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Imaging genotyping of functional 
signaling pathways in lung 
squamous cell carcinoma using a 
radiomics approach
So Hyeon Bak   1,2, Hyunjin Park3,4, Ho Yun Lee1, Youngwook Kim5, Hyung-Lae Kim6,  
Sin-Ho Jung7, Hyeseung Kim   7, Jonghoon Kim8 & Keunchil Park9

Imaging features can be useful for identifying distinct genomic differences and have predictive power 
for certain phenotypes attributed to genomic mutations. We aimed to identify predictive imaging 
biomarkers that underpin genomic alterations and clinical outcomes in lung squamous cell carcinoma 
(SQCC) using a radiomics approach. In 57 patients with lung SQCC who underwent preoperative 
computed tomography (CT) and whole-exome DNA sequencing, 63 quantitative imaging features 
were extracted from CT and 73 clinicoradiological features including imaging features were classified 
into 8 categories: clinical, global, histogram-based, lung cancer-specific, shape, local, regional, and 
emphysema. Mutational profiles for core signaling pathways of lung SQCC were classified into five 
categories: redox stress, apoptosis, proliferation, differentiation, and chromatin remodelers. Range and 
right lung volume was significantly associated with alternation of apoptosis and proliferation pathway 
(p = 0.03, and p = 0.03). Energy was associated with the redox stress pathway (p = 0.06). None of the 
clinicoradiological features showed any significant association with the alteration of differentiation 
and chromatin remodelers pathway. This study showed that radiomic features indicating five different 
functional pathways of lung SQCC were different form one another. Radiomics approaches to lung 
SQCC have the potential to noninvasively predict alterations in core signaling pathways and clinical 
outcome.

Lung cancer has the highest mortality rate of all cancers and caused 1.59 million of the 8.2 million total cancer 
deaths in 20121,2. In Korea, lung cancer has been the leading cause of cancer death since 1999, accounting for 
22.8% of all cancer death in 20143. In the last decades, there was dramatic paradigm shift in the management of 
advanced non-small cell lung cancer (NSCLC) with the identification of targetable driver mutations and devel-
opment of molecularly targeted therapies. The progress, however, has been made largely in adenocarcinoma, not 
in squamous cell carcinoma1,2,4.

Lung squamous cell carcinoma (SQCC) accounts for 25–30% of NSCLC. SQCC is recognized as a distinct 
clinical and histological entity from other NSCLCs1,5. Compared with lung adenocarcinoma, actionable oncogene 
targets are rare in lung SQCC, limiting treatment options for advanced-stage lung SQCC with great unmet need6. 
Large, comprehensive analyses of lung SQCC cohorts showed that lung SQCC seem to be a different molecular 
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entity from other lung cancer histological subtypes. These studies collectively identified genes that are altered 
preferentially in SQCC5,7–9.

Recent advances in understanding the molecular aberrations by comprehensive genotyping have led to the 
development of targeted agents for lung SQCC2. Targeted agents such as fibroblast growth factor receptor (FGFR) 
inhibitors, phosphatidylinositol 3-kinase (PIK3K) inhibitors, and insulin-like growth factor receptor 1 (IGF1R) 
monoclonal antibodies have been investigated in clinical trials based on molecular genotyping. However, most 
agents failed due to either toxicity or lack of efficacy2,9. Therefore, better understanding of tumorigenesis or effec-
tive targeting of molecular alterations of lung SQCC is necessary.

Imaging phenotypes potentially contain comprehensive information over genomics data10,11. Qualitative fea-
tures such as tumor size or average parameter values usually used in routine practice or clinical radiology do not 
fully reflect the rich information content of tumors, and most of spatial information is discarded. On the other 
hand, quantitative imaging features based on radiomics have been expected to offer more unbiased and com-
prehensive information on tumor phenotypes and microenvironments12,13. We hypothesized that quantitative 
imaging features should be useful for identifying distinct genomic differences and have predictive power for 
phenotypes attributed to genomic mutations. Thus, the main aim of this study was to identify associations, if any, 
between imaging characteristics and alterations in major cancer genomic genes and pathways in lung SQCC and 
to identify potential predictive imaging biomarkers that underpin genomic alterations and clinical outcomes in 
lung SQCC using a radiomics approach.

Results
Demographic data.  This study included 57 patients (54 men, 3 women; mean age, 65.5 ± 6.7 years; range, 
43.0–78.0 years): 3 never-smokers, 29 former smokers, and 25 current smokers; 22 stage I, 25 stage II, 8 stage 
III, and 2 stage IV. Patient characteristics are shown in Table 1. Lung SQCC is characterized by relatively high 
mutation rate (8.7 somatic mutation per Mb in the samples used in the study). However, at the gene level, even 
the most recurrently mutated top seven genes in the cohort, except the case of TP53, displayed the mutation per-
centage lower than 20% with most genes’ mutation rate less than 5% or non-existent. This paucity of mutations 
at the gene level causes practical difficulty in implementing detailed association study between somatic mutation 
of each gene and radiomic-features. Thus, we clustered the somatic mutations into five different functional cate-
gories, as suggested in the original genomic analysis of the cohort8. These five different functional groups include 
redox stress, apoptosis, proliferation, differentiation, and chromatin remodelers, each of which most comprehen-
sively represents biological attributes of lung SQCC. Following mutations’ categorization into 5 representative 
lung SQCC pathways, it was assessed that 21 (36.8%) patients showed alternation of redox stress pathway, 46 
(80.7%) in apoptosis pathway, 32 (56.1%) in proliferation pathway, 14 (24.6%) in differentiation pathway, and 28 
(49.1%) in chromatic remodelers pathways. Most patients had multiple alterations of cancer pathways (Fig. 1). 
Most patients (77%) with alteration pathways had aberration of one of the genes associated with the pathway. 
Patients with alteration of the apoptosis and proliferation pathways had two gene aberrations simultaneously in 
12 and 10 patients, respectively. Figure 1 shows the distribution of alteration of functional signaling pathways in 
lung SQCC.

Imaging genotyping of functional signaling pathway.  This study investigated to quantitative imaging 
biomarkers that can predict the alteration of five biological pathways in lung SQCC using univariate and multi-
variate logistic analyses. Selected variables associated with alteration of five functional pathways are summarized 
in Table 2. A transcription factor pathway that regulates redox stress was altered in 21 patients (36.8%) (Fig. 1). 
Volume (global), energy (histogram-based), maximum 3D diameter (shape), cluster prominence (local), and 
size-zone variability (regional) were selected as variables associated with alteration of the redox stress pathway. 
Of the selected features, energy had the strongest correlation tendency with pathway alteration, although the cor-
relation was not significant (p = 0.06; odds ratio, 0.15; 95% CI, 0.02–1.05). For predicting alteration of the redox 
stress pathway, the area under the receiver operating characteristic (ROC) curve (AUC) was 0.698 when selected 
variables were combined.

An apoptosis pathway was frequently altered (80.7%), and mass (global), range (histogram-based), maxi-
mum 3D diameter (shape), cluster shade (local) and intensity variability (regional) were selected as the variables 
associated. Range was significantly associated with alteration of the apoptosis pathway on multivariate analysis 
(p = 0.03; odds ratio, 0.08; 95% CI, 0.01–0.82). The AUC was 0.868 for prediction of alteration in the apoptosis 
pathway.

A pathway regulating proliferation was altered in 32 patients (56.1%). Features selected as variables were 
Hounsfield unit (HU) at the 97.5th percentile (histogram-based), mean value of positive pixels (MPP, lung 
cancer-specific), cluster prominence (local), and right lung volume (emphysema). Right lung volume was signifi-
cantly associated with alteration of proliferation pathway on multivariate analysis (p = 0.03; odds ratio, 0.35; 95% 
CI, 0.13–0.90). The AUC was 0.812 as for prediction of alteration in the proliferation pathway.

A squamous cell differentiation pathway was altered in 14 patients (24.6%). The variables associated with 
alteration of the differentiation pathway were smoking pack-years (clinical), minimum (histogram-based), spher-
ical disproportion (shape), and intensity variability (regional). The AUC was 0.684 for prediction of alteration 
of the differentiation pathway. A chromatin remodeler pathway was altered in 28 patients (49.1%). The varia-
bles associated with alteration of the chromatin remodeler pathway were smoking pack-years (clinical), energy 
(histogram-based), and maximum probability (local). The AUC was 0.710 for prediction of alterations in the 
pathway. No clinicoradiological features were significantly associated with the alteration of differentiation and 
chromatin remodeler pathways on multivariate analysis.
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Most of the patients included in this study were males (94.7%), and further analysis of the association between 
smoking and alteration of signaling pathway was performed. However, the state or pack-years of smoking and 
alteration of signaling pathways were not statistically significant (p > 0.05, Supplementary Figure 1).

Variables No. %

Age* 65.5 ± 6.7 43.0–78.0

Sex

 Male 54 94.7

 Female 3 5.3

Smoking state

 Non-smoker 3 5.3

 Ex-smoker 29 50.9

 Current smoker 25 43.8

TNM stage

 I 22 38.6

 II 25 43.8

 III 8 14

 IV 2 3.5

T descriptor

 T1 10 17.5

 T2 37 64.9

 T3 8 14

 T4 2 3.5

N descriptor

 N1 41 71.9

 N2 9 15.8

 N3 7 12.3

M descriptor

 M0 55 96.5

 M1 2 3.5

Treatment

 Adjuvant chemotherapy or radiation therapy 13 22.8

 Palliative chemotherapy or radiation therapy 10 17.4

 Operation for recurrence or metastasis 4 7.0

Survival

 Death 18 31.6

Disease-free survival (months)* 44.5 ± 31.5

Overall survival (months)* 51.4 ± 30.2

Table 1.  Demographics of 57 patients with lung squamous cell carcinoma. *Data are mean ± SD and range.

Figure 1.  (A) Distribution of alteration percentage of signaling pathways, and (B) number of alteration of 
pathway per patients in lung SQCC.
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Survival.  After surgical resection of the SQCC, 13 (22.8%) of 57 patients underwent adjuvant treatment, 
10 (17.5%) underwent palliative chemotherapy or radiation therapy, and 4 (7.0%) underwent metastasectomy. 
Nineteen (33.3%) of 57 patients experienced local tumor recurrence or metastasis. We investigated whether a 
relationship exists between clinicoradiological features and disease-free survival (DFS) or overall survival (OS). 
Using the Cox regression model, N descriptor [p = 0.02, hazard ratio (HR), 0.19; 95% CI, 0.05–0.79], kurtosis 
(p = 0.02, HR, 7.52; 95% CI, 1.43–39.57), surface area (p = 0.02, HR, 14517.77; 95% CI, 5.71–36926015.07), and 
spherical distortion (p = 0.04, HR, 0.00; 95% CI, 0.00–0.03) were significantly associated with DFS. ROC curves 
measured the performance of a prediction model about DFS, and the AUC was 0.866. In terms of overall survival, 
age (p = 0.04, HR, 1.09; 95% CI, 1.01–1.19), T descriptor (p = 0.01, HR, 3.36; 95% CI, 1.41–7.99), interquartile 
range (IQR) (p = 0.01, HR, 0.01; 95% CI, 0.00–0.33), HU at the 25th percentile (p = 0.01, HR, 0.01; 95% CI, 
0.00–0.27), and HU at the 97.5th percentile (p = 0.00, HR, 3.88; 95% CI, 1.86–8.14) were significantly associated 
with overall survival. The AUC for prediction of OS was 0.674.

Discussion
Rapid advances in our understanding of the molecular pathogenesis that underlies lung cancer have altered diag-
nostic algorithms and led to the identification of molecular targets for treatment14,15. Information about tumor 
genotypes is usually evaluated with small amount of tissue extracted through biopsy from the particular part of 
a whole tumor showing intratumor clonal heterogeneity16. Therefore, the genetic information obtained from a 
small amount of tumor biopsy may not represent that of the whole cancer17, particularly for subclonal mutations 
occurring later during cancer evolution18. In contrast, imaging is more representative of the whole tumors and 
may facilitate identification of mutations and have a clinical influence on precision medicine19,20. Therefore, we 
aimed to identify potential clinicoradiological candidates to predict alterations in representative cancer pathways 
and clinical outcome in lung SQCC.

Medical imaging is useful for noninvasively assessing the characteristics of tumor tissue21. In lung adenocarci-
noma with well-known, targetable mutations, studies have found imaging biomarkers that reflect gene expression 
or treatment response17,19,22–25. However, lung SQCC has no well-known, targetable gene mutations, and clinical 
trials of target agents have not been successful for lung SQCC compared to lung adenocarcinoma2,9. Given that 
oncogenic driver mutations and functional signaling pathways of lung SQCC have been identified7,8,26, correla-
tion of imaging features with specific gene expression could help identify specific imaging phenotypes related to 
functional behavior or prognosis10.

Our previous study described that lung SQCCs showed a high mutational burden in lungs SQCCs in a large 
cohort of East Asians, and statistical enrichment for mutations in 7 genes; TP53, RB1, PTEN, NFE2L2, KEAP1, 
MLL2, and PIK3CA8. Building on a previous study, we conducted a study to find clinicoradiological features 
that could predict alterations in representative cancer pathways by analyzing 57 patients with lung SQCC who 

Pathway
Clinical 
features

Global 
variables

Histogram-
based features

Lung cancer-
specific features Shape features Local features

Regional 
features

Emphysema 
features

Redox stress Variables Volume Energy Maximum 3D 
diameter

Cluster 
prominence

Size-zone 
variability

Odds ratio 
(95% CI) 1.64 (0.32–8.30) 0.15 (0.02–1.05) 0.88 (0.20–3.82) 1.28 (0.64–2.56) 2.16 (0.66–7.06)

p value 0.55 0.06 0.86 0.49 0.20

Apoptosis Variables Mass Range Maximum 3D 
diameter Cluster shade Intensity 

variability

Odds ratio 
(95% CI)

23.94 
(0.54- > 999.99) 0.08 (0.01–0.82) 2.06 (0.16–

26.46) 0.69 (0.13–3.80) 0.35 (0.06–2.26)

p value 0.10 0.03 0.58 0.67 0.27

Proliferation Variables
HU at the 
97.5th 
percentile

MPP Cluster 
prominence

Right lung 
volume

Odds ratio 
(95% CI) 1.83 (0.69–8.61) 1.33 (0.23–7.56) 1.77 (0.82–3.81) 0.35 (0.13–0.90)

p value 0.44 0.75 0.15 0.03

Differentiation Variables Smoking pack-
years Minimum Spherical 

disproportion
Intensity 
variability

Odds ratio 
(95% CI) 1.01 (0.99–1.04) 1.21 (0.59–2.47) 0.68 (0.33–1.43) 0.73 (0.32–1.68)

p value 0.26 0.60 0.31 0.46

Chromatin 
remodelers Variables Smoking pack-

years Energy Maximum 
probability

Odds ratio 
(95% CI) 1.02 (0.99–1.04) 1.73 (0.94–3.19) 0.54 (0.28–1.05)

p value 0.11 0.08 0.07

Table 2.  Selected features for prediction of targetable pathways. Data are features selected as variables using 
univariate analysis by category. Bold are features selected as independent predictive factors on multivariate 
analysis. CI, confidence limits; MPP, mean value of positive pixe.
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underwent preoperative CT and whole-exome sequencing. To the best of our knowledge, this is the first study to 
evaluate relationships between imaging features and alterations in genes and/or functional cancer pathways in 
lung SQCC.

Heterogeneity is a common feature of malignancies containing areas of high cell density, necrosis, hem-
orrhage, and myxoid change27. Genetic heterogeneity of a malignant tumor leads to regional differences in 
stromal architecture or spatial heterogeneity and could consequently be illustrated as imaging phenotypes13. 
Radiomics is an emerging and robust field that extracts quantitative features from images using computer algo-
rithms11,21. Quantitative imaging features have the potential to noninvasively convey comprehensive intra-tumor, 
inter-tumor and peri-tumor information28. Most prominently, 1st order, histogram-based radiomic features repre-
sent information about the distribution of voxel intensities within tumor on CT image and have been popular for 
characterizing intra-tumoral heterogeneity13,21. Likely, our study showed a correlation between histogram-based 
features of range, energy, and HU at the 97.5th percentile with alterations in apoptosis, redox stress, and prolif-
eration pathways. Meanwhile, higher order, texture features extracted from gray level co-occurrence (GLCM) 
matrix reflect the textural characteristics of tumors, retaining spatial information among pixels within tumor 
on CT images29. In adenocarcinoma, local features were found to be associated with mutations in genes such 
as epidermal growth factor receptor (EGFR) or anaplastic lymphoma kinase (ALK)19,25. In the present study in 
lung SQCC, local features such as cluster prominence, cluster shade, and maximum probability were associated 
with alteration of pathway. Ganeshan et al.27 showed that MPP has the potential to act as an imaging correlate for 
tumor hypoxia and angiogenesis. In our study, MPP was associated with a proliferation pathway, which is relevant 
because MPP is a value to deal with only positive pixels representing invasive component. More importantly and 
interestingly enough, radiomic features indicating five different functional pathways of lung SQCC were different 
from one another.

Two large, prospective cohort studies showed that the presence of emphysema on CT is an independent risk 
factor of lung cancer30,31. Smith et al.32 demonstrated that the presence of emphysema on CT is independently 
associated with a specific histological subtype of NSCLC termed SQCC. Lung cancer and chronic obstructive 
pulmonary disease share a common risk factor of cigarette smoking and should be considered to share simi-
lar pathogenic mechanisms33. Consequently, we hypothesized that alterations in lung SQCC cancer pathways 
may be associated with emphysema on CT. However, we failed to show a significant association between altera-
tion of functional signaling pathways and emphysema. The biological meaning of statistical association between 
right lung volume and proliferation pathway remains unclear and needs to be validated and further investigated. 
Allowing for limited number of our study, further studies with larger populations are necessary to clarify their 
relationship at a more refined level, including individual genes.

Compared with lung adenocarcinoma, few effective therapeutic advances have been made for lung SQCC 
patients. This has contributed to poor outcomes and a high mortality rate for lung SQCC1,34, for which advanced 
prognostic stratification regarding SQCC would be useful to select more appropriate candidate who needs more 
aggressive treatment. Kinoshita et al.35 reported that high serum levels of squamous cell carcinoma antigen and 
pleural and vascular invasions are independent prognostic factors of completely resected peripheral SQCC. On 
the other hand, prognostic imaging biomarkers for lung SQCC patients have not been established, not even using 
a radiomics approach. In our study, shape-based features such as surface area and spherical disproportion are the 
features associated with DFS. Given that surface area and spherical disproportion are values reflecting the irregu-
larity of the tumor shape, degree of non-uniform growth of tumor would be considered to be significant negative 
prognostic factor for SQCC. A study with lung adenocarcinoma reported that the irregular shape of tumor was 
associated with worse survival, similar to our results36. When it comes to prognostic imaging biomarker for 
OS in the present study, histogram-based features such as IQR, HU at the 25th and 97.5th percentile showed the 
independent prognostic potential in patients with SQCC. A histogram shows the range and frequency of pixel 
values within the defined region of interest (ROI), and IQR is a value indicating variability, based on dividing a 
histogram into quartiles indicating variability29,37. Therefore, the value of IQR reflect the heterogeneously distrib-
uted tissues, and intratumoral heterogeneity of tumor is correlated with OS in patients with SQCC. Emphysema 
is commonly found in patients with lung SQCC38 because both of them share smoking history as a risk factor. 
Emphysema demonstrated the association with unfavorable prognosis in the patients with SQCC in several stud-
ies38,39. However, our study excluded emphysema from the survival analysis because there were some cases that 
failed to obtain quantitative image features representing the degree of emphysema.

Our study had several limitations. First, since the patient number was small, our results did not have sufficient 
statistical power. In this study, we tried to perform validation such as 10-fold validation, however, a small number 
of patients was limited to validation. Second, not a prospective study, therefore, the results are not conclusive and 
require validation by prospective studies in a larger cohort. However, our study dealing with in depth radiomics 
and genome-level sequencing of tumor DNA is invaluable considering that creating larger cohorts of patients 
with complete genome-level sequencing data would be logistically difficult. In addition, we did not consider 
variability of image acquisition and reconstruction because this study dealt with homogenous imaging protocol, 
conducted at a single center.

Conclusion
Radiomics approaches may have the potential to act as imaging biomarkers correlates for functional pathways 
of lung SQCC. In our study, different radiomics features reflected the aberration of each functional pathway. 
Shaped-based and histogram-based features were associated with reduced survival, also. Quantitative imaging 
biomarkers would allow a comprehensive evaluation of the molecular status and functional signaling pathways of 
lung SQCC and lead to development of more effective target agents with less toxicity.
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Methods
Dataset.  This retrospective study conducted at a single tertiary cancer center was approved by the Institutional 
Review Board of Samsung Medical Center, and informed consent was waived. We included 57 patients with lung 
SQCC from 2005 to 2012. Inclusion criteria were: (1) undergoing surgical resection, (2) no neoadjuvant therapy 
prior to surgery, (3) available genomic data, and (4) preoperative CT for diagnosis and quantitative image anal-
ysis. We retrospectively reviewed medical records for clinical characteristics, clinical outcomes, gene mutation, 
and preoperative chest CT.

Biospecimen Collection and Mutational Analyses.  Analysis of sequencing data was as previ-
ously described7,40. Tissue samples of 57 lung SQCC were collected with matched adjacent normal tissues. 
Whole-exome sequencing was based on the amount of extracted DNA. DNA sequencing and data processing 
were as in a previous study8. Sequencing was conducted by Macrogen, Inc. (Seoul, Korea). Basic alignment and 
sequencing quality control was performed on Picard and Firehose pipelines at the Broad Institute and on in-house 
pipelines at Macrogen, Inc. (Seoul, Korea) and Theragen, Bio (Suwon, Korea). Sequencing data were processed 
following known protocols7,40–42. ‘Picard’ uses the reads and qualities from Illumina software to produce a sin-
gle BAM file (http://samtools.sourceforge.net/SAM1.pdf). BAM files for matched tumor and normal samples 
were further processed and analyzed in the cancer genome analysis pipeline Firehose. Components include 
ContEst, Mutect, Indelocator, and dRanger40,43–45. Significance of mutations was calculated using the MutSig 
algorithm40,42,46 and implemented as described previously7. The outline of the entire pipeline can be accessed at 
www.broadinstitute.org/cancer/cga. Mutational profiles of five different signaling pathways of lung SQCC were 
used in analysis8 (Fig. 2). Alteration of signaling pathways was defined as the presence of aberration in more than 
one of the genes associated with the pathway.

Image Acquisition.  Chest CT scans were performed before surgery. All helical CT images were obtained 
using a 64 detector-row (LightSpeed VCT; GE Healthcare, Waukesha, WI) CT scanner using the following param-
eters: 125 mA; 120 kVp; beam width, 10–20 mm; beam pitch, 1.375–1.5. Image data were reconstructed with a 
section thickness of 2.5 to 5 mm. Scan field of view used were large body. Image data were reconstructed with 
a soft-tissue algorithm for mediastinal window ranges and a bone algorithm for lung window images. Detailed 
methods for CT scans are described in Supplementary Appendix 1.

Image Analysis.  A total of 52 quantitative features were computed using in-house MATLAB code 
(Mathworks Inc., MA, USA). Features were divided into six categories: 1) global, 2) histogram-based, 3) lung 
cancer-specific, 4) shape-based, 5) local, and 6) regional category. All features were computed over a manually 
drawn ROI by a radiologist using MRIcro (version 1.40, Chris Rorden, University of Nottingham, Great Britain). 
Tumors were segmented by drawing an ROI that traced the edge of the tumor on all axial images until the entire 
tumor was covered (Fig. 3). Each feature quantified a different aspect of the tumors. For instance, shape-based 
features reflected morphological information. Details of the adopted features are described in Supplementary 
Appendix 2 and Supplementary Table 1.

A total of 11 emphysema features for lung parenchyma were obtained using a workstation (Thoracic-VACR, 
GE healthcare). CT scans with section thickness more than 2.5 mm were excluded from volumetric analysis 
(n = 15). Emphysema analysis was conducted for 42 patients. For emphysema analysis, parameters obtained 

Figure 2.  Five functional signaling pathways and genes used for analysis of lung SQCC (Kim et al. J Clin Oncol 
2013)8.

http://samtools.sourceforge.net/SAM1.pdf
http://www.broadinstitute.org/cancer/cga
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on full inspiratory CT were total lung volume, right and left lung volume, emphysema volume, emphysema 
index, normal lung volume, and normal lung percentage. Lung segmentation was performed semiautomatically. 
Emphysema was defined as lung pixels with attenuation of −950 HU or less on inspiration CT. Normal lung 
volume was defined by subtraction of emphysema volume from total or right/left lung volume47. A total of 73 
clinicoradiological features were placed into 8 categories (Supplementary Table 2).

Statistical Analysis.  Clinical and quantitative image features were used to identify biomarkers of altered 
signaling pathways or survival. Univariate and multivariate logistic analyses were used to identify associations 
between alteration of lung SQCC pathways and clinicoradiological features. The p values of 73 features were 
calculated using univariate logistic analysis. In each category, features with the smallest p value were selected as 
biomarkers (Supplementary Table 3). If no feature had a p value less than 0.2, we did not select features in this 
category. Features significant for predicting the alteration of functional signaling pathways and survival were 
selected using multivariate analysis. The association between the smoking state or pack-year and alteration of 
functional signaling pathway was analyzed using Fisher’s exact test and Wilcoxon rank sum test. PFS and OS 
were defined as the time from the operation to recurrence (for PFS)/death event (for OS) or the time to last follow 
up. Cox regression analysis was used to identify association between survival and clinicoradiological features. 
Associations between selected features and aberrations in pathways or survival were evaluated by AUC for the 
presence or absence of pathway alteration and survival. Analyses were performed using SAS version 9.4 (SAS 
institute, Cary, NC) and R 3.3.1 (Vienna, Austria; http://www.R-project.org/). A p value less than 0.05 was con-
sidered statistically significant.
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