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An epidemic of ash dieback disease has spread east to west across Europe, first being noted in

Poland in 1992 [1]. The disease is caused by the ascomycete fungus Hymenoscyphus fraxineus
(also previously known as Chalara fraxinea and H. pseudoalbidus). This is one of several tree

pathogens and insect pests that are recent newcomers to Europe caused by worldwide move-

ments of plants and woody materials [2]. H. fraxineus probably arrived in Eastern Europe on

Fraxinus mandshurica (Manchurian ash) or F. chinensis (Chinese ash) trees imported to east-

ern Europe from the Russian Far East [3]. Although it shows few symptoms on its native hosts,

H. fraxineus rapidly infects leaves of the European ash (F. excelsior), spreading to the branches

and causing symptoms ranging from mild infections (Fig 1) to the death of mature trees [4].

About a quarter of F. excelsior trees in southern Sweden were found to be either dead or

severely damaged and it was expected that further severe damage and tree deaths would be

observed over time [5]. Here, I briefly outline the life cycle of H. fraxineus, evidence for a

founder effect when it arrived in Europe, and the observation that it greatly outnumbers H.

albidus, a native saprophyte on European ash. I will also outline a novel approach (associative

transcriptomics) that identified genetic markers in ash linked to low disease susceptibility,

which is also correlated with changes in secondary metabolites in uninfected ash leaves.

A life cycle that leads to pathogen diversity

Unlike many fungal and oomycete plant pathogens that have caused major disease epidemics [6,

7], there is no evidence of clonal spread of H. fraxineus. This is due to the lifestyle of the pathogen

[8, 9]. Infections are caused in the summer by (sexually produced) ascospores landing on the leaves

(Fig 1), germinating, and progressively growing down the petioles into the main leaf stems (rachi-

ses). In autumn, the infected leaves and rachises are shed and the fungus overwinters among the

leaf litter in the main leaf stems. In early summer, fruiting bodies (Fig 1) appear on rachises [10]

and it is thought that conidiospores act as spermatia, promoting fertilisation between different

strains. Mature fruiting bodies are about the size of a match head and fire ascospores into the air

(typically 100,000 ascospores per m3 are found in infected areas) where they can be caught on the

wind and so can be distributed widely [11, 12]. These sexually produced ascospores are the primary

mode of dispersal, ensuring genetic diversity in the airborne spread of the disease. There is evi-

dence that (asexual) conidiospores can also be infectious [13], possibly promoting localised spread.

However, such infection must be relatively uncommon in wide dispersal of the disease, because no

identical clones of infecting fungi have been identified.

The life cycle of H. fraxineus appears similar to that of the related [14] native European

fungus H. albidus, which grows on but does not show pathogenic symptoms on F. excelsior.

Although the fruiting bodies of H. fraxineus and H. albidus appear similar, a distinguishing fea-

ture is that, whereas H. fraxineus mating is heterothallic, H. albidus has a homothallic mating

system and so shows lower genetic diversity [15]. In both species, most infections are shed
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with leaf fall, but H. fraxineus grows more rapidly than H. albidus in both leaf and woody mate-

rial of European ash [16, 17]. This can enable some H. fraxineus infections to progress more

rapidly down the leaf stem and then grow into the woody material where it can overwinter.

This can cause whole branches to die in the following season [4]. Heavily damaged trees can

induce the formation of new shoots from epicormic (dormant) buds that are present below the

bark of branches. When this occurs on mature branches, the resulting production of new

leaves can provide the fungus with direct access to mature parts of the tree via infections that

can cause rapid death of the trees [18].

A founder effect in Europe

Microsatellite markers [19], sequencing of parasitic mycoviruses [20], and genome sequencing

[21] have been used to understand the population structure and genetic diversity of the

Fig 1. Life cycle of the H. fraxineus. (A) Individual ascospores of Hymenoscyphus fraxineus land on ash tree leaves in early summer months causing

necrotic lesions. (B) Heavier infections cause severe symptoms on ash leaves and the fungal mycelium grows down through the leaf stems into the

woody parts of the tree, where it continues to grow, causing diamond-shaped lesions (C) that can eventually encircle the branch, cutting off nutrient

exchange with the leaves. Infected leaves are shed in autumn and by early summer, the leaf stems show early stages of growth of H. fraxineus prefruiting

bodies (D) that are about 0.1 mm in diameter, and one is illustrated by scanning electron microscopy (E). Fertilization of these, probably by conidiosore

spermatia, promotes the formation of mature fruiting bodies (F) that fire ascospores up into the air where they are carried to ash leaves to complete the

life cycle.

https://doi.org/10.1371/journal.ppat.1006381.g001
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invading H. fraxineus using isolates of the pathogen from Europe and Japan. The European

strains are much less diverse than those from Japan and the 2 groups of isolates clustered sepa-

rately, revealing that the epidemic in Europe was caused by another source of infection. The

analyses point to an introduction of 2 different strains with compatible mating types, each

strain being infected with a genetically distinct mitovirus, H. fraxineus MitoVirus 1 (HfMV1),

that can be distinguished by RNA sequencing. Fungal mating was followed by spread of their

sexual progeny throughout Europe. The high incidence (>80%) of European isolates carrying

HfMV1 contrasts with the approximately 1% of Japanese isolates carrying this virus. All of this

points to a founder effect in Europe and this could be due to restricted introduction due to the

geographical separation of the main population of H. fraxineus in Asia or that there was a

restriction that permits only a narrow range of H. fraxineus to colonise European ash. This lat-

ter explanation seems unlikely because Japanese isolates of H. fraxineus could infect F. excel-
sior, some appearing more virulent than the existing European isolates [16]; this raises the

possibility that further Asian introductions could mate with the European population, possibly

increasing pathogenicity. Another concern is that the American indigenous ash F. pennsylva-
nica shows some susceptibility to infection by H. fraxineus. Although it is less susceptible than

F. excelsior, it indicates that this disease has the potential to spread to America [16, 17].

Ecological displacement of the European native H. albidus?

Based on analysis of individual ascocarps and fungal isolates [22, 23], it was concluded that H.

fraxineus was displacing H. albidus, which may be headed for extinction in Denmark and the

Czech Republic. This is unusual and would imply that the 2 species have almost identical eco-

logical niches. However, a weakness of such individual analyses is that if H. fraxineus greatly

outnumbers H. albidus then it becomes difficult to spot H. albidus. Molecular technologies

coupled with high throughput spore-trapping approaches [12, 24] allowed the characterisation

of very high numbers of individuals, revealing that H. albidus was present but at orders of mag-

nitude (102 to 107) less frequent than H. fraxineus. These differences in frequencies may be due

in part to more rapid growth of H. fraxineus than H. albidus in leaves and woody material [16,

17], higher rates of formation of fruiting bodies, and higher rates of spore production.

Identification of genetic markers for low susceptibility using

associative transcriptomics in ash

Studies with a historical set of grafted clones of different lines of F. excelsior demonstrated that

a few trees had low disease susceptibility over a wide range of environmental conditions, dem-

onstrating a genetic basis for low susceptibility [25]. Ash is a natural out-breeder and thus

mapping low susceptibility by genetic segregation would be difficult. In view of this, an

approach called associative transcriptomics was used to identify genetic markers linked to low

susceptibility [26]. This involves RNA sequencing a panel of diverse individuals to identify

genetic markers, which are then correlated with levels of disease severity to identify those asso-

ciated with inheritance of low susceptibility. This technique had been used on crop plants to

identify markers linked to quality traits [27] but had not been used previously to identify

markers associated with disease resistance. Two types of marker can be generated by RNA

sequencing: single nucleotide polymorphisms (SNPs) and gene expression markers (GEMs)

based on the abundance of different mRNA species. Using a population of ash trees with dif-

fering disease susceptibility but enriched for trees with low susceptibility, a few SNPs and

GEMs were identified as being likely to be associated with trees with low susceptibility [26].

These markers were identified in young ash leaves that had not been infected and so should be

correlated with some predisposition (e.g., prepriming of defence) to low susceptibility rather
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than simple induction of disease-resistance genes. The identified markers could be used to pre-

dict with high confidence trees that showed relatively few symptoms of ash dieback. The

expression level of one of the SNP alleles was correlated with low susceptibility in European

ash and was also found to be the only allele in species of F. mandshurica, F. americana, and F.

ornus, all of which have low disease susceptibility [26]. A higher resolution analysis of the tran-

scriptome data, taken in conjunction with the recently sequenced European ash genome [28],

identified 20 GEMs associated with low susceptibility. Eight of these encoded MADS-box–

containing proteins typical of transcription factors and 2 encoded cinnamoyl–coenzyme A

(CoA) reductase 2–like genes, giving more potential genetic markers for low susceptibility.

These genetic markers were identified using trees that had been exposed to the disease for up

to 10–15 years and so a correlation with reduced susceptibility over a longer period remains to

be established.

Using assays with 1 SNP and 3 GEMs, it appeared that the United Kingdom population of

ash tested may have a higher frequency of low susceptibility than the Scandinavian ash popula-

tions tested [28]. Based on genome sequencing [28] and microsatellite markers [29], most of

the UK population of F. excelsior is genetically distinct from the Scandinavian population and

this could explain why rates of susceptibility may be different. Since there is genetic divergence

among different subgroups of ash within Europe [28, 29], it is possible that different subgroups

of F. fraxineus within Europe could respond differently to this disease.

Disease susceptibility in ash is correlated with changes in levels of

iridoid glucosides

Six of the predicted MADS-box transcripts and the 2 transcripts encoding the cinnamoyl-CoA

reductase 2–like proteins were more strongly induced in ash trees of low susceptibility com-

pared with highly susceptible trees. It was thought that a cascade of gene activation together

with the different expression of the cinnamoyl-CoA reductase 2–like genes could be indicative

of a change in secondary metabolites in ash. Metabolites in leaves from trees with low and high

susceptibility were compared, revealing differences particularly in relation to levels of iridoid

glycosides [28], which have a role in defence in the Oleaceae (to which ash belongs). However,

counterintuitively, the levels of iridoid glucosides were lower in those F. excelsior trees with

low susceptibility to H. fraxineus, implying it is not simply high constitutive levels of these iri-

doid glucosides in leaves that confer low susceptibility.

Conclusions and future perspectives

Genome sequencing and use of DNA-based markers have given clear insights into the likely

source of H. fraxineus and its high incidence of spore spread compared with H. albidus in

heavily infected regions. The availability of genome sequence and various markers will enable

the identification of introgression of genome regions conferring increased virulence if such

developments occur. It will also be possible to measure adaptive diversity in the European pop-

ulation and genome comparisons (e.g., H. albidus, H. fraxineus, and other Hymenoscyphus
spp.) may help identify key pathogenic traits. From the molecular genomics of ash trees, asso-

ciative transcriptomics based on RNA sequencing is a rapid new way forward in terms of iden-

tifying genetic markers that could be used to screen for trees with low disease susceptibility.

These RNA markers could be used to select saplings with increased probability of showing low

susceptibility while retaining high genetic diversity, although this would be easier if DNA-

based markers could be identified. Genome comparisons of lines of F. excelsior of low and

high susceptibility together with genome comparison of other Fraxinus spp. may also lead to

identification of genetic markers associated with low susceptibility. This together with analysis
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of changes in metabolite profiles may provide a model for dealing with future problems in

trees caused by introduced diseases and pests if trees showing some degree of resistance can be

identified within the native population. Ash populations are also facing another major threat

due to the spread of the insect pest Agrilus planipennis [30], commonly known as emerald ash

borer. If trees with reduced susceptibility to this insect can be identified, the molecular tech-

nologies have now been established for using associative transcriptomics and/or association

genetics to identify genetic markers predicting low susceptibility.
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