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PPAR-§ agonists are known to enhance fatty acid metabolism, preserving glucose and physical
endurance and are suggested as candidates for treating metabolic diseases. None have reached the

. clinic yet. Our Machine Learning algorithm called “Iterative Stochastic Elimination” (ISE) was applied

© to construct a ligand-based multi-filter ranking model to distinguish between confirmed PPAR-§

. agonists and random molecules. Virtual screening of 1.56 million molecules by this model picked ~2500

. top ranking molecules. Subsequent docking to PPAR-3 structures was mainly evaluated by geometric

. analysis of the docking poses rather than by energy criteria, leading to a set of 306 molecules that were
sent for testing in vitro. Out of those, 13 molecules were found as potential PPAR-3 agonist leads with

. ECgo between 4-19nM and 14 others with EC5, below 10 uM. Most of the nanomolar agonists were

. found to be highly selective for PPAR-3 and are structurally different than agonists used for model
building.

During the course of drug development, good binders (i.e., inhibitors, agonists) to biological targets are some-

. times not useful as drug candidates due to severe adverse effects"?. It is therefore customary to further explore

: the chemical space around these binders hoping to overcome their undesirable outcome by searching for close

. analogues of their scaffolds®. However, this approach does not guarantee success.

In this paper we present results of our in-house Machine Learning algorithm, Iterative Stochastic Elimination
(ISE)*, which is an expert algorithm for predicting novel bioactives with highly diverse structures, combined with
docking and geometry filters.

: Peroxisome Proliferator-Activated Receptor-6 (PPAR-0) has a well-known effective agonist, GW501516, that

. was abandoned as a drug due to promoting cancer in preclinical animal testing>°. GW0742, has a similar scaffold

. and has also been associated with adverse effects®. However the search for a drug that acts at PPAR-§ continues”®.

© We discovered 27 novel agonists of PPAR-0 (13 with low nanomolar ECs,) which have diverse scaffolds compared

* to previously known agonists and vis-a-vis each other.

: Peroxisome Proliferator-Activated Receptors (PPARs) are a subgroup of the nuclear hormone receptor fam-
ily. Its members, PPAR-o, PPAR-~ and PPAR-6 (known also as PPAR-3), are ligand-activated transcription
factors®~'2. PPAR-« is expressed in muscle and heart tissues, but mainly in the liver. PPAR-~ acts as a master
regulator of adipocyte formation. PPAR-§ is expressed in many tissues, but at low levels in the liver'®.

Like other transcription factors, PPARs form heteromers with retinoid X receptor (RXR) and additional

: co-activator proteins'®. By binding PPARs to endogenous ligands such as fatty acids, eicosanoids and oxysterols,

. these ligand-activated transcription factors function as fat sensors'?, and maintain lipid and glucose homeostasis
that are important in preventing cancer, diabetes, obesity and atherosclerosis'*.
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PPAR structures have two domains: The N-terminal is a DNA-binding domain, with a dual zinc-finger motif;
The C-terminal is a ligand binding domain (LBD), which consists of 12 a-helices and 3 3-strands'®. These sec-
ondary elements form a large hydrophobic binding cavity of 1300 A%. The C-terminal a-helix is AF-2 (Activation
function helix-2), which is involved in recruitment of co-activators'®. Binding of a co-activator to a key tyrosine
residue on this helix stabilizes the active conformation. Since the LBDs of PPARs are highly similar, some of the
agonists are dual or “pan agonists” and bind to all three PPARs™.

Both pan and isoform specific PPAR agonists can be beneficial under different scenarios. PPAR agonist drugs
enhance PPAR activities. Fenofibrate (Tricor™) and Bezafibrate (Bezalip™) are mostly known as PPAR-« ago-
nists for treating dyslipidemia by reducing triglycerides (TG) and free fatty acids (FFA) and increasing the levels
of high-density lipoproteins (HDL). PPAR-~s agonists are Glitazones, such as Rosiglitazone (Avandia™) and
Pioglitazone (Actos™)". They are used in the treatment of type 2 diabetes by improving insulin sensitivity, reduc-
ing plasma glucose, TG and FFA as well as increasing HDL.

PPAR-6 may serve as a promising target as its agonist (GW501516) has known beneficial effects on obesity,
on insulin resistance, and on reduction of plasma glucose in rodent models of type 2 diabetes. In addition, stud-
ies on obese primates suggest that this agonist decreases low-density lipoprotein (LDL), TG and insulin, and
increases HDL. In sedentary human volunteers, this agonist prevented the decrease of HDL-c and apoA-1 levels
by reducing of serum TGs'"”. It has also been suggested recently that PPAR-0 agonists promote exercise endurance
by preserving glucose'®. It also has the potential to treat atherogenic dyslipidemia and non-alcoholic fatty liver
disease'®. Other effects such as its role in epidermis repair by keratinocyte proliferation®*?!, contribution to the
resolution of inflammation after gut ischemia/reperfusion injury*? and reducing lung inflammation®, have also
been described.

There are, however, no PPAR-$ agonists in clinical use yet. Recently a new structure-based computational tool
was developed to search for PPAR-$ agonists, but no novel agonist has been reported”. We have therefore begun
a search for novel and yet unknown chemical entities which may form the basis for such targeting, by employing
computational methods including our in house computational classification algorithm, ISE*.

ISE has been presented in several publications in recent years?>=?’. It has been used mostly to produce classi-
fication models based on previously published effects of ligands. A combination of ISE, docking and geometry
filters was used here to create a highly efficient model, which successfully distinguishes between known agonists
of PPAR-6 and random molecules (presumed to be inactive).

The ENAMINE library®® composed of 1.56 million commercially available molecules has been screened and
ranked by the ISE model, and top ranking molecules were docked to PPAR-0. Molecules that showed potential
activity by ISE ranking and by docking calculations were purchased for in vitro testing. Out of 306 molecules
submitted to testing, nearly 9% were found to have good to excellent binding affinities: 13 molecules have ECs; in
the low nanomolar range (4-19nM) and 14 others have EC5, < 10 uM (one of those with EC5, =883 nm). The top
active molecules with EC,, < 1 uM are presented in Fig. 1.

Results

PPAR-J agonists dataset. Agonists (789) were collected from different literature sources including
CHEMBL* and WOMBAT?’. The range of their agonist activities (EC5,) was 0.03-1000 nM. Figures S1-S3 pres-
ent some characteristics of those 789 PPAR-0 agonists. They partially obey Lipinski’s Rule of Five (ROF) for Oral
availability of drugs® and Oprea’s rules for “Lead like molecules™*® (63% and 25% of the ligands, respectively).
The violations are mainly due to high lipophilicity and high molecular weight of PPAR-9 agonists. The range of
molecular weights is between 300-600 Daltons. There are no hydrophilic ligands, and most are hydrophobic with
clogP value above 3. However, their functional groups have the potential to form strong specific interactions -
hydrogen bonds and electrostatic interactions.

This dataset was divided in two, with one-half (394 molecules) serving as training set, and the others (395) as
test set. Typically, active molecules are prone to be highly similar due to their shared synthetic procedures when
applied for hit and lead optimization, often using the same scaffolds and chemical series. To avoid such bias, the
diversity of the training set of actives needs to be increased, by limiting the similarity within the set. On the other
hand, a demand for highly diverse molecules might exclude too many potential ones. Figure S4 presents the num-
bers of active molecules that remain at each “cutting edge” of Tanimoto imilarity scores (T)*? in both the training
and the test set. The T = 0.8 threshold was found to present a fair balance between having diverse molecules and
having enough molecules. Thus, 129 active molecules were excluded from the training set for model construction
and 265 actives remained.

Five thousand molecules were collected randomly from the ENAMINE database to represent
the set of “inactives”. The assumption is that, statistically, most of those randomly chosen molecules are
inactive although they have not been confirmed as such. The set size of inactives is a compromise: it should repre-
sent accurately the properties’ space of the inactives but the number should not be too large, which might extend
computation time and risk considerable bias (see discussion). Nearly 98% of these molecules have Tanimoto
values of <0.4 to others. Those inactives were picked by limiting some of their properties based on the idea of an
“applicability domain”, as described in the methods.

A model for identifying of PPAR-3 agonists was created by Iterative Stochastic Elimination
(ISE). A flowchart of the ISE process is presented in Fig. S5. The ISE modeling was performed with a training
set of 5265 molecules, for classifying the 265 actives against the class of 5000 inactives. We generated sixty-eight
unique filters, with 4 descriptors each, that distinguish best between PPAR- agonists and the inactive molecules.
The top filter had an MCC value (Matthews Correlation Coeflicient)* of 0.97 (98% TP, 99% TN) and the least
classifying filter had an MCC of 0.755 (91% TP, 84% TN). Filters have been clustered to ensure dissimilarity
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Figure 1. Structures and experimental results of lead agonists of PPAR-9 discovered in this study. For ZINC id
and SMI codes - see Table S1.

>1% between filters. That is, if two filters are identical in the numbers of actives/inactives to the extent of >99%,
the one with lower MCC is discarded. For details about the compositions of the filters — and for the meaning of
descriptors see Table S2.

The ISE model was validated by the test set. The test set contained 395 known agonists and 10,000
“newly picked” inactives from ENAMINE. It was used in order to test the sixty-eight unique filters (the final
model). The model produced a molecular bioactivity index (MBI) for each molecule in the test set. The MBI
score? is a result of the number of filters successfully passed (by having properties that fully fit the 4 descriptor
ranges of a filter), which add their TP/FP value to the successfully passed molecule, while missing any filter (if one
non-fitting descriptor’s value of any filter is found in a molecule) reduces the MBI score by TP/FP of that filter.

The model was highly efficient for scoring bioactivity on PPAR-8. More than 96% of the actives in the test set
were captured at the top 1% of the scores (10,395 molecules, including 10,000 random molecules). The area under
the ROC is above 0.98, revealing a highly accurate and efficient model. See the enrichment plots in Fig. S6 and
ROC curve plots in Fig. S7. In Fig. 2, the X-axis indicates MBI values (between —25 and +25) for the molecules
that are simply counted on the Y-Axis, with no particular order. The relatively small number of filters is respon-
sible for the fact that there are many very negative scores (mostly of TN) while there are only few molecules with
MBI scores between —25 and —15. Larger MBI values are associated mostly with the true positives. In Table 1,
each column represents an index (MBI) border between molecules considered to be positives (which are with
higher MBI values) and those considered to be negatives, which have lower MBI values. As we know which ones,
on each side, are actives or are assumed inactives, it is easy to compute the 6 values of each column. It is clear
that enrichments are much larger at higher MBI values, while the numbers of TP become smaller, and so does
the number of TN. However, MCC values do not change linearly, and are maximal around the MBI value of 3. As
much as there is no dramatic difference from +6 to 410, we deal in the discussion with our decision to pick from
screening only molecules with MBI of 10 and greater.
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Figure 2. MBI indexes according to our PPAR-6 model for the full test set, consisting of actives + inactives,

(10395 molecules in total).

N 6048 | 9682 | 9876 | 9969 | 9983 | 10000
FN 12 81 110 150 211 277
TP 383 314 285 245 184 118
FP 3952 | 318 124 31 17 0
Enrichment® | 2.5 25 58 199 268 —
MCC 0.616 |0.774 |0.736 | 0.665 |0.547 | 0.419

Table 1. MCC scores and Enrichment Factor for the MBI. A threshold of MBI > 10.0 was used to construct the
first focused library. “Calculated based on the assumption that none of the ENAMINE DB chemicals is active on
PPAR delta.

The ENAMINE database of 1.56 million molecules was screened through the model. Only
2,491 molecules achieved an MBI score >10. These molecules were used in the next step of docking and then for
the selection for in vitro tests. Table S3 presents the number of the commercial molecules in ENAMINE, which
have indexes over various thresholds. None of the 2,491 molecules were examined previously for PPAR-$ bind-
ing. The top 2,491 commercial molecules that got indexes above +10 in the ISE model were subject to docking
with OpenEye’s FRED?. Finally, 306 top molecules were purchased for in vitro binding experiments as described
below.

Five PDB complexes were collected and used to define the most important residues for docking.
Those PPAR-§ complexes (1IGWX?, 3GWX?, 3D5F, 3ET2% & 3GZ9'®) were collected from the PDB (see
methods).

We used the 5 complexes in order to construct a list of interactions of protein residues with the crystallized
ligands, shown in Fig. S8. Nearly 30 residues in those complexes have one or more close connections to their
ligands by distance criteria that are described in the methods. The maximum distance for VAW interactions is
3.9A. Cys285, Thr288, Thr289, His323, Leu330, [le364, His449, Met453, Leud69 and Tyr473 interact with more
than 3 different ligands or create H-bonds with one of them, and these residues were defined as “important”. In
addition, His323, His449 and Tyr473 consistently create a Hydrogen bond with all the ligands and so we define
them as “crucial to H-bonds”.

Two PDB complexes were found optimal for docking. The Ramachandran plots* of 3GZ9 and
3D5F do not have any outliers, while those of 3ET2, 3GWX and 1GWX have 2, 5 and 10 outliers, respectively
(Supporting Information Fig. S9). In re-docking, we test how well the original ligand of a complex is predicted by
the docking protocol. Except for the case of 3ET2, all the other ligands fulfilled the criteria described in the meth-
ods. Geometrical data, as well as energy score, for each selected pose in the re-docking is presented in Table S4.
Since we search for novel agonists, a crucial test of the ability of the docking algorithm and of a specific crystal
complex is that of distinguishing between two sets of molecules, the known agonists and the inactives. The meas-
ure for success of discrimination between the sets is MCC. One hundred thirty-five molecules were picked out of
the 789 agonists (each of them has Tanimoto value <0.7 to the others) and were tested on each one of the com-
plexes. The criteria for success in docking were the same as in the re-docking validation test. Two chains (3D5Fa
and 3D5Fb) of the same crystal complex and one complex, 3GZ9 identified the largest numbers of true positives
(more than 100 out of the 135. See Table S5). The data regarding resolutions and Ramachandran Plots support
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EC; (uM)

Name hPPAR-3 hPPAR-a hPPAR-~
GW501516 0.001 0.704 0.839
GW7647 0.974 0.003 0.85
GW1929 1 1 0.013
GNF-0242 0.004 >10 >10
GNF-8065 0.006 >10 >10
GNF-8501 0.006 >10 >10
GNF-3632 0.007 5.477 >10
GNF-6878 0.008 >10 >10
GNF-8560 0.011 1.406 3.525
GNF-0341 0.011 >10 1.258
GNF-6029 0.012 >10 >10
GNF-9820 0.012 >10 >10
GNEF-5891 0.013 >10 7.279
GNF-5295 0.017 >10 >10
GNF-7486 0.018 >10 >10
GNF-6952 0.019 7.559 >10
GNF-9448 0.883 7.061 0.937

Table 2. EC,, values of three reference agonists and of top 14 molecules with strongest affinities (ECs, < 1 pM)
for hPPAR-6. ECs, values for the other hPPARs are presented. Molecular structures are shown in Fig. 1.

these results, as these complexes have better resolution and Ramachandran Plot. Out of 1000 Random molecules
(different from the set that was described above - see applicability domain in Table S6), only 179, 130 and 143
were docked, respectively. Therefore, MCC of 0.68-0.69 were calculated for each complex.

The 2491 molecules with top MBI scores were screened by docking to the three selected
chains. The best results were picked on the basis of “voting”: 335 ISE hits were successfully docked to all three
PPAR-§ complexes, 349 were successful in only two chains and 489 were successful in one only. The 335 hits that
were successful in docking to all the 3 selected PPAR-6 complexes are highly diverse in comparison to the 394
agonists of the training set. Tanimoto index <0.3 is found for 318 molecules to all the others, while the rest 17
molecules have Tanimoto index <0.4. Among these 318 hits, 306 were available for purchasing, and sent to the
Genomics Institute of Novartis Research Foundation (GNF) for in vitro experiments.

EC,, values (for activation) of the 306 candidates were determined for each of the three human
PPARs. GW501516 was used as the positive control for hPPAR-§ with ECy, value of 0.001 uM for hPPAR-§
(ECs values 0f 0.704 and 0.839 uM for hPPAR-« and hPPAR-~, respectively)®’. GW7647 was used as the positive
control for hPPAR-« with ECs, value of 0.003 uM for hPPAR-« (ECs, values of 0.974 and 0.85 uM for hPPAR-§
and hPPAR-~, respectively)*”. GW1929 was used as the positive control for hPPAR-~ with EC,, value of 0.013 uM
for hPPAR-~ (ECs, values of 1 uM for hPPAR- and hPPAR-o)*.

The in vitro results were categorized into 4 main classes: 1) agonists of hPPAR-0 with highest affinity
(ECs0 < 1uM), 2) agonists of hPPAR-$ with low affinity (ECy, > 1 uM), 3) non-agonists of hPPAR- but agonists
of other hPPARs and 4) non-agonists of hPPARs. The first class has 14 hits (Table 2 and Fig. 1). Only one of them
is a “pan-agonist” hitting all three targets (GNF-8560), two of them are agonists of hPPAR-6 and hPPAR-« only
(GNF-3632 & GNF-6952), and two of them are agonists of hPPAR-6 and hPPAR-+ only (GNF-5295 & GNF-0341).
All the remaining 8 agonists are highly selective for hPPAR-6. The second class has 13 hits (Table 3 and Fig. 3).
Four of them are selective to hPPAR-0. The third class has 64 hits (Table S7 and Fig. S10). Most of them have low
affinities. Only 3 of them have ECy, < 1 uM for hPPAR-~, and the best (GNF-6635) has EC5,=0.277 uM and is
not active on the other two targets. The other two (GNF-7017 & GNF-1165) have EC5, < 1 uM for hPPAR-~, and
EC5y > 1uM for hPPAR-o.

All the new active scaffolds are diverse both with respect to the “learning set” as well as with
respect to each other.  One of the advantages of our methods is due to the representation of molecules as
sets of physico-chemical properties and not as structural fragments. This has been repeatedly shown to lead to the
discovery of novel scaffolds in our previous projects**2. Tanimoto index was used in the training set to eliminate
active molecules that are similar at a level of Tanimoto index ~0.8 and greater.

We compared the novel agonists to the training and the test set of actives. It is a matrix of Tanimoto values
(each row is a known agonist while each column is a newly discovered agonist). The highest value in this matrix
is 0.57, indicating that novel agonists are very different from the known 789 agonists from the ChEMBL and
WOMBAT databases. Another interesting result is the diversity among the 27 newly discovered agonists. None
of the values is greater that T =0.7. Out of 351 Tanimoto values, only 8 are with T > 0.4, again indicating large
diversity of the novel agonists.
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GW501516 0.001 0.704 0.839
GW7647 0.974 0.003 0.85
GW1929 1 1 0.013
GNF-6928 3.698 6.904 3.784
GNEF-5758 4.327 6.930 9.732
GNF-9594 4.598 >10 >10
GNF-4516 6.815 2.327 >10
GNEF-5154 7.045 >10 >10
GNE-7176 7.239 >10 >10
GNEF-9057 7.488 4.633 8.595
GNF-0248 7.555 7.036 >10
GNF-1051 7.757 7.331 >10
GNEF-8208 7.858 >10 >10
GNF-4909 8.239 0.825 1.834
GNF-1676 8.387 6.195 1.287
GNF-9969 9.481 6.937 1.010

Table 3. EC;, values of 13 molecules with lower affinities (EC5, > 1 uM) for hPPAR-6. EC;, values for the other
hPPARs are presented. For molecular structures - see Fig. 3.
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Figure 3. Structures and ECy, values of novel agonist hits (EC5, > 1 uM) of PPAR-§, discovered in this study.
For ZINC id and SMI codes - see Table S1.

Figure 4 presents the distribution of Tanimoto values for the three comparisons - the 789 known agonist set
vs. novel agonists (Fig. 4A) and novel agonists among themselves (Fig. 4B). The third comparison is between the
discovered 27 agonists and the randomly picked set of 5000. Only 10 out of the 135000 have T values above 0.7
(See Fig. 4C).

Recently, Wu et. al. discovered 16 new agonists*, all of which have high MBI scores of 13-19 in our models
(Table S8), so the ISE model could identify them as agonists had they been in the dataset of the virtual screening.
These agonists have no similarity to our novel agonists (see Fig. S11). We searched for similar molecules of these
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Figure 4. Distribution of Tanimoto values for the novel agonists. (A) Novel agonists were compared to all
known agonists in training and test sets. (B) Comparison of novel agonists among themselves. (C) Novel
agonists were compared to the random set.

agonists in the ENAMINE catalog (in order to check if our model missed potential agonists). Only four molecules
out of the 1.56 million have similarities of Tanimoto value > 0.7 to compound 1 (T0517-7230 & T5405641 have
0.74; T5681815 & T5999586 have 0.71). None of the ENAMINE molecules is similar to the other agonists.

Scaffolds of these new agonists are based on the substrate, and are similar in most of the cases. Figure S11b
shows that all have Tanimoto values >0.6 to each other (and in most cases it is >0.7). Furthermore, 4 of these
agonists (Compounds 1, 12, 13 & 14) have Tanimoto values > 0.7 to the 789 known agonists (our training and test
sets), while in the case of our novel agonists none has similarity to Tanimoto value > 0.7 to the known agonists.

Finally, we used the Tanimoto index to compare our novel agonists vs. all molecules that are known in
BindingDB* or predicted agonists in ZINC15*. None of our agonists were found to have high similarity (>0.7)
to any of the known or predicted ones.
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Figure 5. Flowchart of our ligand- and structure-based combined approach to prepare a focused library of
PPAR-6 bioactive candidates.

Discussion and Conclusions

By using a combination of two computational methods (ISE 4 docking) we discovered 27 novel hit and lead
agonists of PPAR-9 out of which 13 are highly selective low nanomolar activators with ECy, < 19 nM. The selec-
tivity was obtained, however, without any direct study and prediction for the other PPAR subtypes. Other 14
molecules are “hits” with EC5, < 10 uM. Figure 5 is a flowchart that illustrates how we combined Ligand-based
and Structure-based strategies.

Our ISE algorithm constructed a model of 68 filters (each is an ensemble of 4 ranges of physico-chemical
properties) which were used for screening those highly active molecules. By passing or failing to pass filters, mol-
ecules accumulate the scores from single filters to the final MBI score. Therefore, despite the fact that each filter
can only classify molecules in a binary fashion, the set of filters allows to shift from a qualitative classification to
a relatively quantitative one. Contrary to QSAR equations with several variables, it would be unfeasible for an
organic chemist to consider the contents of 68 filters in parallel to suggest synthesis of new candidates.

The results of the ISE modeling in combination with geometry filters of docking results enabled the discov-
ery of new ligands with novel scaffolds for a known target, as shown by Tanimoto values of the 27 new PPAR-§
agonists, compared to the previously known agonists, which were used to construct the model. The discovered
agonists (hits and leads) also form a diverse set. This is a result of the modeling process being based on initially
non-structural 2D representation of molecules followed by 3D structural criteria by docking.

While other methods are based on the scaffolds of known actives*?, which frequently results in “me too” or
“follow-on” drugs’, the use of physico-chemical properties to characterize molecules abandons the structural
portrayal and gains the ability to avoid similarity to known agonists, in our case. This is a clear advantage of ISE
modeling in comparison to those other methods.

Are the discoveries of hits and leads of PPAR-{ a pure result of modeling or is there a random component?

What is the probability for discovering active molecules by chance from a database of 1.56 million molecules
that was virtually screened by the ISE model?

The rate of discovery in “wet” high throughput screening is typically 1:1000% for finding hits, defined as hav-
ing activity in the micromolar range of 1-10 uM while leads, with an activity in the nanomolar range, are much
less abundant. Assuming that a similar rate is expected in virtual screening, more than 1500 hits should be found
among 1.56 million molecules. Picking 306 molecules out of 1.56 million, and discovering 27 hits and leads, sug-
gests a substantial enrichment factor (EF). Even if we assume that only hits were discovered (while among those
27, there are 13 leads with 4-19 nM ECy) the EF value is ~88 = (27/306) / (1560/1560000). As nearly half are lead
molecules, it is expected that EF would be much greater.

We have chosen the number of molecules to be purchased as a compromise between two considerations: 1)
large values of TP/FP and 2) picking enough molecules to guarantee higher chances to find active molecules.
Combining those two is the reason for using the model index of 410 and above, with 184 (out of 265) True
Positives and 17 (out of 5000) False Positives.

Could we identify a larger number of actives by modeling and screening? What is the total number of actives
expected to be found in a large database of 1.56 million molecules? If we assume that all the known agonists
(about 800 in ChEMBL) that were already reported in the literature are among the ~30 million commercially

SCIENTIFICREPORTS| (2019) 9:1106 | https://doi.org/10.1038/s41598-019-38508-8 8


https://doi.org/10.1038/s41598-019-38508-8

www.nature.com/scientificreports/

available molecules and are equally spread between the companies, there may be 40-50 actives in the database
of ~1.5 million that we used for screening. This also sheds light on another issue. It is frequently suspected that
the “inactives” contain also “actives’, and it is questioned how many of the randomly picked “inactives” could be
actives, i.e., “false inactives”. In the present case, if about 50 molecules could be discovered out of 1.56 million (we
managed to find about half of that), picking randomly 10000 molecules (as we did in the test set) may end in a
single active molecule at most, one that is wrongly considered to be inactive.

The “inactives” used in the modeling process are randomly picked from a database of chemicals, based on the
assumption that they are not active. Had we had reports on PPAR-§ testing that found molecules with no agonist
activity, it would be better to use such a resource, but literature reports of inactive molecules in any experiment are
quite rare. So even those randomly picked molecules, which get high indexes and are characterized as FPs could
be, at least some of them, hits or even leads. The assumption of inactivity for those randomly picked molecules is
still valid, because only 27 molecules were discovered out of 1.56 million, constituting way less than 0.1% actives.

Molecules, which interact with a specific target, may frequently be part of a set that has some similarity of
molecular properties. Rather than using structural properties of the ligand, which may imply interactions and
energies, we focus on properties that can help to bring a ligand to the target, i.e., pharmacokinetic relevant ones,
such as the Lipinski Rule of 5 (RO5) properties®.. If we find such a collection of properties, it may be applied in
order to filter compounds from a large chemical database to be used for docking, as docking is a relatively time
consuming process which cannot be easily used for huge number of molecules, clearly not as easy as filtering
molecules based on a set of descriptors represented by numbers.

The value of the mean cLogP in our learning set is higher than usual. Values of cLogP thus indicate the prefer-
ence of being in oil rather than in water. Agonists of this target prefer the hydrophobic regions more than binders
at most other targets. We assume this is the case because some of the natural substrates are fatty acids, and the
activators tend to be similar to these fatty acids. Fatty acids have long hydrocarbon chains with a polar head
group, so the protein binding “pocket” is adjusted to prefer more lipophilic compounds (only three residues can
form hydrogen bonds, being deep into the pocket).

A few decisions had to be made before the screening of ISE candidates by docking. Structural features of
known protein-ligand complexes are helpful for screening libraries of molecules for discovery (see for example*’).
Apo structures are less relevant due to the conformational changes that frequently accompany ligand binding.

Our approach to docking, which prioritizes on the basis of geometric criteria and not only the energy ones,
proved to be successful. This approach refers to the “binding mode” of ligands rather than energies in mini-
mizations or in combinations of Molecular Dynamics and minimizations. Screening by docking traditionally
considers the energy criteria to prioritize candidates. Those energies are based on molecular mechanics calcula-
tions or empirical evaluations, and do not represent “real” energies due to missing factors, such as lack of infor-
mation about local dielectric, which determines the strength of electrostatic interactions. Also, Van der Waals
atomic parameters are not precise enough to represent the variations in values of single atoms in different local
environments.

Therefore, in docking calculations, after collecting the 30 best conformations according to energy scores, we
used geometry criteria, based on the known ligand-protein residues interactions in solved crystal complexes. The
protein residues that are constantly close to ligands in the crystal complexes were used as the basis for subsequent
automatic examination of ligand poses in virtual screening. That is similar to the concept of spatial pharma-
cophore constraints, but in the “reverse” direction - from protein to ligand rather than the other way. We assign
relevant residues from preferentially a few crystal complexes of the same protein with different ligands.

Table S9 presents rankings of selected poses by the energy score of Open Eye’s docking program FRED.
Chemgauss3 scoring function® has been employed to measure complementarity of ligand poses with the active
site by recognizing shape, H-bonding between ligand and protein and with implicit solvent. Given that each novel
agonist has 3 selected poses, one docked in each of the three PDB complexes, there are 42 selected poses for the
14 highest affinity inhibitors. Only 8 out of the 42 (~20%) would be picked at the top if we relied on energy scores
alone. Therefore, most of the agonists with EC5, < 1 uM could not be predicted as hits without applying our dis-
tance criteria.

Our method in this project was to identify residues that interact with at least 70% of the crystallographic
ligands. However, as it is customary to use complexes of ligands with proteins for constructing a ligand “pharma-
cophore’, the reverse may be produced from the same crystal complexes.

We suggest adding consensus geometric criteria for examining the docking of large sets of molecular candi-
dates. The binding of ligands in several crystal complexes of a specific target may be “transformed” into a set of
geometry criteria for subsequent docking of unknowns. Applying highly accurate energy calculations is extremely
time-consuming in comparison to using geometry criteria. While a single geometrical criterion is not accurate,
the use of several such criteria increases accuracy in the same sense as 3D NOESY results of multiple atomic
interactions are used to assign molecular conformations. At worst, only a single complex could be used for that
purpose, or otherwise, if only a crystal complex of the native protein is known, then docking binders that are
known from in vitro studies compared to decoys could be used for making distance decisions.

In comparison with studies that applied geometry criteria**’, our geometry criteria are based on consensus
decisions that differ from those previous papers by: 1) Protein interacting residues are those that appear in several of
the five different complexes (Fig. S8, page S13). The other papers used a single ligand reference or “Tanimoto metric
interaction fingerprints” in a single complex. 2) We docked molecules to three different crystal structures in order
to compensate for some conformational variations. The other papers do not accommodate any protein flexibility. 3)
Screened molecules were picked for experimental validation only if they docked well to all three structures. Thus, we
“voted” on the choice of residues to be used for examining binding modes during the docking, “voted” on the crystal
complexes to be used for docking and “voted” on the molecules to be sent for in vitro testing. For docking, we picked
those crystal structures that distinguished well between known in vitro agonists and random molecules, as indicated
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by MCC values. Our approach suggests to deal with the fact that data from crystallographic complexes is “frozen’,
while we sample some of the “frozen” states® by using different crystal structures. Our predictions were validated by
testing activity of predicted molecules in corresponding cellular assays.

In conclusion, we discovered novel molecular hits and leads for PPAR-0 by applying our combinatorial opti-
mizing algorithm, ISE, followed by docking (by OpenEye’s FRED) and our consensus geometry filters of docking.
ISE iteratively picks the best combinations of filters to construct a model for virtual screening libraries consisting of
millions of molecules. The combination of ISE with geometry criteria for docking proved to be essential for reducing
the number of candidates for experimental testing. ISE in combination with geometric criteria of docking is able to
separate the “wheat” from the “chaff” and proves an ability to discover diverse and novel molecules. In combination
with docking, we achieved successful ranking and prioritization for molecular bioactivity predictions.

Methods

Iterative Stochastic Elimination (ISE)*: Molecular descriptors (e.g. physico-chemical properties and molecular
connectivity) have been used to distinguish between active molecules and inactive (or less active) ones. Filters
of 4-5 descriptor ranges are scored by their abilities to identify true positives (the actives, TP) and true negatives
(the inactives, TN), as well as false negatives (wrongly identified actives, FN) and false positives (wrongly iden-
tified inactives, FP) and the efficiency of each filter is scored by the Matthews Correlation Coefficient (MCC)*.
Random picking of 4-5 descriptors to construct a filter is the basis for a large combinatorial sampling of filters
from which it is possible to assess which descriptors are consistently leading to worst results. Such descriptors
are then eliminated and a new iteration proceeds with random construction of filters, while further iterations
stop once the total number of potential combinations of descriptors is below a certain threshold which allows all
remaining descriptors to construct filters exhaustively, with filters being sorted by their MCC scores and the top
most effective filters (up to a value about 20% less than that of the top MCC) constitute our final model.

Calculating values of physico-chemical properties (descriptors).  Values of physico-chemical prop-
erties were calculated by MOE2010°! for each molecule in each set (actives, inactives and ENAMINE database).
These values were used to validate if the molecules obey the Rule of 5 and the Oprea rule, as well as to calculate
the ranges of the applicability domain, and are the basis for producing the ISE model. In the case of the Wu et al.*®
agonists the calculations of properties were performed by MOE2011.

Calculating ranges of applicability domains.  Applicability Domain® is defined by the “chemical space”
in which the training set should be developed for model construction. As the training set includes known actives
and requires to be “diluted” with many inactives, those should be picked from the same “chemical space”. Some
main properties should not bias the classification and therefore should not differ much from main properties of
the “actives”

We apply the requirement that randoms should bear some main similarities to the active molecules: we use
applicability domain according to Lipinski’s “rule of 5” properties (values depend on the set of actives): Numbers
of H-bond acceptors and H-bond donors, calculated logP and Molecular Weight. Properties were calculated by
MOE software (by the descriptors: lip_acc (all N+ O), lip_don (all OH + NH), logP(o/w) and molecular weight)
for the known agonists and for the random molecules. Mean values and standard deviations of the inhibitors were
calculated for each of the properties, and a range of —20 to 20 was applied in order to include randomly picked
molecules.

Collecting information from the PDB complexes. The PPAR-§ complexes were collected from the PDB
according to the conditions: 1. solved by X-ray crystallography; 2. in complex with a ligand, with published ECs;
and 3. the resolution is <2.50 A. Table S4 presents data about the complexes. We summarized these interactions
of each complex by using the LigPlot program (data was collected from the complex entries of PDBsum®?, on the
“Ligand” tab). The maximum distance between Donor-and acceptor in Hydrogen bonds (D-A) is 3.3 A. The max-
imum distance for VAW interactions is 3.9 A. We used default distances, as we mentioned above. Ramachandran
Plots were produced by PROCHECK®.

Preparation of the PDB complexes and the small molecules, rigid docking and geometrical
analysis.  For each selected complex of PPAR-§, some additional preparations in Sybyl-X 2.0°* were required.
First, we removed all the water molecules. Second, hydrogens were added to the whole protein. Third, we mini-
mized the added hydrogens only. The Force Field was Tripos, the Charge was Gasteiger-Hiickel, and the Dielectric
Constant used was 4. The minimization was performed in two steps: first, Steepest descent followed by conju-
gate gradient with 10,000 steps to termination when the difference between successive minimization steps was
<0.001 keal/(mol*A). A grid for docking was constructed by the MAKE RECEPTOR 3.0.0 (OpenEye) using
default parameters®.

In preparation for docking, 200 conformations were created for each molecule by the Omega program
(OpenEye)*>. Rigid docking of each was performed by Fred (OpenEye)* using default parameters. For each
molecule, 30 ligand poses with best energy scores were picked for analysis. For each pose, distances to the chosen
residues were measured, as we mentioned above. A molecule was considered “successfully docked” if at least one
of its poses fulfilled the geometrical criteria.

The criteria for success in docking are.  atleast one pose out of 30 with distance <3.5 A to at least 2 of the
“crucial to H-bonds” residues, and distance <5 A to at least 7 of the “important” residues. If a ligand has few suc-
cessful poses (out of 30) — the pose with the lowest energy score was selected. If none of the poses of a candidate
ligand fulfill the criteria — the ligand is rejected.
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Measuring molecular agonist activities. A GAL4-DNA Binding Domain (GAL4-DBD) fusion protein
was constructed for each PPAR family member®. To assess compound activity, each construct was co-transfected
into HEK293T cells (American Type Culture Collection; Manassass, VA) along with the reporter construct, pGL5
(Promega) using Fugene 6 (Promega) as a transfection reagent and the manufacturer’s protocol. An eleven point
dilution series of each compound was added to the cells and incubated overnight. Luciferase levels were then deter-
mined following the addition of Bright-Glo (Promega) using the manufacturer’s recommendations. ECs, values were
fitted to sigmoidal curves using four parameter logistic regression (GraphPad). hPPARo/LBD encoding amino acids
175-468 (Genbank accession #NM_001001928), hPPARS/LBD encoding amino acids 147-441 (Genbank accession
#NM_006238) and hPPARN/LBD encoding amino acids 184-477 (Genbank accession #NM_138712). Each of the
306 candidates that were selected was tested as an agonist of PPAR-o, PPAR-+ and PPAR-4.

Diversity of the novel inhibitors. Tanimoto comparisons™ between the various sets and among molecules
from the same set were made by OpenBabel (FP2 fingerprint)®®.

Data Availability

CSV file with EC;, values and computational data will be made available and deposited upon request.
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