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ABSTRACT

Motivation: Genome-wide fitness is an emerging type of high-

throughput biological data generated for individual organisms by

creating libraries of knockouts, subjecting them to broad ranges of

environmental conditions, and measuring the resulting clone-specific

fitnesses. Since fitness is an organism-scale measure of gene regula-

tory network behaviour, it may offer certain advantages when insights

into such phenotypical and functional features are of primary interest

over individual gene expression. Previous works have shown that

genome-wide fitness data can be used to uncover novel gene regu-

latory interactions, when compared with results of more conventional

gene expression analysis. Yet, to date, few algorithms have been

proposed for systematically using genome-wide mutant fitness data

for gene regulatory network inference.

Results: In this article, we describe a model and propose an inference

algorithm for using fitness data from knockout libraries to identify

underlying gene regulatory networks. Unlike most prior methods, the

presented approach captures not only structural, but also dynamical

and non-linear nature of biomolecular systems involved. A state–

space model with non-linear basis is used for dynamically describing

gene regulatory networks. Network structure is then elucidated by

estimating unknown model parameters. Unscented Kalman filter is

used to cope with the non-linearities introduced in the model, which

also enables the algorithm to run in on-line mode for practical use.

Here, we demonstrate that the algorithm provides satisfying results for

both synthetic data as well as empirical measurements of GAL net-

work in yeast Saccharomyces cerevisiae and TyrR–LiuR network in

bacteria Shewanella oneidensis.
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1 INTRODUCTION

In recent years, modelling and inference of biological regulatory
networks have become an active area of research in large part

owing to the emergence of microarray technology, which allows

for simultaneous measurement of gene expression on the

genome-wide scale (Bonneau et al., 2006; Chou and Voit, 2009;

Friedman et al., 2000; Liang and Wang, 2008; Margolin et al.,

2006; Reiss et al., 2006; Shmulevich et al., 2002; Stuart et al.,

2003). The vast amounts of data provided by gene expression

microarrays enable the possibility of accurate estimation of gene

regulatory network organization, which has greatly benefited a

broad range of disciplines—from basic biological sciences, to bio-

engineering, to medical diagnosis and treatment (Hanai et al.,

2006; Mischel et al., 2004). The goal of inference algorithms is to

discover the connectivity structure and, potentially, dynamic char-

acteristics of these networks based on such time- or other

state-series data. Among other things, the nature of inference al-

gorithms varies depending on the types of biological networks and

the way they are modelled (de Jong, 2002; Hendrickx et al., 2011;

Lecca et al., 2011; Liu et al., 2006; Samoilov et al., 2001;

Shmulevich et al., 2002; Tian and Burrage, 2003; Wang and

Schonfeld, 2010). One category of models quantizes the empirical

data into binary numbers and views network structures as

Boolean constraints (Bornholdt, 2008; Kauffman et al., 2003).

Although this could be attempted in a deterministic framework,

both the uncertainties introduced by measurement errors as well

as the inherent stochasticity of gene expression make any experi-

mental data substantially probabilistic. To impart this random

nature to the Boolean framework, the probability Boolean net-

work models have been introduced (Akutsu et al., 1999; Huang,

1999; Shmulevich et al., 2002). However, as biological processes

are neither digital nor homogeneous, further gene regulatorymod-

elling and inference refinements may be achieved by using alter-

native probabilistic network descriptions (Craciun et al., 2013;

Kellam et al., 2002; Liu et al., 2006), continuous-time differential

equations (Chen et al., 1999;Holter et al., 2001;Wang et al., 2008),

stochastic differential equations (Tian and Burrage, 2003; Yeung

et al., 2002), and control theorymethods (Beal et al., 2005; Cook et

al., 1998; Rangel et al., 2004), among others. Although any of

these methods offers certain advantages and disadvantages in at-

tempting to capture the structure and dynamics of gene regulatory

network, it should be noted that they have largely been designed

toward describing gene expression data.
Recently, however, a new type of high-throughput data

has emerged and seen rapid proliferation in empirical biosci-

ences—the genome-wide fitness data. At its core, this involves*To whom correspondence should be addressed.
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using latest technological advances to massively scale the trad-
itional gene deletion/interruption studies in order to achieve
nearly genome-wide coverage by generating knockout/knock-

down mutant strain libraries for all non-essential genes in an
organism (Oh et al., 2010). These libraries are then further sub-
jected to a large number of environmental conditions and stres-

ses—with the observable in each of the settings being the fitness
of individual clones (collected in stationary phase). Pairing the
resulting data with an appropriate model of gene expression then

allows for the inference of the underlying gene regulatory net-
works through estimation of significant interaction terms, along
with those for production, degradation, expression level, etc.

Although potentially applicable to any observable type, this ap-
proach may be particularly well-suited for the use with fitness
data to help constrain any inferred gene regulatory network so-

lutions to those dynamic modes that are most important for a
given set of biological functions and conditions—e.g. growth on
specific substrates or tolerance to certain stresses. Recent works
have indeed suggested that the use of genome-wide fitness data

can provide new perspectives on systems-level organization of
cells and uncover novel gene regulatory interactions when com-
pared with gene expression-based analysis (Hillenmeyer et al.,

2008, 2010); Deutschbauer et al., 2011). Yet, although on a lim-
ited scale the idea of biological network characterization based
on knockout data has been considered before, e.g. Winzeler et al.

(1999), the emergence of high-throughput genome-wide gene
deletion/interruption technology along with the use of popula-
tion fitness rather than gene expression as an observable offers

novel challenges as well as benefits to the task of gene network
inference. On the one hand, microarray and other gene expres-
sion experiments typically generate high-dimensional data in the

form of a real vector that comprises expression levels of multiple
genes at each sampled time and/or condition point, whereas fit-
ness measurements map the state of the system into a much

lower dimensional space—e.g. that of a single real variable,
such as growth rate. This inevitably leads to significant loss of
information. On the other hand, deletion experiments usually

involve simply cultivating and observing cells, which could be
performed on a substantially larger scale, much more efficiently
and under significantly greater range of conditions when com-

pared with the relatively demanding gene expression assays. The
ensuing ability to perform experiments simultaneously across the
entire mutant collection substantially increases the overall

genome-wide fitness data dimensionality—often putting it on
par with available gene expression datasets. Furthermore, fitness
observations allow for the preferential selection or overweighting

of clones that display a desirable phenotype, e.g. the stronger the
selection—the more significant the contribution of surviving
strains. This becomes an increasingly important factor in many

biotechnological and biomedical applications, whereby the con-
tribution of practically irrelevant genes is effectively being filtered
out—regardless of their statistical significance or dynamic state.

Indeed, it has been shown that this type of data is very useful for
the determination of target gene functions (Deutschbauer et al.,
2002, 2011; Hillenmeyer et al., 2010; Pierce et al., 2009; Steinmetz

et al., 2002).
Few systematic models and/or inference algorithms have

been proposed for the elucidation of regulatory networks from

fitness data. Conclusions are often being made on the basis of

visual inspections or similar relatively naive strategies. Yet,

greater prominence and availability of such data along with in-

dications that fitness profiling might contain information about

gene regulation suggest the need for a more comprehensive and

rigorous inference approach. The analysis of ample data pro-

vided by genome-wide fitness experiments may also be useful

in complementing network inference methods based on micro-

array gene expression and such other data by helping to initialize

them or further refine their results.
In this work, we propose an algorithm for inferring gene regu-

latory networks from genome-wide knockout fitness data. Our

approach is based on describing biological networks via a

non-linear dynamical model and then elucidating model param-

eters from fitness measurements. The resulting parameter set can

be used to identify the underlying regulatory network structure

as well as to make forward-looking estimates of its function

under temporal dynamics or environmental changes. In Section

2, we describe the system model and problem formulation. In

Section 2.2, we provide a heuristic sample ordering selection al-

gorithm based on correlation score to cope with the order selec-

tion problem that arises when using mutant fitness data. In

Section 3, we describe the parameter estimation algorithm

based on the unscented Kalman filter (UKF) technique. In

Section 4, we use the proposed algorithm to analyse both a syn-

thetic example as well as experimental data from yeast

Saccharomyces cerevisiae and bacteria Shewanella oneidensis,

which are further compared against known empirical results.

We conclude the article with a summary and remarks regarding

the proposed model and inference algorithm.

2 SYSTEM MODEL AND PROBLEM
FORMULATION

2.1 System model

The outline of our approach is to describe a gene expression data

model and to then extend it towards accommodating the observ-

ables supplied in the form of a large-scale knockout strain fitness

dataset. To this end, we first introduce a basic model of gene

expression as a weighted sum of (non-linear) functions of other

genes with additive noise. We then obtain, through the removal

of individual genes, the knockout strain network models used to

drive the observed fitness model, which thus contains latent vari-

ables of our overall model, as described next in further detail.

Consider a gene regulatory network with total N genes. Let

giðkÞ, i ¼ 1, . . . ,N, k ¼ 1, 2, . . . ,M denote the gene expression

level for the i-th gene at time k. We denote observation or meas-

urement data, xiðkÞ, for giðkÞ at time k as:

xiðkÞ ¼ giðkÞ þ viðkÞ, ð1Þ

where viðkÞ is the observation noise at time k for i-th gene. (Note

that here the term ‘time’ is used in the generalized Bayesian in-

ference sense and so may be loosely viewed as a discrete index

enumerating individual experiments—rather than some continu-

ous parameter of a kinetic biochemical system. Accordingly, the

dynamic model we use is one based on ‘discrete time’, which thus

fundamentally does not a priori assume or require continuity of

states or observables.) We denote gene expression levels

within the network by vector gðkÞ ¼ ½g1ðkÞ, . . . , gNðkÞ�
T, the
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observation vector by xðkÞ ¼ ½x1ðkÞ, . . . , xNðkÞ�
T and noise

vector by vðkÞ ¼ ½v1ðkÞ, . . . , vNðkÞ�
T. We assume that all vectors

vðkÞ for k ¼ 1, . . . ,M are independent and jointly Gaussian with

zero mean and variance matrix RðkÞ. We approximate any multi-

variate gene–gene interactions by a combination of a linear ex-

pansion around the stationary solution and univariate non-linear

terms. Specifically, we follow a discrete-time regulation model

proposed in (Chen and Aihara, 1997) and describe the regulatory

functions among genes as:

giðkþ 1Þ ¼
XN
j¼1

aijgjðkÞ þ
XN
j¼1

bijfjðgjðkÞ,�jÞ þ Ii þ wiðkÞ, ð2Þ

for i ¼ 1, . . . ,N, where aij denotes the linear regulation coeffi-

cient from gene j to gene i and A ¼ ½a11, . . . , aNN�
T; bij denotes

the non-linear regulation coefficient from gene j to gene i and

B ¼ ½b11, b12, . . . , bNN�
T; fj is the non-linear function for gene j

which is given by:

fjðgj,�jÞ ¼
1

1þ e��jgj
, ð3Þ

where �j is the parameter to be inferred and � ¼ ½�1, . . . ,�N�
T;

Ii denotes the system expression bias for i-th gene and

I ¼ ½I1, . . . , IN�
T, which will be inferred later. The noise vectors

wðkÞ ¼ ½w1ðkÞ, . . . ,wNðkÞ�
T for k ¼ 1, 2, . . . ,M are assumed to

be jointly Gaussian with zero mean and variance QðkÞ. We also

assume that they are independent from all VðkÞ. The regulatory

network is realized as a state–space model, where we view gene

expression levels as states and measurements as observations.

The goal of inference is to estimate all the unknown parameters

in the model. Inference results then provide estimates for all

regulatory relations across the network.
Note that Equations (1) and (2) provide the description of the

system in a manner most commensurate with expression data.We

now proceed to extend this model to accommodate fitness data.

Without loss of generality, we consider the case of amutant library

with single gene knockout per strain (with multiple-knockout col-

lections being handled analogously, as discussed later) and assume

that jk-th gene has been deleted when the system is at time k. Note

that ‘time’ here corresponds to the experiment number, with the

index jk being determined as discussed in the previous paragraph.

For the purposes of the single-knockout state–space model, ex-

pressions of all genes evolve without participation of gene jk.

Therefore we set all jk regulatory coefficients to zero. The states

and system coefficients equations can then be summarized as:

Iiðkþ 1Þ ¼ IiðkÞ; �iðkþ 1Þ ¼ �iðkÞ 8i,

ai, jk ðkÞ ¼ 0; bi, jk ðkÞ ¼ 0 8i,

ai, jðkþ 1Þ ¼ ai, jðkÞ, if j 6¼ jk,

bi, jðkþ 1Þ ¼ bi, jðkÞ, if j 6¼ jk,

giðkþ 1Þ ¼
XN
j¼1

aijðkÞgjðkÞ þ
XN
j¼1

bijðkÞfjðgjðkÞ,�jÞ

þIi þ wiðkÞ, if i 6¼ jk,

gjk ðkþ 1Þ ¼ gjk ðkÞ:

ð4Þ

The last two equations determine the current system coeffi-

cients, which will be appended to the system state. Unlike the

case of expression microarrays, here, each gene deletion/interrup-

tion strain measurement quantifies a single system property

which is a function of all the remaining genes. In this article,

we assume this measurement is a real number, which represents

the fitness of the remaining network. (The model can be easily

adapted into higher dimensional measurement case by direct ex-

tension.) Therefore, the observation xðkÞ becomes:

xðkÞ ¼ fðg1ðkÞ, . . . , gNðkÞÞ þ VðkÞ, ð5Þ

where f : R
N ! R is typically not known a priori. We denote

RðkÞ as the variance of VðkÞ as before.

Various bases could be used to estimate f and associated co-

efficients. For instance, one could use a simple basis such as

power series—i.e. a Taylor expansion. However, the speed of

convergence for Taylor expansion is slow, resulting in a large

number of parameters to be estimated. In contrast, the radial

basis approach has been shown to be more robust and adaptive

than Taylor expansion (Jiang et al., 2003). Furthermore, it has

been shown that with certain additional assumptions, the ap-

proximation by radial basis will converge to the true function

in L
p
sense (Powell, 1987). Thus, we approximate f as:

fðyÞ �
Xp

j¼1

�j� jjy� y
p
j jj

�
þ �T0 y,

�
ð6Þ

where �i for i ¼ 1, . . . , p and �0 are the centres of the basis with
� ¼ ½�T0 , �1, . . . , �p�

T; p is the total number of basis functions

used, which is a fixed constant; yij, i, j ¼ 1, . . . , p are the centre

points of the waveform, which are chosen a priori; and

�ðxÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
cþ x2
p

—the Hardy multi-quadratic function with con-

stant c40, which serves as a classical choice for efficient radial

basis expansion (Buhmann, 2003).

All the coefficients �i, i ¼ 1, . . . , p as well as �0 are parameters

to be inferred and so are appended to the state variable.

Therefore, the new augmented model state variable for knockout

fitness data is:

yðkÞ ¼ gTðkÞ,AT,BT, IT,�T, �T
� �T

ð7Þ

As a summary, the dynamical model we propose for regulatory

networks with gene deletion/interruption mutant fitness data is:

yðkþ 1Þ ¼ FkðyðkÞÞ þWðkÞ ð8Þ

xðkÞ ¼ fðIkyðkÞÞ þ VðkÞ,

where Fkð�Þ is the system function described in (4);

WðkÞ ¼ ½w1, . . . ,wN, 0, . . . , 0� is the augmented noise vector; Ik
is the selection matrix, i.e. Iky ¼ ½g1, . . . , gj?�1, 0, gj?þ1, . . . , gN�

T,

where the index ? is determined by the time index k; VðkÞ is the

Gaussian noise as assumed before.

2.2 Data feeding order score

To infer the model given in (8), one needs to specify the order in

which data are supplied to the algorithm. The question in what

order data should be optimally fed into the inference algorithm

thus arises. As this problem is fundamentally associated with the

network structure itself, it can be solved exactly only if the struc-

ture of the network is already known. (And even then, the prob-

lem typically has NP-hard complexity since one needs to test all

possible permutations.) Since the feeding order will have direct

impact on the performance of the inference result, we still need a
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strategy to find an ‘optimal’ feeding order without explicitly
exploring all potential network structures. In this section, we

propose a heuristic strategy based on correlation score, which

is then compared against selecting the feeding order randomly
and shown to be more ‘optimal’ by offering certain advantages.

The basic idea behind the proposed heuristic is that we should

feed the most useful data first. In this work, we use correlation as
a measure of such ‘usefulness’. The intuition is that for sequential

inference of the model (8), the data should be fed based on their

importance in a certain sense. The reasoning for this strategy is
that, in sequential inference, a good starting point usually pro-

vides a superior opportunity to converge to a good result and

vice versa. Moreover, once we have already fallen into a steady

state or an attracting basin, subsequent data may have less in-
fluence on the final result, since it may be difficult to jump away

from the local attractor. By contrast, at early stages, this influ-

ence may be vital to the final inference result. Heuristically, the

importance of a certain sample may be determined by the con-
nectivity of the deleted gene. If it has many connections to other

genes, it may likely play an important role in the network, which

would be reflected in the measurement value (e.g. fitness). Based
on this approach, the feeding order for a sample is related to the

importance or connectivity of the corresponding deleted gene,

which could be quantified by using correlation as a metric.
Specifically, we consider fitness observations xðkÞ,

k ¼ 1, 2, . . . ,M ¼ L �N, where L is a positive integer represent-

ing the total rounds of experiments. Note that without loss of
generality, we can always assume that xðlNþ iÞ, l ¼ 0, . . . ,L,

i ¼ 1, . . . ,N is the lþ 1 round fitness data for gene i. The

score SðnÞ for gene n ¼ 1, . . . ,N is calculated as:

SðnÞ ¼
XL�1
l¼0

XN
i¼1;i 6¼n

xðlNþ nÞxðiÞ, ð9Þ

with gene feeding arranged in the order of descending jSðnÞj. The

summation over i calculates the correlation under round l. The

final score is the summation over all rounds. This approach may

be compared with choosing the feeding order randomly, as will
be done later using concrete examples.

Finally, note that a similar feeding heuristic may be used to
optimize the order of individual experimental conditions as well.

The utility of this additional step, however, needs to be weight

against the diminished significance of individual permutations

among observation data points as the number of conditions be-
comes large as well as the increasing computational overhead this

may entail. As in our applications the number of conditions was

substantially greater than either the number of genes or the
number of connections between them, we found the additional

computational costs such extra step would entail to be

unwarranted.

3 THE UNSCENTED KALMAN FILTER APPROACH
FOR INFERENCE

In the previous section, we proposed a system model for describ-

ing gene regulatory networks at the state–space level. The ap-
proach now requires an algorithm for estimating the unknown

parameters of the model, from which network organization

and other biological system properties may be inferred. Here, a

Kalman filter technique—a well-characterized estimation strat-

egy for elucidating state-space models of regulatory networks

(Wang et al., 2006, 2009), and specifically, an unscented

Kalman filter (UKF)—is used to accomplish this task. UKF is

used to estimate all the parameters in order to cope with the

expected non-linearity of the model (Julier and Uhlmann,

1997), as it has been shown to have superior performance

when compared with traditional approaches, such as the ex-

tended Kalman filter, especially with availability of enough data.

Classical Kalman filter technique iteratively uses innovations

in state and measurement predictions—updating the system se-

quentially (Simon, 2006). The general idea of a Kalman filter can

be summarized as:

Estimation of states ¼ ðprediction for stateÞ

þ KðkÞðresidue of prediction for measurementÞ,
ð10Þ

where KðkÞ is the ‘gain’ for the residue. The original approach by

Kalman is based on linear differential equation model under

Gaussian noise assumption. An extended Kalman filter (EKF)

has been proposed for dealing with non-linear models

(Corigliano and Mariani, 2004). The idea of EKF is to linearize

the non-linear function by approximating it with the first-order

Taylor expansion. However, such an approximation is quite

coarse and insufficient under general circumstances. Some

approaches look to remedying the situation by using

higher-order terms Taylor expansion terms, which—while more

accurate—generally leads to dramatic increases in complexity

(Daum, 2005). Alternatively, UKF approximates the non-linear

function by viewing it as a non-linear transform and then using

the so-called ‘sigma points’ to capture the posterior mean and

covariance accurately up to the third order. Compared with

EKF, UKF provides a more accurate approximation without

significant increase in complexity and has been shown superior

in many practical situations (Wan and Van Der Merwe, 2000).

Another advantage of UKF is that it does not require the cal-

culation of model’s Jacobian or Hessian, which makes the algo-

rithm and associated mathematical derivations less involved (see

more below).
As noted, the UKF is based on the idea of choosing sigma

points from the unscented transform. Consider a random vector

x being passed through a non-linear transform y ¼ hðxÞ. In order

to calculate the mean and variance of y, we choose the sigma

points Si, i ¼ 0, . . . , 2R and their weights W i as follows:

S0 ¼ EðxÞ,

Si ¼ EðxÞ þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ �ÞVarðxÞ

p
Þi i ¼ 1, . . . ,R,

Si ¼ EðxÞ � ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðLþ �ÞVarðxÞ

p
Þi�R i ¼ Rþ 1, . . . , 2R,

W
ðmÞ
0 ¼

�

Lþ �
,

W
ðpÞ
0 ¼

�

ðLþ �Þ
þ ð1� �2 þ �Þ,

W
ðmÞ
i ¼ W

ðpÞ
i ¼

1

2ðLþ �Þ
i ¼ 1, . . . , 2R,

ð11Þ

where VarðxÞ is the variance matrix of the random variable x; ð�Þi
denotes the i-th column of the input matrix; � ¼ �2ðRþ �Þ � R

is the scaling parameter; and � is a parameter incorporating prior
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knowledge of x. Under Gaussian noise assumption, we can set

� ¼ 0, � ¼ 2, and � ¼ 10�3 (Julier and Uhlmann, 1997).
After computing all the sigma points S ¼ fSig

2R
i¼0 and their

corresponding weights, the mean and variance of y can be

approximated as:

EðyÞ �
X2R
i¼0

W
ðmÞ
i hðSiÞ,

VarðyÞ �
X2R
i¼0

W
ðcÞ
i ðhðSiÞ � EðyÞÞðhðSiÞ � EðyÞÞT:

ð12Þ

In order to infer the dynamical system model described in (8),

we simply concatenate the state variable y with the noise vectors

W and V to form a new augmented vector

yaðkÞ ¼ ½yTðkÞ,WTðkÞ,VðkÞ�T: ð13Þ

Viewing the Fkð�Þ and fð�Þ in (8) as non-linear transforms

allows us to calculate the corresponding sigma points as well

as to approximate their mean and variance for use in sequential

updates.
We summarize the UKF-based algorithm for inferring model

(8) from knockout fitness data in Section S1 of the

Supplementary Material.

4 RESULTS

4.1 Inference of synthetic network

In this section, we investigate the performance of the proposed

algorithm for inference of a synthetic network. The network has

both linear and non-linear connections with the graph structure

specified in Figure 1. The dynamics of the network are based on

the proposed model (8), with arrows denoting the direction of

regulatory interactions. The parameters of the network are given

in Table 1, with the variance of the model noise wðkÞ taken as

RðkÞ ¼ 0:02I for k ¼ 1, 2, . . ., where I is the identity matrix. We

also take the variance of measurement noise (error)

vðkÞ, k ¼ 1, 2, . . . in (1) to be 0:08. The deletion data are obtained

by sequentially removing each gene and its corresponding con-

nections. We use 10 rounds of sample data, i.e. k ¼ 1, 2, . . . , 50.

Finally, five basis functions are included in the fitness model.

(Although there is always a trade-off between accuracy and com-

plexity for number of basis functions to be used the dimension of

the problem is proportional to the number of basis functions.

The number of basis functions may be chosen quantitatively, if

needed—e.g. by cross-validation—but here five basis functions

appears to be sufficient.) The fitness function model fð�Þ in (5),

thus becomes:

fðgÞ ¼
X5
i¼1

ci� jjg� gi jj
� �

, ð14Þ

where �ðrÞ ¼ 1ffiffiffiffiffiffiffiffi
1þr2
p with c1 ¼ 0:5, c2 ¼ 0:7, c3 ¼ 1, c4 ¼ 0:3,

c5 ¼ 0:2; and gi being g1 ¼ ð0, 1, 1, 1, 1Þ, g2 ¼ ð1, 0, 1, 1, 1Þ,

g3 ¼ ð1, 1, 0, 1, 1Þ, g4 ¼ ð1, 1, 1, 0, 1Þ and g5 ¼ ð1, 1, 1, 1, 0Þ.
Following the proposed algorithm, we first determine the ‘op-

timal’ data feeding order using the correlation score described in

Section 2.2. The resulting order is 3, 2, 1, 4, 5. We can see that

this ordering generally coincides with the importance of each

node in the sense of node connectivity. This further reaffirms
the validity of the proposed heuristic that the data from most

connected nodes should be fed in first.
Following subsequent steps, we infer parameters of the under-

lying network, which are then filtered to remove values below

noise threshold set at 40% of their maximal variation (0.431 and
0.443 for linear and non-linear coefficients, respectively). The

resulting inferred synthetic network is shown in Figure 2, with
regulatory interaction parameters given in Table 1.
Comparing the inferred network to the true model, we can see

that the elucidated results correctly identify the presence of five
out of six regulatory interactions and suggest one non-existent
one (false negative rate of 16.7% and false positive rate of 8%,

respectively, accounting for the direction of regulation). If we
account for both linear and non-linear connections individually,
a further two connections are not discovered (linear 3 to 1 and

non-linear 3 to 2).
Finally, we have compared the effect of choosing the feeding

order according to the prescription provided in Section 2.2 versus

selecting it randomly. As can be seen in Figure 3, using the ori-
ginal order 1, 2, 3, 4, 5 instead of the optimal one 3, 2, 1, 4, 5

results in a significant degradation of inference results.
To quantify this effect more rigorously, we define missing rate
M as the difference between 1 and the ratio of the number of

correctly identified edges to the total number of edges in the
synthetic network, i.e. 12 here. We also define false rate F as
the ratio of number of incorrectly identified edges to the total

number of edges not in the synthetic network, i.e. 228 here. Then,
for the inference result using the optimal order, we have
M¼ 0:333 and F ¼ 0:00877. In contrast, using the original

order yields,M¼ 0:583 and F ¼ 0:0175.

Table 1. Comparison of linear coefficients (LCs) and non-linear coeffi-

cients (NLCs) of the inferred regulatory network and the underlying

model system

Edge Synthetic LC Synthetic NLC Inferred LC Inferred NLC

(2,1) 0.7 0.5 0.621 0.781

(3,1) 0.7 0.5 0.491 —

(3,2) 0.7 0.5 1.091 —

(3,4) 0.7 0.5 0.861 1.132

(3,5) 0.7 0.5 0.682 0.581

(4,2) 0.7 0.5 — —

(5,4) — — 0.981 0.852

Fig. 1. Structure of the synthetic network
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Table 2 summarizes the results when using the optimal order

versus the average of 30 randomly chosen orders. As we can see,

the optimal order has performed better than randomly chosen

orders in both the missing and false rates.

4.2 Inference of S.cerevisiae GAL network

We now apply the described inference algorithm to GAL regu-

latory network that controls galactose utilization in yeast

Saccharomyces cerevisiae. GAL regulation represents one of the

most historically prominent model systems in yeast because of its

importance for the studies of eukaryotic regulation and relatively

self-contained nature. Figure 4 summarizes the empirical know-

ledge of GAL network structure (Egriboz et al., 2011; Flick and

Johnston, 1990; Johnston et al., 1994; Lohr et al., 1995;

Ostergaard et al., 2000).

Our analysis is based on yeast deletion strains fitness data

previously collected by Giaever and co-workers (Giaever et al.,

2002). The one-dimensional measurements were performed

under various environmental conditions—such as different con-

centrations of galactose, alkali, sodium chloride, sorbitol, etc. We

utilize nine sets of samples from different environmental condi-

tions for network inference using the described algorithm, with

40% variation threshold as before. The nine sets of samples are

formed by combining arbitrary samples from each environmen-

tal condition as representatives. Figures 5 and 6 show the

inferred network graph structures as identified by linear and

non-linear coefficients, respectively. A combined linear–

non-linear network graph is given in Figure 7 (note, in the inter-

est of clarity, edge weight labels and lower-weight edges have

been removed).
It could be seen from Figures 5 and 6 that GAL 1, 3, 4 and 80

have the most connections and the largest coefficients, which is in

accord with the known fact that these are the regulatory genes in

the network, with others being regarded as the structural genes.

Additionally, we note that GAL 80 has negative connections to

GAL 3 and GAL 4 as well as that GAL 4 has negative connec-

tions to GAL 1 and 7, all of which coincides with the empirically

known fact that GAL 80 negatively regulates GAL 3, 4 and that

GAL 4 leads to the repression of transcription from GAL 1, 7.

The connections between GAL 1, 2 and GAL 3 also reflect the

fact that GAL 2 and GAL 1 regulate GAL 3 by protein utilization

pathway. Finally, we see that there is no direct connection from

Fig. 5. Linear structure of the inferred GAL network

Fig. 3. Connection structure of the inferred network without using the

optimal feeding order. Here, the original data order 1, 2, 3, 4, 5 is used

instead of the optimal one 3, 2, 1, 4, 5 (which is used in previous figures).

Linear connections are denoted by solid lines. Non-linear connections are

denoted by dashed lines

Fig. 2. Connection structure of the inferred synthetic network. Linear

connections are denoted by solid lines. Non-linear connections are

denoted by dashed lines

Fig. 4. Structure of the empirical GAL network

Table 2. Inference algorithm performance when using the optimal feed-

ing order versus the average of 30 randomly chosen orders (lower is

better)

Order M F

Optimal order 0.333 0.00877

Average of random chosen orders 0.753 0.0729
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GAL 11 to GAL 80, which also coincides with the fact that

GAL 11 does not have direct interaction with GAL 80. On the

other hand, we find that although inference results discover the

connections between GAL 3 and GAL 80 as well as GAL 3 and

GAL 4, they may not be in the correct orientation. Otherwise,

inferred influences among regulatory genes appear to be in a

general agreement with empirical understanding of the system.

4.3 Inference of Shewanella TyrR–LiuR network

In this section, we apply our algorithm to the TyrR–LiuR amino

acid utilization–degradation network of S.oneidensis strain

MR-1. Its ‘true’ structure, shown in Figure 8, was derived

from hand-curated high-confidence regulatory interactions cata-

logued at MicrobesOnline and RegPrecise (Dehal et al., 2009;

Novichkov et al., 2010). Inference was performed by using the

proposed algorithm on 287 sets of fitness data (number of fitness

measurements for each of the knockout strains under different

growth conditions), with results shown in Figures 9 and 10. The

inference results are compared to and seen to be in general cor-

respondence with the true structure, Table 3.

5 DISCUSSION

We have proposed a dynamical model and an algorithm for

inference of gene regulatory networks based on genome-wide

knockout fitness data—an emerging data type, whose utility in

biological systems identification has not been sufficiently

explored to date. The algorithm uses a state–space model to

capture the dynamical and non-linear nature of such networks.

An unscented Kalman filter is used to infer the unknown par-

ameters in order to cope with model non-linearity.

Table 3. Comparison of Ground truth to the Inference algorithm

performance

Number of edges

(Ground truth)

Number of

edges (Inference)

Number of correctly

identified edges

57 69 25

Fig. 6. Non-linear structure of the inferred GAL network

Fig. 7. Combined structure of the inferred GAL network

Fig. 10. Non-linear structure of the inferred TyrR–LiuR network

Fig. 9. Linear structure of the inferred TyrR–LiuR network

Fig. 8. Structure of the empirical TyrR–LiuR network
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Although fitness data inherently suffers from loss of informa-
tion caused by its reduced dimensionality, when compared with
the more widely explored gene expression data type, the poten-

tially larger amounts of and more contextually/phenotypically
meaningful data provided may be able to compensate for the
relative lack of resolution as our work appears to suggest. The

analysis of a synthetic example as well as empirical GAL and
TyrR–LiuR network data presented here shows that the
described algorithm is able to provide satisfying inference results

even for relatively complex mechanisms.
Ultimately, the two data types—gene expression and knockout

fitness—may be expected to be most informative when used in a
complementary fashion. As noted previously, inferences gener-

ated from genome-wide knockout fitness data could be used to
facilitate network elucidation methods based on gene expression
by helping initialize or further refine their predictions.

Conversely, information provided by gene expression data may
be exploited by the proposed algorithm in conjunction with
knockout fitness data to synergistically improve final inference

results. For instance, gene expression data may be collected
under a more limited set of conditions, for a subset of the
mutant library, or just for the wild-type strain; and used for

the initial inference of an augmented state vector
~yðkÞ ¼ ½gTðkÞ,AT,BT, IT,�T�T—associated only with the gene
expression part of the model, Equations (1)–(4). Such prelimin-

ary results could then be used as a prior for the subsequent net-
work inference round, which uses genome-wide fitness data in
order to take advantage of its potentially larger scale or more

immediate availability across a range of conditions, as well as to
introduce corresponding phenotypically significant refinements
(as discussed earlier).

Several other directions appear promising toward potentially
further extending and improving the inference methodology pro-
posed here. For instance, the non-linear univariate interaction

model, Equation (2), may be augmented with explicitly multi-
variate terms. This should serve to enhance resolution of
non-linear interactions for a given gene across multiple reaction

partners and improve modelling accuracy, though at a cost of
substantial computational overhead owing to complications
related to multiplicative noise propagation and the need to ac-

count for intermediate molecular complexes. Perhaps a more
straightforward approach involves using the model to accommo-
date multiple-knockout experiments (i.e. those involving multiple

inactivated genes in each strain). This is done analogously to the
way single-knockout networks have been analyzed here by
simply setting all of the corresponding interaction term coeffi-

cients to zero for the genes in question. The reason we have
focused less on such applications in this work, however, is the
present scarcity of multiple- versus single-knockout observation

data. Finally, additional constraints could be incorporated to
help account for other pre-existing sources of experimental or
heuristic information. For example, we have noted earlier the

possibility of applying feed optimization schemes to condition
data ordering. One may further look at various sparseness con-
ditions as a way of improving computational efficiency and

incorporating pre-existing knowledge about the network during
inference. [Though, care should be taken, as significant vari-
ations in effective regulatory network topology may naturally

arise across experimental conditions or in going from one related

organism to another (Bergmann et al., 2003; Luscombe et al.,

2004)]

Overall, we believe that these questions help further support

the suggestion that the analysis of genome-wide fitness data

(whether directly or in conjunction with gene expression data)

towards understanding of biological systems function and, in

particular, inference of gene regulatory network organization

offers a rich new area of future research—to which this article

is seeking to make an initial contribution.
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