roteins such as the apoptosis-inducing factor (AIFM1), suggest-

ng a potential role of PA during apoptosis (Bradel-Tretheway
t al., 2011). Another strategy to identify host factors interacting
ith viral proteins is to use the yeast two-hybrid system (Shapira

t al., 2009; Tafforeau et al., 2011). In particular, Tafforeau et al.
2011) used this system to identify several partners of H5N1 poly-

erase subunits. However, the approach is limited by a general
igh rate of false positives and the caveat of protein interactions
ot taking place in a relevant cellular context. Finally, advances in
hosphopeptide enrichment and mass spectrometry now enable
igh-throughput identification and quantification of protein phos-
horylation sites, yet no phosphoproteomic data are published for

nfluenza infected cells. Such data would provide information about
ignal transduction activated early after infection and would be
seful to connect infection to further changes in transcriptional
rofiles in cells.
.1.2. Metabolomic and lipidomic profiling
While transcriptomics and proteomics are powerful strate-

ies to measure the global host response to infection, signal
h 178 (2013) 151– 167 155

transduction cascades can also involve the synthesis of metabo-
lites for efficient signal transmission. Metabolomics involves
the high-throughput characterization of low molecular weight
compounds in a biological system. Measurement of extracellular
metabolites from central carbon metabolism (glucose, lactate,
glutamine and glutamate) and the concentration of 30 intracellu-
lar metabolites from the glycolysis, pentose-phosphate-pathway
and TCA cycle from MDCK cells infected by a mouse-adapted
H1N1 laboratory strain, PR8, showed an increase of glycolysis after
infection (Ritter et al., 2010). In a more high-throughput manner,
gas chromatography coupled with mass spectrometry (GC/MS)
was employed to profile metabolites from cell lines infected with
influenza A/Hong Kong/2108/2003 (H9N2) virus, and the results
indicated that infection can alter fatty acid biosynthesis and choles-
terol metabolism (Lin et al., 2010). Several transcriptomic studies
also suggest that lipid metabolism is altered during influenza
infection in vivo and could be implicated in increased pathogenesis
of H1N1 (Josset et al., 2012a; Ma  et al., 2011). However there is no
metabolic profiling of infected tissue published yet, nor are there
metabolomic data for H5N1 virus, though we are currently gener-
ating metabolomics data on cell lines infected with VN1203 from
similar samples on which transcriptomic and proteomic are avail-
able, therefore allowing an integration of these data types. Given
the importance of the inflammatory response in H5N1 pathogen-
esis, the profiling of lipids with pro- or anti-inflammatory effects
could be important for better characterizing viral-host interactions
and for developing potential immunotherapies.

3.1.3. Genome-wide screening
Several studies using RNA interference have identified cellular

factors required for influenza replication (Hao  et al., 2008; Brass
et al., 2009; Karlas et al., 2010; König et al., 2010; Shapira et al.,
2009). Viruses used for these screens included PR8 and a second
mouse-adapted H1N1 influenza virus, WSN, as well as a modified
influenza virus in which HA was  replaced with vesicular stomati-
tis virus glycoprotein G and NA was replaced with a reporter for
use in an orthologous system (Hao et al., 2008). There was  little
overlap of identified factors among the different screens, which
could be explained by differences in systems and readouts. Never-
theless, considering these factors as a whole could be important in
modeling H5N1-host interactions. Several reviews and a commen-
tary have been dedicated to understanding the importance of these
results and provide more detail on host factors regulating influenza
virus replication (Mehle and Doudna, 2010; Stertz and Shaw, 2011;
Watanabe et al., 2010).

3.1.4. Regulatory non-coding RNA profiling
Non-protein-coding RNAs (ncRNAs) are potentially important

host factors in the antiviral response, but their functions remain
largely unexplored. There is an increasing number of different
classes of regulatory RNA that have been described in the past few
years, including small interfering RNA (siRNA), microRNA (miRNA),
PIWI-interacting RNA (piRNA), promoter-associated small RNA
(PASRs), small nucleolar RNA (snoRNA) and long non-coding RNAs
(lncRNAs) (Taft et al., 2010). Accurate and global quantification of
these different RNAs has been made possible by the recently devel-
oped RNA sequencing (RNA-Seq) technique. This method is based
on next-generation sequencing (NGS) platforms that allow paral-
lel sequencing of all RNA molecules present in the sample without
relying on pre-defined sequences as in microarrays or traditional
PCR.

MicroRNAs are becoming increasingly recognized as important

players in host-pathogen interactions. For example, the analysis of
lung tissue from macaques infected with VN1203 revealed changes
in the expression of numerous miRNAs (Li et al., 2011). Among
these differentially expressed miRNAs, 23 were regulated with
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imilar trends in mice infected with lethal 1918 virus. Predicted
arget genes of these miRNAs encoded cell death and inflammatory
actors involved in influenza pathogenesis, which suggest that
heir regulation could play crucial roles in influenza virulence (Li
t al., 2011). In mice, 45 miRNAs were differentially expressed in
ung samples from different mouse strains during severe acute
espiratory syndrome coronavirus (SARS-CoV) (MA15) or influenza
irus (PR8) infection and expression of 6 miRNAs was  confirmed to
hange after VN1203 infection (Peng et al., 2011). These miRNAs,
uch as miR155 that was previously implicated in lymphocyte
unction (Vigorito et al., 2007), represent potential important
egulators of the host response and provide an interesting target
o validate in studies focused on understanding their mechanisms.

Among other non-protein-coding RNAs with a potential role in
5N1 pathogenesis are long ncRNAs (lncRNA), endogenous cellu-

ar RNAs that are larger than 200 nucleotides in length and that
ack positive-strand open reading frames longer than 30 amino
cids. Recent studies suggest that lncRNAs may  play a role in the
ost response to pathogens. Pang et al. (2009) showed expression
f many lymphocyte-specific lncRNAs changed with CD8+ T cell
ifferentiation. In a separate study, Guttman et al. (2009) identi-
ed 20 lncRNAs highly upregulated after stimulation of Toll-like
eceptor TLR4 in dendritic cells, and Peng et al. (2010) observed
00 annotated and 1000 nonannotated lncRNAs were differentially
xpressed in mice after SARS-CoV infection. Differential expres-
ion of lncRNAs was also observed in mice and mouse embryonic
broblasts (MEF) infected with PR8. As we probe deeper into the

dentification of ncRNAs and the diverse species that may  have a
egulatory role during infection, it will be important to profile these
cRNAs, particularly lncRNAs, in H5N1 infected cells and animals
o better understand host-pathogen interactions.

.1.5. Virus profiling
To date, ’omic studies have focused almost exclusively on the

ost response. However, RNA-Seq offers new exciting opportu-
ities to sequence both viral and host RNA that may  conciliate
irus-centric and host-centric views. While this dual RNA-Seq has
een mostly used for bacterial or parasite sequencing, together
ith the host (Westermann et al., 2012); it is directly applica-

le for influenza and cellular mRNA profiling, as influenza mRNA
s polyadenylated. On the other hand, directional total RNA-Seq
llows access to both vRNA and viral mRNA sequences, together
ith host RNA. An illustration of the importance of considering

oth viral sequence evolution and host response to fully model
athogenesis comes from studying the PB2-627E viral mutant. Per-
orming total RNA-Seq analysis of lung from mice infected with
04 pfu of VN1203 carrying the PB2-627E mutation revealed that
round half of the viral population had reverted back to the wild-
ype sequence by day 2 pi (unpublished data). These data are crucial
o interpret the host-transcriptome response. Differences in mag-
itude and kinetic of induction of the inflammatory response by the
ild-type and mutant virus may  likely be more a function of differ-

nce in viral dosage and time than related to the specific PB2-627E
utation (Tchitchek et al., submitted for publication).

.2. Finding emergent properties of the H5N1-host system from
omics data

We  and others have been generating different types of data
o understand H5N1 pathogenesis. However, most of the studies
escribed in the previous section are still focused on a single
ype of ’omics data. Integrating different types of ‘omic’ data is

ndeed very challenging because it requires consistent data. That is,
rofiling of several ‘omic’ datatypes from either the same or related
amples, as well as the development of new methods for data
ntegration. Graphical models are one option to integrate different
h 178 (2013) 151– 167

types of data (for a didactic review about network modeling in
systems biology see Ma’ayan, 2011) and can also be used for
predicting regulatory mechanisms of cells or mice infected by
H5N1 (Li et al., 2011; McDermott et al., in review; Mitchell et al.,
submitted for publication).

3.2.1. Co-regulation network analysis of transcriptomic data
reveals key regulators of the host response

Statistical analysis of microarray data is conventionally used
to determine lists of differentially expressed genes between two
conditions. In contrast, co-expression network analysis explores
all pairwise relationships among genes and analyzes the struc-
ture of these relationships to predict the behavior of the system.
Pairwise relations between 2 genes can be estimated by differ-
ent methods, such as correlation (in WGCNA (Zhang and Horvath,
2005)), or mutual information concept from information theory (in
ARACNE (Margolin et al., 2006) or CLR (Faith et al., 2007)). These
relations are then represented by using co-regulation networks
with nodes being genes and edges representing the strength of
the relation. Network topology analysis allows identification of
modules of co-expressed genes, and key points of the network
such as “bottlenecks”, bridges between modules, and “hubs”, highly
connected genes inside a module (Yu et al., 2007). It has been
shown that genes belonging to the same pathway or biological
function are usually co-expressed, that is their tight expression
levels vary concomitantly, and that hubs and bottlenecks are essen-
tial in protein-protein interaction networks and regulatory protein
networks, respectively.

Co-expression network analysis of human Calu-3 lung epithe-
lial cells infected with VN1203 identified 12 different modules
of co-regulated genes, including one module that mainly con-
tained downregulated genes related to metabolism and cell cycle,
and an ‘inflammatory’ module that contained up-regulated genes,
including a large number of chemokines genes and genes known
to play a role in influenza pathogenesis (Li et al., 2011). Of
note, there were a significant number of genes with no known
functions among the inflammatory module. On the basis of “guilt-
by-association,” these unknown genes could be involved in H5N1
pathogenesis and are interesting targets to validate by biological
experiments.

Recently, network analysis was  used to model the host response
of mice infected with H5N1 (Fig. 3) or SARS-CoV (McDermott
et al., in review). Two  methods were used for network construc-
tion (WGCNA and CLR), and genes were ranked based on scores
identifying bottlenecks and hubs. Some highly ranked genes were
then validated using KO mice to assess their importance on host
response organization. For H5N1, two genes predicted to be of
high importance included Tnfrsf1b and Ido1 (Fig. 3). The infec-
tion of knockout mice containing a single deletion of either gene
resulted in decreased weight loss compared with wild-type mice.
Importantly, transcriptomic analysis of infected lungs from KO mice
confirmed the structure of the inferred network, as expression
of neighbor genes of the two targets were significantly differen-
tially regulated in the KO mice relative to infection of wild-type
mice.

These co-regulation networks successfully pointed out targets
related to H5N1 pathogenesis. However, these approaches have
several limits: (i) they only consider marginal correlation which
might lead to false positive relationships between genes that are
correlated though influence other variables, (ii) they do not model
dynamic relationships between genes; and (iii) they infer only cor-

relation, not causation. Additional graphical models, like graphical
Gaussian models (Witten and Tibshirani, 2009), dynamic Bayesian
Networks (Rau et al., 2010), and causation networks (Maathuis
et al., 2010) represent computationally intensive but attractive
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Fig. 3. Network analysis of pulmonary response to H5N1 infection. The context
likelihood of relatedness (CLR) method was  used to infer associations between dif-
ferentially expressed genes in mice after infection with VN1203 across 4 time points
(days 1, 2, 4 and 7) and 3 dosages (102, 103 and 104 pfu). Each node corresponds
to  a gene and edges represent co-expression associations among genes. Genes are
colored by their expression levels (in log2 FC) 4 days after infection with 103 pfu
of  VN1203. Based on topological analysis, Ido1 was  predicted to be a significant
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egulator of the host-response. Its location is enlarged to show associations with
eighbor genes. Ido1 belongs to a module of highly induced genes related to the

nnate immune response.

odels that could be applied to some extent to H5N1 disease to
vercome these limitations.

.2.2. Co-regulation network analysis for integration of different
ypes of data

Most published regulatory networks are based on transcrip-
omic data, though this approach can also be used to integrate
ifferent types of data. We  recently applied this method to both
ranscriptomic and proteomic data of Calu3 cells infected with
N1203 or SARS-CoV. The co-expression network was inferred

rom transcriptomic data, and proteomic data was then used to
dd edges between genes when the corresponding proteins were
o-expressed (Mitchell et al., submitted for publication). As such,
he network topology changed to take into account information
eld at the protein level.
Co-regulation network analysis is also an attractive approach
o integrate phenotypic and transcriptomic data. Turan et al.
2011) used ARACNE to model the relationships between muscular
ene expression, serum levels of cytokines and physiological
h 178 (2013) 151– 167 157

measurements, including specific respiratory functions (VO2
max, VO2 peak, PaO2) from healthy individuals or patients with
chronic obstructive pulmonary disease (COPD), which showed
uncoupling of tissue remodeling and bioenergetics modules was
a specific hallmark of COPD-diseased tissues. This method could
be used for H5N1 transcriptomic and phenotypic data to define
how gene-regulatory networks are associated with particular
phenotypes. Phenotypic data usually measured in mice to evaluate
influenza infection include weight loss, histology and viral lung
titers. Because lung pathology is an important determinant of
H5N1 outcome, longitudinal measurements of lung function
during experimental infection by plethysmography represents
one valuable technique to measure respiratory variability. Such
measurements were used to monitor mice after 2009 H1N1 infec-
tion and were found to correlate with lung pathology (Julander
et al., 2011). Assessing associations between such phenotypic
parameters and ’omic data could bring meaningful insights into
how H5N1 pathogenesis is regulated.

3.2.3. Additional methods for ’omics integration
Most studies using both proteomic and transcriptomic data have

analyzed each data type separately and then aggregated the results
in a post hoc manner. For example, functional pathway or net-
work analyses of derived gene and protein lists were compared
to identify common regulators among the two datasets (Piruzian
et al., 2010), or networks inferred from differentially expressed pro-
teins were scored for enrichment in differentially expressed genes
(Imielinski et al., 2012).

Others have tried to analyze correlation between mRNA and
protein abundance and found only modest concordance between
transcript and protein levels in yeast (Hack, 2004), mammalian cells
(Zhao et al., 2009), or tissue (Ghazalpour et al., 2011). Attempting
a direct correlation between proteomic and transcriptomic data
is extremely challenging because of multiple layers of possible
discrepancies. These include distinct sensitivities of cDNA array
hybridization and peptide measurement, different biases in the two
technologies (Ghazalpour et al., 2011), timing differences between
transcription and translation, or post-transcriptional and transla-
tional modifications. It is interesting to note that influenza virus
modifies both transcriptional and translational regulation by cap-
snatching (Plotch et al., 1981), interaction with the cellular RNA
polymerase II (Engelhardt et al., 2005) and spliceosome compo-
nents (Wolff et al., 1998), and by ribosomal recruitment (Kash
et al., 2002, 2006). Therefore, looking at the correlation between
transcriptomic and proteomic data could provide additional value
into influenza virus-mediated translational control. In Calu-3 cells
infected with VN1203, Pearson correlation between transcriptomic
and proteomic data revealed that very early (0–3 hpi) up-regulated
proteins and late (12–24 hpi) downregulated proteins changed in
abundance without regulation of their transcript (Eisfeld et al., in
review). These anti-correlations could be driven by viral targeting
of the mRNA or translation machinery; however, consideration of
additional levels of mRNA regulation, such as miRNA and isoform
quantification, would be necessary to fully model the system.

3.3. Prior knowledge that can be used to model infections

Can we  use previously published reductionist data about H5N1
in systems biology? A recent review argues that use of prior bio-
logical knowledge is crucial to increase signal detection in systems
biology (Ideker and Krogan, 2012). However, if prior assumptions
on signal distribution can lead to development of effective statis-

tics for integrating ’omics (for example Kislinger et al., 2006), most
of the reductionist knowledge about H5N1 cannot be directly inte-
grated into systems biology models. Why  might this be the case?
Let us consider a viral factor V interacting with a host protein H,
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Fig. 4. Induced pulmonary genes after VN1203 infection are related to stimulated DC, macrophages and granulocytes. The radial plots represent enrichment scores for immune
cell  genes induced in mouse lung after infection with H1N1 A/California/04/09 (CA04) or VN1203 at day 2, 4 and 7 post-infection. Enrichment scores were calculated as a
l  cell s
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og10 p-value, using a right-tailed Fisher’s exact test. Genes specific to each immune
verexpressed in one cell subset compared to all other cells from this database. DC

his interaction may  have been published in a paper, but, most
f the time, it is described in qualitative terms and for a specific
iological condition. However, we need to know precisely when
his interaction V–H occurs, with what affinity and which sys-
em. An example of cases of such known interactions between
iral and host-factors are the binding of HA or NA and cellular SA
eceptors, which affinities can be modeled using Michaelis–Menten
quations. Even if some models can consider known dependen-
ies between molecules in terms of qualitative interaction as prior
nowledge to integrate ‘omics’ (Choi and Pavelka, 2012), these data
till need to be grouped in a database that can be queried automati-
ally. Quantitative data relevant for influenza pathogenesis include
icroarray data, siRNA screen data, and virus–host protein–protein

nteractions (PPI), which can be downloaded from the literature,
r public repositories (e.g. GEO or SRA). Given the importance of
mmune cell infiltration into the lung toward H5N1 pathogenesis,
atasets from other sources to consider include the Immunolog-

cal Genome Project (ImmGen) for immune cells subsets (Heng
t al., 2008), the Mouse Gene Atlas for specific mouse tissues (Su
t al., 2004), and the Immune Response In Silico (IRIS) database for
umans (Abbas et al., 2005).

In addition to specific knowledge about H5N1, several databases
upporting mammalian systems analyses provide general informa-
ion on known biological pathways, PPIs, and protein functions.
iological pathways are sets of biochemical events that drive cel-

ular processes and are listed in several repositories, including
eactome (D’Eustachio, 2011), KEGG (Kanehisa and Goto, 2000),
iocarta (http://www.biocarta.com), Gene Set Enrichment Analysis
Subramanian et al., 2005), and several commercial tools (e.g. Inge-
uity Systems and GeneGo MetaCore). Biological ontologies, such
s gene ontology (GO), characterize and describe gene products in a
ollection of three hierarchical ontologies, cellular component, bio-
ogical process, and molecular function, that offers a much higher
overage of the genome (Ashburner et al., 2000). As most proteins
ct in complexes to regulate biological processes, it is of great inter-
st to incorporate PPI data available in many public databases, such

s STRING (Szklarczyk et al., 2011), BioGrid, or the Human Protein
eference Database (HPRD) (Keshava Prasad et al., 2009).

Several methods are available to analyze new experimental
ata in the context of known biology including Bayesian networks
ubset were determined using ImmGen database (GSE15907), as genes significantly
ritic cell; Mac., macrophage.

(Husmeier and Werhli, 2007), Steiner trees (Huang and Fraenkel,
2009), and flux balance analysis (FBA) (Orth et al., 2010), but
have yet to be applied to model H5N1 pathogenesis. Gene lists
derived from statistical analysis have traditionally been used for
functional enrichment analysis. More recently, we  and others have
used datasets from immune cell subsets to relate genes differen-
tially expressed after vaccination (Nakaya et al., 2011), or infection
(Josset et al., 2012a,b) with specific immune cells. By using a similar
analysis, we show in Fig. 4 that up-regulated genes after VN1203
infection were related to infiltration with specific immune cell
subsets. Especially, VN1203 induced early expression of genes asso-
ciated with activated DC and granulocytes, and genes specific to T
cell and activated macrophages later in infection. In contrast, genes
induced by the lower pathogen A/California/04/09 (H1N1) were
associated with activated DC and macrophages only after day 4,
and to a more limited extent. Moreover, prior biological knowl-
edge could also be used to integrate ’omics data to better model
H5N1 infection, as performed with phosphoproteomic and trans-
criptomic data in a yeast system (Huang and Fraenkel, 2009).

3.4. Model refinement and validation

How robust is the system under different conditions? What part
of the system is changing when viral mutations are introduced, or
when host genes are disrupted? Can the model be used to predict
other host-pathogen systems? These are just a few of the questions
that arise and need to be addressed in the iterative cycles of systems
biology.

One of the systems biology paradigms is that inferred mod-
els and prediction should be validated by biological experiments
so that iterative cycles of modeling, prediction and perturbation
would result in model refinement and future predictions (Kitano,
2002). This process has been successfully applied to murine pri-
mary dendritic cells to reconstruct regulatory networks controlling
pathogen–host responses (Amit et al., 2009). Amit et al. (2009)
identified a set of potential regulators from transcriptomic data

of Toll-like receptor-treated cells, which were experimentally val-
idated using lentiviral shRNA, and used to construct a model
associating the regulators to their targets. This study identified core
and fine-tuning regulators of inflammatory and antiviral programs.

http://www.biocarta.com/
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As discussed earlier, using topological analysis of co-expression
etworks of transcriptomic profiles derived from mouse lungs

nfected with VN1203, we predicted potential regulators of the sys-
em, including Tnfrsf1b and Ido1 genes that were validated using KO

ice (McDermott et al., in review). Gene expression changes in KO
ice compared to wild-type mice were then used to validate the

lobal structure of the network. These results could be further ana-
yzed to determine which parts of the predicted network are stable
nd if new regulators are found.

. Challenges for building a global model of H5N1
athogenesis

.1. Host response dynamics are crucial: we need to model how
ost pathways change with time

Transcriptomic profiling of the host response to H5N1 infection
as made it clear that both timing and magnitude of induction
f the inflammatory response is a determinant of disease out-
ome. However, even if gene regulatory networks that have been
nferred for H5N1 infected cells or infected tissue intrinsically hold
nformation about temporal gene expression changes, they do not
escribe dependency between genes as a function of time. In addi-
ion, these models cannot predict dynamics of cellular pathway
ctivation.

In modeling, description and simulation of changes in number
r concentration of molecules with time is typically performed
sing equation-based models (EBM). Simple systems of ordinary
ifferential equations (ODEs) have been used to describe in vitro

nfluenza viral growth (Beauchemin et al., 2008; Heldt et al., 2012;
öhler et al., 2005; Sidorenko and Reichl, 2004). While these mod-

ls gave important insight into viral replication properties, they
id not consider activation of cellular pathways. Quantitatively
ssessing cellular pathway activation together with viral replica-
ion is difficult and has not extensively been studied to date. The
ctivation of the P58IPK pathway and its effect on viral replication
ave been described using a simple set of ODEs, but this model
as limited due to variations in 3 host proteins (Goodman et al.,

011). Describing the dynamical behavior of several (or ideally,
ll) cellular pathways is crucial for modeling H5N1 disease, yet
xtremely challenging as it requires high-quality data on kinetic
arameters. Dynamical modeling it has been applied to only a few
imple systems, such as the bacterial SOS DNA repair system (Ronen
t al., 2002). Recently, methods combining co-regulation network
nference and ODE have been applied to simulate cell-wide reg-
latory network dynamics for Escherichia coli and Saccharomyces
erevisiae (Wang et al., 2011); but whether such methods are appli-
able to more complex organisms remains to be shown. Modelers
ill have to take a more prominent role in driving experimental
esigns to be able to generate sufficient data for building dynamical
odels. In addition to constructing transcriptomic-based models,

ollecting quantitative proteomic and phosphoproteomic data for
5N1-infected cells will be important for inferring dynamic rep-

esentation of signaling pathways, similar to what was  done for
odeling the MAPK signaling pathway for example (Schoeberl

t al., 2002; Hornberg et al., 2005).
At the level of the single infected cell, use of single-cell analy-

is (SCA) may  be necessary to model pathway temporal activation.
rguably, the potential importance for performing SCA of infected
ells is based on studies of NF-�B activation patterns after TNF�
timulation. Notably, SCA revealed that NF-�B activation follows

n oscillation pattern (Nelson et al., 2004) and is heterogeneous
ith a digital process at the single-cell level (Tay et al., 2010). This
ynamic is not apparent when analyzing NF-�B activation averaged
ver the entire population. As NF-�B is a major transcription factor
h 178 (2013) 151– 167 159

controlling the host response to H5N1 infection (Schmolke et al.,
2009), analysis of infected single cells could be important to more
precisely model the virus-host dynamic. In theory, recent advances
in sequencing and MS  technologies have made it possible to ana-
lyze the transcriptome, proteome and metabolome from a single
cell (reviewed in Fritzsch et al., 2012). In the near future, perform-
ing SCA on H5N1 infected cells will most likely reveal important
insights in specific dynamics of the host response to this virus.

At a higher scale (organism), it should be noted that several
equation-based models have been used to describe influenza viral
load evolution with time, without considering the host response
(Baccam et al., 2006; Handel et al., 2007; Smith et al., 2011), or
including the immune host response at different levels of com-
plexity (Hancioglu et al., 2007; Handel et al., 2010; Lee et al.,
2009a; Miao et al., 2010). Recently, Canini and Carrat (2011)
combined structural equations and a statistical model fitted to
H1N1 human data to characterize the dynamics of the infection,
immune response, and illness in humans. These studies provide a
quantitative understanding of the host immune response in con-
trolling influenza virus replication, though the approach has not
been applied specifically to H5N1 datasets. It would be particu-
larly interesting to compare parameters derived from data from
low-pathogenic viruses with data from H5N1 viruses, which could
suggest molecular events responsible for the excessive virulence
of H5N1. Experimental data in mice suggests the rapid replication
of H5N1 overwhelms the immune response, especially the CD8+ T
cell response that is otherwise protective, and in turn, kills the host
by direct cytopathic effects (Hatta et al., 2010). It would be infor-
mative to model the relations between viral replication, CD8+ T cell
responses and pathology in mice to understand these events more
quantitatively.

4.2. Interactions between different cell types determine lung
pathogenesis: modeling their behavior and localization is essential

During H5N1 infection, pathogenic events in the lung that
contribute to acute respiratory distress syndrome (ARDS) include
infection of type II pneumocytes and alveolar macrophages (van
Riel et al., 2006), immune cell infiltration into the lung (Perrone
et al., 2008), and bystander effects of cytokines and oxidative stress
on lung cells (Peiris et al., 2009). However, the basis for communi-
cation between immune cells and structural elements of the lung
during infection remain largely unknown, as well as the impact of
infection on lung structure-function.

How does cell localization and lung microenvironment influ-
ence the response of similar cell types to infection? It is clear from
studies of H5N1 pathogenesis that viral tropism (lower vs. upper
respiratory tract) is crucial to determine virulence (Nicholls et al.,
2007). In addition, host response after infection with H5N1 depends
on the type and differentiation state of respiratory cells (Chan et al.,
2010). Currently, in vivo ’omic studies have almost solely focused
on analyzing whole lung tissue. From these studies, it is difficult to
determine which cell types largely contribute to the host response
and whether the microenvironment impacts this response. Sim-
ilar cells from precise infectious foci in lung could be selected
by using laser capture microdissection (LCM), an effective tech-
nique for harvesting pure cell populations from tissue sections. For
instance, microarray profiling of LCM-selected stromal and epithe-
lial compartments during breast cancer progression was used to
study how the tumor environment drives tumorigenesis (Ma et al.,
2009). Moreover, protocols for performing microproteomics on

LCM-selected cells are available (Roulhac et al., 2011). Applied to
H5N1 studies, LCM coupled with the sensitivity of RNA-Seq could
allow transcriptomic profiling of infected cells, as well as surround-
ing immune and epithelial cells. Such data would open modeling
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pproaches to analysis of cell-to-cell interactions and better define
he impact of each cell type during H5N1 pathogenesis.

Where are foci of infection in lung? At what rate do immune
ells infiltrate the lung? Are these parameters related to outcome?
ecent technology advances in live-animal imaging make it pos-
ible to analyze in real-time immune cell circulation and cellular
ovement in the mouse lung. Two-photon imaging of live mouse

ung has shown trafficking of immune cells in pulmonary capillar-
es in real-time (Looney et al., 2010). This technique was able to

easure the transit and velocity of neutrophils and naïve and acti-
ated T cells in normal lung and after intratracheal challenge with
IP-2 or LPS. The migratory activity measures represent impor-

ant parameters that could be used to model behavior of immune
ells in mouse lung. Manicassamy et al. (2010) have reported on
he use of a recombinant PR8 NS1-GFP virus to monitor whole lung
ynamics of influenza infection. They showed infection in the respi-
atory tract starts in areas close to large conducting airways and
ater spreads to deeper sections of the lungs. However, this imag-
ng was done on excised lung at 4 dpi and not in real-time on live
nimals due to high background fluorescence (Manicassamy et al.,
010). This virus could be used with the two-photon imaging sys-
em described by Looney et al. (2010) to determine more in-depth
nfection rate parameters of different parts of the respiratory tract
nd ultimately, the traffick patterns of infected cells throughout
he lung and in the periphery of the living organism. Alternatively,
s signal-to-background is notably greater with bioluminescence
han fluorescence, bioluminescence imaging (BLI) could be used
o determine dynamics of influenza infection, given that construc-
ion of influenza virus expressing the luciferase reporter gene is
ossible, as demonstrated with Sindbis virus (Cook and Griffin,
003). Interestingly, BLI has been used to quantify NF-�B activa-
ion (Le Goffic et al., 2011) or IFN response (Pulverer et al., 2010)
n live mouse lung after influenza infection. Through the use of
hese imaging techniques in live animals after H5N1 infection, we
ould begin to generate maps of whole mouse lung showing in real-
ime the localization and extent of infection within the lung and
he dynamics of the immune response more precisely, which could
hen be used to model spatial and temporal responses to H5N1
irus.
Rule-based computational models, such as agent-based models

ABM) and cellular automata (CA), represent interesting models
hat could be used to investigate spatial aspects and cell-to-cell
ommunication during H5N1 infection. CA models are dynamic
imulation models where cell transitions are based on the state
f the current cell and the states of neighboring cells, while in
BM, the model consists of a set of autonomous agents that interact
ith each other and the environment, taking into account actions

ccording to a set of logical rules. Studies by Beauchemin et al.
2005) and Baccam et al. (2006) used a simple two-dimensional
A model consisting of fixed epithelial cells and mobile immune
ells to model an infection with influenza A virus. In this model,
nitial spatial distribution of infected cells had an important effect
n outcome of infection. Recently, a CA model was  used together
ith ODEs fitted to viral titers observed in primary normal human

ronchial epithelial (NHBE) cells to estimate virus productivity per
ell and viral spread through the cell monolayer (Mitchell et al.,
011). These models, however, did not model how the differ-
nt infiltrating immune cells interact with each other and with
nfected epithelial cells. ABM and CA have been largely used in
mmunology to represent cell-to-cell interactions that occur dur-
ng the immune response (for a review, see (Chavali et al., 2008).
or instance, Folcik et al. (2011) have developed an ABM of the

mmune system with representations of the immune and tissue
ells as agents, cytokines, chemokines, or pathogens as signals, and
arenchymal tissue, secondary lymphoid tissue and the lymphatic
irculation as three virtual zones. Using this model the authors
h 178 (2013) 151– 167

found that dendritic cells acted as hubs in the immune system
network after challenge. Such a model has not been developed
for influenza virus to date, but developing a model for H5N1 may
help to elucidate which cytokines determine immune cell infil-
tration into the lung as well as which immune cells act as key
players of immunopathology. Such a model could also simulate
the effect of disrupting a specific signal or cell on the infection
dynamics.

Another important parameter that has not yet been taken into
account in our models of infection is the structure of the lung.
How does H5N1 virus affect lung structure and function? Cur-
rently, there is no model of lung structure-function modification
as a determinant of disease outcome. And yet, several hallmarks
of respiratory infection, including hyaline membrane formation
resulting from coagulation activation and immune cell infiltration,
are disrupting the architecture of the lung, leading to acute lung
injury and ARDS. It is crucial that we  start modeling infection in
terms of modification of the lung structure. In particular, this effort
could support the framework of the Lung Physiome project that has
developed integrative models of lung structure-function at differ-
ent levels of biological organization (reviewed in Burrowes et al.,
2008; Tawhai et al., 2011).

4.3. Each physiological scale of the host response is contributing
to disease: multiscale approaches have to be developed.

As described in Fig. 2, the host response to infection displays a
large range of temporal (from seconds to days) and spatial scales
(from molecules to the whole organism). Most of the work on host
responses to H5N1 infection has been focused on two main spatial
scales, the cellular in vitro dimension and the whole lung in vivo
dimension. Models focused on the single molecule level are impor-
tant for decoding the function of specific virulence factors, but have
been developed, to date, mostly to describe NA enzymatic activity
(Ilyushina et al., 2010) or the interaction between HA and cellular
SA receptors (Richard et al., 2012), as described earlier. Such mod-
els are useful in order to quantifiably assess how variations in virus
sequence impact virus-host dynamics, which will be necessary to
develop for other virulence factors.

At the cellular levels, in vitro profiling of the host response to
H5N1 has been performed using models such as homogeneous
epithelial cell lines (Josset et al., 2010; Li et al., 2011), primary
endothelial or epithelial cells (Chan et al., 2010; Schmolke et al.,
2009), or primary macrophages (Cheung et al., 2012, 2002; Lee
et al., 2009c). However, immune cells and resident pulmonary cells
also contribute to H5N1-induced lung disease and it is important
to determine their responses during infection. Experimentally, one
could sort the main types of lung cells by FACS or other sorting
methods (e.g. magnetic bead-based sorting methods) and perform
’omic analysis on sorted cell populations. Transcriptomic profiling
of sorted cells from blood has been done by several laboratories
(Nakaya et al., 2011; Novershtern et al., 2011). It is more challenging
to sort cells from a tissue compared to blood because RNA, metabo-
lites or peptides can be sensitive to sampling-related manipulations
and several approaches have been proposed to limit degradation
(Rubakhin et al., 2011).

At the organismal level, the host response to H5N1 has been
extensively studied in the whole lung. One current challenge is to
elucidate how signaling networks studied in an in vitro cell culture
system relate to in vivo organ networks, as well as whether models
trained on data from infected cells can accurately predict outcome
of the whole organism. This has been suggested from a multivari-

ate modeling approach that identified similarities in transcriptional
responses to H5N1 virus in the lungs of mice and macaques infected
with H5N1 virus, and human lung epithelial cells (McDermott et al.,
2011). Given H5N1 systemic dissemination, studying the response
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f other organs and modeling systemic inflammation might also be
ecessary to predict disease outcome.

To bridge in vivo and in vitro models and build a global model
f H5N1 infection, we need to apply methods that can link mod-
ls at different spatial scales and over different temporal scales.
ultiscale models have received greater interest in the past few

ears (Meier-Schellersheim et al., 2009) but they have not been
pplied to H5N1 systems to date. A few modeling platforms have
een developed that can handle the coordination of coupled mod-
ls whose component modules may  be expressed using different
ormalisms (e.g., EBM, CA, ABM, or other discrete approaches) (see
he review of Sloot and Hoekstra (2010) for multiscale models).
everal studies concerning other respiratory diseases could be of
nterest for future H5N1 applications. As an example of disrup-
ion of lung function, one model that bridges three different spatial
cales has been developed for simulating pulmonary gas exchange
uring hepatopulmonary syndrome (Chakraborty et al., 2007). As
n example of multiscale modeling of host-pathogen interaction
n the lung, Fallahi-Sichani et al. (2011) developed a model that
ombined ABM to represent cellular and tissue scale events and
DE to represent the single-cell molecular scale during granuloma

ormation in lung after Mycobacterium tuberculosis (Mtb) infection.
his 2D model does not take into account the structure of the lung
nd considers only a set of cells relevant for Mtb infection, but was
ble nevertheless to identify key processes that control TNF and
acterial level interplays in a granuloma. Together with bridging

n vivo and in vitro models, multiscale models for H5N1 disease
ould address important specific questions, as, for instance, how
any infected cells in the upper or lower respiratory tract are nec-

ssary for efficient viral transmission?, or is there a threshold in
iral replication rate in the lower respiratory tract that determines
atal outcome?

.4. Host genetics shapes disease severity: integrating genetics
nto the H5N1 disease model

It is becoming increasingly clear that host genetics influences
he pathogenesis of infectious disease (Aouizerat et al., 2011;
ewport and Finan, 2011; Wurfel, 2008). Clinical disease associated
ith influenza infection can range from asymptomatic infection

o severe respiratory disease, including the onset of ARDS. The
asis for a genetic predisposition to fatal influenza was demon-
trated through a genealogical assessment of a Utah Population
atabase (Albright et al., 2008). Familial aggregation can be a
allmark of genetically determined disease that has led some
o postulate a heritable contribution explaining H5N1 infection
bserved among blood relatives for three Indonesian clusters in
005 (Kandun et al., 2008; Olsen et al., 2005; WHO, 2010). A
ompilation of confirmed H5N1 cases worldwide found that, on
verage, 22% of cases occurred in clusters, and only 6% of cases
ithin the clusters were not genetically related to other cluster
embers (Horby et al., 2010). In addition, acute encephalopathy

s a rare complication of influenza infection, which is more com-
only reported in Japan and East-Asia, and with some family

ases (de Jong et al., 2005; Prasun and Stockton, 2012). This
omplication has been associated with a missense mutation in
LR3 (Hidaka et al., 2006) and with the observation of reduced
nzyme activity of carnitine palmitoyltransferase II (CPT-II) related
o a polymorphism in the CPT-II gene in Japanese (Chen et al.,
005) and Chinese patients (Mak  et al., 2011). Moreover, sev-
ral human genetic variants have been recently associated with
evere pneumonia caused by 2009 H1N1 infection (Antonopoulou

t al., 2012; Everitt et al., 2012; Zhou et al., 2012; Zúñiga et al.,
012). GWAS studies have supported a genetic basis of infectious
isease susceptibility in humans (Chapman and Hill, 2012), and

nternational collaborative projects like the 1000 Genomes Project
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initiative aim to provide further data on sequence variation and
haplotype structure of multiple human populations (Consortium,
2010).

Studies using inbred laboratory mouse strains have also high-
lighted significant variation in clinical disease and immune
responses observed during influenza infection, depending on the
mouse genetic background. Differential host responses have been
investigated using a variety of inbred laboratory strains showing
differences in susceptibility phenotypes (Alberts et al., 2010; Boon
et al., 2011; Otte et al., 2011; Srivastava et al., 2009). Boon et al.
(2011) showed H5N1 infection of a panel of 21 inbred mouse strains
results in variable disease phenotypes, and further inspection of 6
H5N1 virus-infected inbred mouse strains, DBA/2, 129/Svlm, A/J,
SM,  C57BL/6, and BALB/c, revealed SM,  C57BL/6 and BALB/c mice
were more resistant to H5N1 infection, whereas DBA/2, 129/Svlm
and A/J mouse strains were more susceptible to H5N1 infection.
The strains that were more susceptible to infection had higher viral
loads in the lung and increased production of pro-inflammatory
mediators, such as CCL2, IFN�, and TNF. In contrast, the resistant
mouse strains had reduced virus titers in the lung that resulted
in lower production of pro-inflammatory mediators and less lung
immunopathology. Boon et al. (2011) concluded that the genetic
component of susceptible hosts controlling disease severity is pri-
marily influencing viral replication, though it can also be argued
that the genetic component of susceptible hosts causes mice to
mount an uncontrolled or overly aggressive immune response with
pathologic consequences.

As complex genetic traits are involved in the host response
to influenza infection, new resources such as the Collaborative
Cross (CC) mouse resource are providing unique opportunities
to probe the contribution of host genetics to infectious disease
susceptibility in greater detail (Churchill et al., 2004). The CC is
a recombinant inbred mouse resource designed to capture the
genetic heterogeneity of the human population, supporting sys-
tems genetics studies. The mouse resource is being utilized to
identify host genetic determinants regulating resistance or sus-
ceptibility to respiratory virus infection among other phenotypic
variances (Aylor et al., 2011). Host genetic components under-
lying complex traits associated with infection can be explored
by quantitative trait loci (QTL) and expression QTL (eQTL) anal-
ysis. Initial studies in pre-CC mice, incompletely inbred animals
from CC lines, showed that there was wide phenotypic variation
in influenza and SARS-CoV-associated disease, such as significant
differences in weight loss, viral lung titers, and immune cell infil-
tration at 4 dpi (Ferris et al., 2013). Bottomly et al. (2012) used
pre-CC mice to elucidate the genetic control of eQTL in mice with
extreme response to influenza infection. Significant eQTL were
identified that allowed examination of genes associated with reg-
ulation of host response to infection. The pattern of allele effects
across the eight founder animal haplotypes used in conjunction
with whole-genome sequences (Keane et al., 2011) will likely
reveal candidate SNPs that can be validated experimentally in fully
recombinant inbred intercrosses (RIX) that are developed in the
future.

Susceptibility allele identification is only a starting point, the
next challenge will be to understand and model the roles these
genomic variations may  have in shaping severe influenza infection.
The CC resource will be instrumental toward this goal, allowing
for large-scale and targeted modeling efforts, which should benefit
from other methods developed in system genetics (as in Lee et al.,
2009b or Ayroles et al., 2009). These methods focus on understand-
ing how genetic information is integrated and coordinated from
the molecular scale to the phenotypic scales. In addition to genet-
ics, environmental and co-morbidity factors also need to be taken

into account in order to build more comprehensive and predictive
models of H5N1 disease in humans.



1 esearc

4
m

H
m
A
d
i
t
b
r
e
a
w
g
p
a
a
e
m
t
a
f
l
E
a
h
2

p
w
t
d
i
u
e
l
a
S
s
n
p
n
f
g
i
A
p
m
a
e
2
m
o
A
H
w
n

5

e
t

62 L. Josset et al. / Virus R

.5. Causation over correlation: the necessity for predictive
odels

The ultimate overarching goal of systems biology models for
5N1 is to lead to new antiviral therapies or patient care manage-
ent strategies that would prevent severe cases of H5N1 infection.
nalysis of transcriptomic data has led to the testing of several
rugs that target the cellular response in an effort to identify

mmunomodulatory drugs that potentially inhibit H5N1 replica-
ion (Cameron et al., 2008; Josset et al., 2010). These studies were
ased on the simple idea that reverting or stopping the host
esponse induced by the virus will inhibit its replication. How-
ver, targeting the genes that are associated with infection does not
lways prevent infection. For instance, H5N1 lethality is associated
ith high induction of cytokines, but deletion of specific cytokine

enes, including IL-6, MIP1�, IL1-R and TNF-R1 genes, quite unex-
ectedly displayed different phenotypes in knock-out (KO) mice
fter infection with H5N1 viruses (Szretter et al., 2007). While IL-6
nd MIP1� KO mice had no difference in morbidity, IL1-R KO mice
xhibited increased mortality and TNF-R1 KO mice showed reduced
ortality, protecting animals from lethal infection. This study illus-

rates the well-known maxim that “correlation is not causation”
nd that cellular pathways are redundant and might have unknown
acets. Redundancy in cellular pathways was especially obvious by
ooking at the host response of IFNR1 KO mice to VN1203 (Fig. 1).
ven in the absence of the IFN receptor, these mice elicited steady
nd sustained activation of type I IFN-related genes, leading to a
igh inflammation that was associated with death (Cilloniz et al.,
010).

For drug development, we need to build models that are able to
redict the effect of disrupting one or more cellular signaling path-
ays or genes. For now, models that have been inferred by profiling

he transcriptional response from whole mouse lung have pre-
icted several significant regulators of the host response to H5N1

nfection (McDermott et al., in review); however, these models are
nable to predict the effect of their disruption on outcome. For
xample, both Ido1 (Fig. 3) and Kepi genes were identified as regu-
ators of H5N1 pathogenesis, yet deletion of Ido1 protected mice
gainst VN1203 and SARS-CoV, while Kepi disruption increased
ARS-CoV susceptibility. To be able to predict the behavior of a
ystem from a gene regulatory network, causal relationships are
eeded. In terms of reverse-engineering gene regulatory networks,
erturbations of network variables are required to infer causation
etworks (Maathuis et al., 2010). These perturbations could result

rom KO (in vivo) or siRNA (in vitro) experiments. However, sin-
le gene deletion may  miss or under-estimate the role of a gene
n the case of functional redundancy and synergy between genes.
s a result, we need multiple perturbations of the system. Genetic
olymorphisms in a segregating population are ideal settings for
ultifactorial perturbations of a living system, particularly as each

llele is a potential source of perturbation (Rockman, 2008). Sev-
ral modeling approaches, such as Bayesian networks (Vignes et al.,
011; Xing et al., 2011; Zhu et al., 2007) and structural equation
odeling (SEM) (Aten et al., 2008; Liu et al., 2008), have been devel-

ped to infer causal networks from system genetics experiments.
pplying these methods to ‘omics’ data from CC mice infected with
5N1 will not only link susceptibility alleles to phenotypes, but it
ill also infer a better predictive model that could be used to orient
ew treatment and predict therapeutic efficacy.

. Conclusions
Our understanding of H5N1 pathogenesis has benefited from
xtensive studies at the molecular, genomic, physiologic and his-
ologic levels. The major challenge that we are now facing is how
h 178 (2013) 151– 167

to integrate this information in a quantitative and predictive model
of H5N1 disease that will inform patient care and accelerate drug
development. Systems biology for H5N1 aims to systematically
quantify and integrate every level of the host response to infec-
tion from scales spanning the single cell to the whole organism, in
an effort to build global models of H5N1 disease. We  expect that
an integrative H5N1 model will utilize several of the approaches
outlined in this review, such as causality networks or multiscale
modeling, and that this will require new types of data that are
being generated through advancement of technologies. For exam-
ple, single-cell analysis could be used to model events occurring at
the level of one or more virus particles and the target cell. At higher
spatial levels, efforts such as the Lung Physiome have modeled
the relationships between lung function and the organ structure.
This information could, in turn, be used as a scaffold to model the
location of H5N1 infection and pathologic events leading to ARDS,
such as immune cell infiltration and hyaline membrane formation.
Finally, the CC mice represent multi-factorial perturbations of the
systems that could be used to refine our models.

Current capabilities of computational biology are illustrated by
the first whole-cell computational model that simulates the entire
cell cycle of a living organism (Karr et al., 2012). We envision that
systems biology will be able to provide computational models of
H5N1 disease and reveal targets for intervention that would most
likely impact the course of clinical disease for a given patient and
virus strain. This would be a large step toward the direction of
personalized medicine.
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