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Abstract: The failure of therapies directed at targets within cancer cells highlight the necessity for
a paradigm change in cancer therapy. The attention of researchers has shifted towards the disruption
of cancer cell interactions with the tumor microenvironment. A typical example of such a disruption
is the immune checkpoint cancer therapy that disrupts interactions between the immune and
the cancer cells. The interaction of cancer antigens with T cells occurs in the immunological
synapses. This is characterized by several special features, i.e., the proximity of the immune
cells and their target cells, strong intercellular adhesion, and secretion of signaling cytokines into
the intercellular cleft. Earlier, we hypothesized that the cancer-associated fibroblasts interacting
with cancer cells through a synapse-like adhesion might play an important role in cancer tumors.
Studies of the interactions between cancer cells and cancer-associated fibroblasts showed that their
clusterization on the membrane surface determined their strength and specificity. The hundreds
of interacting pairs are involved in the binding that may indicate the formation of synapse-like
structures. These interactions may be responsible for successful metastasis of cancer cells, and their
identification and disruption may open new therapeutic possibilities.

Keywords: immunological synapse; tumor microenvironment; cancer; cancer-associated fibroblast;
direct interaction; synapse like interactions

1. Introduction.

1.1. The Necessity of Changing the Paradigm in Cancer Therapy

The Cancer Genome Atlas (TCGA) project revealed ~10 million mutations associated with cancer [1].
Nonetheless, this enormous number of mutations does not reflect the entirety of the complexity of
cancer (for the definition of complexity, see Reference [2]). The study revealed that the heterogeneity
among cancer cells was much higher than previously estimated [3]. Each human tumor was found to
contain 4–8 heterogeneous clones. The presence of various clones and cells that differ in their genotype
and/or phenotype is at the root of the underlying problem of inefficient cancer therapy, and this
problem is magnified by epigenetic, metabolic, and other types of heterogeneities. Any therapy applied
to a heterogeneous mixture of cancer cells will induce different responses in different cells and may
be inefficient in eliminating specific clones. Changes in the intratumoral heterogeneity during tumor
development predetermine failures of targeted cancer therapies directed at the individual molecular
components of cancer cells [3,4].

However, the main problem is that cancer is a “complex system” [2,5] composed of interacting
subunits. These interactions result in the appearance of emergent properties characteristic to the whole
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system [6–9], properties that cannot be predicted from the properties of the individual subunits [10].
In cancer, the intratumoral complexity of the true cancer cells [11–15] should be distinguished from
the complexity. This is due to their interaction with the tumor microenvironment (TME) [16,17].

The main tumor complexity is probably due to a large number of interactions between the true
(usually epithelial) cancer cells and various cells of the TME [16]. Therefore, it is not surprising that
the vast resources spent in the era of molecular targeted therapy have yielded only a few relatively
efficacious agents. These agents include imatinib for the treatment of myeloid leukemia, trastuzumab
directed at the human epidermal growth factor receptor 2 (HER2) expressed in some patients with breast
cancer, and vemurafenib for melanoma expressing a mutant BRAF gene [18–20]. This emphasized
the necessity of changing the paradigm in cancer therapy, and consequently, the attention of researchers
gradually shifted towards the disruption of cancer cell interactions with the TME.

1.2. A Brief Description of the TME and Its Importance for Cancer Progression

The American National Cancer Institute defines the TME as “The normal cells, molecules,
and blood vessels that surround and feed a tumor cell.” A tumor can change its microenvironment,
and the microenvironment can affect how a tumor grows and spreads. (https://www.cancer.gov/

publications/dictionaries/cancer-terms/def/tumor-microenvironment). The components of the TME
constitute a complex mixture of different cells and extracellular material. The cellular component
includes cells of a mesenchymal origin, i.e., the fibroblasts, the cancer-associated fibroblasts (CAFs),
the myofibroblasts, the mesenchymal stem cells, the adipocytes, and the endothelial cells. It also
includes cells of the hematopoietic origin, namely, the lymphoid cells (the T, the B, and the NK cells)
and the myeloid cells (macrophages, neutrophils, and the myeloid-derived suppressor cells) [21–25].
The non-cellular component is represented by the extracellular matrix [26–28]. Cancer and stromal
components form an integrated and evolving system with multiple interactions and emergent
properties [26,29–32]. In their evolution, all tumors use a wide repertoire of healthy cells and adapt
them to their conditions. The recruited normal cells facilitate the acquisition of the tumor-specific traits
and form an ecological tumor niche that plays a significant role both in the development of the primary
tumor and its metastasis [26,27,33–37].

Due to the interaction of cancer and stromal cells, tumors evolve as organ-like entities.
These interactions include (i) direct binary contacts between ligands and receptors exposed on the surface
of cancer and stromal cells, and (ii) paracrine communication between cancer (usually epithelial)
cells and various TME cells [38,39]. Some authors use the term “symbiotic” for tumor–stroma
interactions [40,41]. Stromal cells modified by the malignant epithelium form a permissive
microenvironment that controls the cancer progression [21]. The symbiosis of cancer and stromal
cells includes a complimentary exchange of paracrine factors affecting the TME characteristics.
The most important consequence of this exchange is the transformation of normal fibroblasts into
cancer-associated fibroblasts (CAFs).

It is important to note that due to diffusion, paracrine signals can be transmitted over distances
of tens of cell diameters [38], forming a gradient of signals that, depending on the concentration,
can induce different responses instead of a simple “yes” or “no” binary responses. The transmission of
signals will presumably be efficient only between closely located cells, where it occurs in synapse-like
structures. Synapses are stable adhesive domains between two neighboring cells of multicellular
organisms and function in cell-to-cell communication, as well as in information processing and storage.
The synapse concept was developed more than 100 years ago for neuronal cell-to-cell communication,
and it was recently adapted to other cell-to-cell communication mechanisms [42]. Successful cancer
treatment targeted at the indecipherable intracellular interactomes is impossible. The development
of efficient cancer therapies should focus on a new paradigm, advanced by the immune checkpoint
therapy. Generally, this paradigm focuses on interactions between cancer and the stromal cells
as therapeutic targets. It was suggested [30], that only direct interactions (for example, between
ligands and their cognate receptors) form relatively simple binary contacts that are necessary for

https://www.cancer.gov/publications/dictionaries/cancer-terms/def/tumor-microenvironment
https://www.cancer.gov/publications/dictionaries/cancer-terms/def/tumor-microenvironment


Cancers 2020, 12, 806 3 of 16

predictable therapeutic action. The synapse-like structures may universally mediate these interactions.
An example is the successful immunotherapy of tumors based on the blocking of the immunological
checkpoints (described in the paragraph below). We discuss details of the immunological synapses
(ISs) as an example of the mechanism of stable intercellular interactions.

1.3. A Short Summary of the Formation of Immunological Synapses between T cells and the Activated
Antigen-Presenting Cells

Activation of T cells requires three signals (Figure 1). The first signal is delivered through
the interaction of T cell receptors (TCRs) with their antigen exposed on the surface of antigen-presenting
cells (APCs) complexed with the proteins of the major histocompatibility complex (MHC). The second
signal is antigen-independent and is delivered through the interaction between the stimulatory receptor
C28 on the T cells and the protein CD80 (B7.1) or CD86 (B7.2) on the APCs [43]. The B7 family includes
important membrane-bound ligands able to bind both co-stimulatory and co-inhibitory receptors
(mentioned below). Stimulatory cytokines deliver the third signal in synapses. T cells, fully activated
by all three signals, begin to proliferate and destroy carriers of antigens presented by the APCs.
Apart from the co-stimulatory signals for T cells, there are also co-inhibitory signals produced by
the T cells shortly after the initiation of the T cell proliferation [44–46]. Inhibitory interactions prevent
overactive responses to the immune stimuli, thereby preventing autoimmune reactions.

The primary contact of TCRs with the antigen-loaded MHC proteins on the APCs (signal 1)
induces the activation of multiple effectors including, among others, the membrane-bound integrins,
the antigen-1 (LFA-1) associated with lymphocyte function and its ligand ICAM-1, signal adapters,
and elements of the cytoskeleton and so on. These processes enhance interactions of the T cells
with the APCs. Their contact also includes the co-stimulatory and co-inhibitory receptors (signal 2).
These interactions culminate in the formation of ISs; narrow (12–15 nm) intercellular clefts where
cytokines are concentrated, thereby enhancing the crosstalk between the cells (signal 3) [53]. ISs enable
unique cell-to-cell interactions and are characterized by a number of essential features. These features
include proximity of the immune cells and their target cells, strong intercellular adhesion, and secretion
of signaling cytokines into the intercellular cleft [50,54–56]. However, data are showing that the T cells
can function without forming synapses [53]. An essential characteristic of ISs is the mechanical forces
generated due to intercellular adhesion. ISs that include the natural killer cells do not express TCRs but
express activatory and inhibitory receptors that may regulate the transmission of signals and dynamic
changes in the integrin-actin systems [57]. In general, the existing therapies targeted at blocking
the co-inhibitory receptors affect the immunological synapses [50].

Here we have discussed the duration of IS existence and will not discuss the mechanism and
kinetics of the IS formation, which have been discussed in recent reviews [55,58–61].

Cytotoxic lymphocytes (CTLs) form ISs, which only lasts a few minutes, owing to the death
of target cells. This effect is probably due to the optimal CTLs function that may need fast and
short-lived contact to kill as many target cells as possible. In contrast, the T lymphocytes form stable,
long-lasting ISs (from 20–30 min to several hours), required for the directed and continuous secretion
of cytokines [62]. These cytokines are located in secretory granules, and some of them undergo
directed transport towards ISs. However, the transport of some cytokines, e.g., TNFs, is not directed,
and the reasons for this difference remain unclear.
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Figure 1. Scheme of an immunological synapse (IS) and receptor/(co-receptor)–ligand interactions
within the synapse cleft and distribution of receptors and adhesion molecules in separate clusters
within the IS. T cell receptor (TCR)/CD3 complex interacts with an MHC peptide. Adhesion molecules,
such as lymphocyte function-associated antigen 1 (LFA-1) and Inter-Cellular Adhesion Molecule
1 (ICAM-1), on the surface of both cells, are responsible for the formation and stabilization of ISs,
and initiation of signal pathways generated by the TCRs [47]. The cytoskeleton is remodeled, the Golgi
apparatus, and the microtubule-organizing center (MTOC) move to the IS formation region [48,49].
All these rearrangements facilitate and allow the directed secretion within the synapse [49–52].
Activation/inhibition of T cells requires three signals. The first signal is initiated by binding of the TCR
complexes with antigen peptides (blue circlet) presented by MHCs of the APCs. The second signal,
an antigen-independent stage, is triggered by the interaction of the co-stimulating T cell receptor CD28
with ligands B7.1 (CD80) or B7.2 (CD86), delivered by the APCs (or tumor cells). Paracrine cytokines
generate the third signal. All transmembrane contacts are clustered and have been symbolized by their
pairs in the figure.

1.4. Clusterization of Receptors and Ligands is A Prerequisite and Signature of IS Formation

An essential feature of ISs is the formation of receptor and ligand clusters, which mediate
intercellular contacts. Some authors suggest the formation of synapse-like structures for all cases of
membrane signalization. For example, it is indicated in Reference [63], “this in a way predicts a ‘synapse’
like entity for all membrane signaling events. Here there is no difference between a ligand/receptor pair
induced higher-order lipid domain or one produced by a membrane curvature or any other biophysical
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means. The central purpose is to bring together enough sorted lipids and their associated protein
receptors, and signaling ensues”.

In general, extracellular protein-protein interactions vary from very affine interactions with
the equilibrium constant of dissociation (Kd) in the nanomolar to the picomolar range for soluble
ligands. There are also extremely low-affinity interactions with the Kd within the micromolar to
the millimolar range for the membrane receptor–ligand protein interactions [64]. Soluble ligands
bind their receptors with high affinity because their concentration in the solution is usually low,
and high-affinity binding ensures signal initiation. This effect is in contrast with the low affinity
of the membrane-embedded proteins that often have a half-life of milliseconds in the monomeric
state [64]. In this case, the strength of intercellular contacts depends on the clusterization of adhesion
molecules comprising hundreds of receptors. This increases the avidity of the intercellular contact
to a level sufficient to trigger a signaling event. Noteworthy, these adhesive events must be readily
reversible. Clusterization and the associated transformations of the cytoskeleton have been shown
schematically in Figure 2.

Figure 2. Schematic representation of individual molecules freely diffusing on the membrane surface
(A), and a cluster of the intercellular adhesive complexes (B). Adhesion molecules (deep green) initiate
binding, which also may involve other transmembrane proteins (pink), cytoplasmic proteins that
can bind to the cytosolic part of the transmembrane proteins (orange). It also involves lipid groups
present on the inner surface of the plasma membrane (yellow), and proteins with lipid-binding domains
(light blue). Clustering may lead to the displacement of negative regulators associated with the cytosolic
part of the adhesion molecules (R). Actin microfilaments stabilize macromolecular clusters through
actin-binding proteins (cyan) [65].

A relatively well-studied example is the clusterization of cadherins during the formation of
the cadherin-mediated intercellular contacts [66]. The emergent intercellular adhesion is initiated
by the binding of cadherin ectodomains on cell surfaces. Due to diffusion, the formed cadherin
trans-dimers gather into small clusters at the sites of cell adhesion. With the participation of
intracellular transformations of the cytoskeleton bound to the inner parts of the cadherins, the clusters
are stabilized, and they expand. As a result, cell adhesion is enhanced strongly. Monomers and small
inactive nanoclusters can coexist on the cell membrane. Small nanoclusters usually slowly diffuse
or can be fixed through the actin cytoskeleton. The size of the nanoclusters in the ligand-free state
may be probably below the functional threshold, and therefore, may be unable to stably bind their
ligands and transmit a signal. On binding a ligand, the already existing small nanocluster can include
accessory monomers.
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Activation of the nanoclusters through binding ligands leads to an enlargement of nanoclusters,
making them functional. Nanoclusterization is a general organization principle for many membrane
receptors. It is rarely completed, and nanoclusters often coexist with randomly distributed non-clustered
components. This coexistence may play a functional role or a regulatory role. Nanoclusters may function
as complexes assembled in advance and capable of fast activation on binding a ligand [67]. A receptor
cluster in the T cell synapses initiates the recruitment of hundreds of molecules to the membrane,
interacts with the actin cytoskeleton¸ and plays a significant role in signal transmission. The formation
of signal clusters leads to functional results that are difficult to predict from individual components [68].
This complex system interacts having emergent properties [69]. Transmission of intercellular adhesion
signals in other cellular systems is similar to processes in the T cell immunological synapses. One of
the recent examples is the ephrin type-A receptor 2 (EphA2)/EphrinA1 system that regulates cell
adhesion, motility, and angiogenesis. The binding of EphA2 to EphrinA1 results in the formation of
clusters that undergo actin-directed transport on the cell membrane [68]. These may display features
similar to features found in a T cell immunological synapse. Clusterization provides stability for
signaling by enhancing ligand-receptor functional local concentration and reducing the possible effect
of the protein-degrading enzymes on the interaction result. Clusterization also results in higher
specificity and provides an additional level of cell control [70,71].

A fundamental property of synapse is the proximity of the interacting cells. Such proximity was
reported in an X-ray structural analysis of a CD200R and CD200 protein complex. CD200 (earlier known
as OX2) is a widespread cellular surface protein that interacts with the receptor CD200R, expressed
in the myeloid cells and some lymphoid cells. The authors calculated a distance of ~12 nm between
the interacting cells, which corresponds to the spatial parameters of an immunological synapse.
Since CD200 is also expressed in the non-lymphoid cells, synapse-like interactions may be widely
used [72,73].

In summary, one of the essential features of the synapse-like intercellular contacts is the presence
of receptor clusters on one of the interacting cells and ligand clusters on the other. These clusters are
associated with the remodeling of the intracellular cytoskeletons. This allows the polarization of the cell
secretory mechanism in immunological synapses, which provides another feature of synapse-directed
secretion [49]. The existence of such membrane ligand-receptor pair clusters on the interacting cells
should imply the existence of synapse-like structures [63,72,74].

1.5. Remodeling of Cytoskeletons in Intercellular Interactions

Intercellular interactions induce a radical remodeling of the cytoskeleton (Figure 2). As a result,
the Golgi apparatus moves to the IS, thereby allowing directed secretion within the synapse (Figure 1).
The location of the centrosome is also drastically changed upon recognition of the target cell.
The centrosome moves from the back-end of the cell to its front edge where a synapse forms [48–52].
The involvement of the cytoskeleton in cluster formation has been shown schematically in Figure 2.
This process is rather well-studied for the E-cadherin-mediated intercellular interactions. It involves
the p120 catenin that, together with the beta- and the alfa-catenins, binds the cytoplasmic domain
of cadherin. Alfa-catenin directly binds F-actin. This process stabilizes the clusterization of
cadherin [49,66,75].

Adhesion induces remodeling of the cytoskeleton and affects the cell polarity, as discussed above.
It is also related to some cellular processes, including differentiation and proliferation. Disorders of
cell polarity are associated with disorders of development. Therefore, many tumors show the loss of
E-cadherin-mediated intercellular adhesion [76]. These complex processes have a genetic basis and
an epigenetic basis that is mostly unclear. In recent years, there have been attempts to decipher it,
and some representative results have been presented below. An extensive siRNA screening revealed
tens of genes that were probably involved in the regulation of adhesion (see the review [77]), through
involvement in β-catenin and β1-integrin pathways, regulation of the actin cytoskeleton, and EGFR
signaling. Noteworthy, among the genes mutated in lung carcinoma, a significant proportion of
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genes participate in the regulation of the cytoskeleton state, including the genes IQGAP3, EPB41,
CDC42, PARD6G, PTK2B, and KALRN. The proportion of these genes has been found to increase
in metastases. This suggested the involvement of these genes in the process of metastasis [78].
The transcription factor GATA4, crucially important in the early liver development, has been shown to
be involved in the pathophysiology of hepatoblastoma, an embryonic tumor of childhood. Suppression
of the GATA4 gene (using RNA interference) disturbed the migration of the human hepatoblastoma
cells, HUH6. Moreover, the expression of genes involved in the cytoskeleton organization, intercellular
adhesion, and dynamics of the extracellular matrix was found to be changed. One hundred and six
differentially expressed genes (34 up-regulated and 72 down-regulated) were identified [79].

Furthermore, the relationships between several proteins involved in intercellular adhesion have
been identified, and relentless efforts continue to determine the full range of such proteins, especially
those regulating these processes [80]. In particular, 27 genes have been identified in which mutations
disrupt intercellular adhesion during collective migration. For example, p73, which is important for
folliculogenesis of the ovaries, functions as a vital regulator of a gene network involved in cell-to-cell
adhesion and migration [81]. The nuclear retinoic acid receptors (retinoic acid receptor alpha, RARα,
retinoic acid receptor beta, RARβ, and retinoic acid receptor gamma, RARγ) are ligand-dependent
transcription factors regulating the expression of genes related to cell differentiation and proliferation.
A whole-genome analysis has been performed for the RAR-regulated genes in the mouse embryonic
fibroblasts (MEFs) with a comparison of the wild type MEFs with MEFs having all three RARs knocked
out [82]. The absence of RARs was found to be associated with cell adhesion, and the knock-out MEFs
were unable to adhere and to spread on substrates and displayed a disrupted network of actin filaments.

Although a relationship between metabolism and cell adhesion has been reported, the exact
molecular details of their interaction remain to be understood. Minsky et al. [83] showed that PGC-1α,
a major transcription co-activator of metabolic gene expression, takes part in inhibiting the expression
of cell adhesion genes. Using cell lines, primary cells, and mice, the authors demonstrated that both
endogenous and exogenous PGC-1α inhibited the expression of different cell adhesion molecules.
In addition, PGC-1α modulates the adhesion of primary fibroblasts and the hepatic stellate cells to
the proteins of the extracellular matrix. These results outlined the relationship between central pathways
controlling metabolic regulation and cell adhesion and identified PGC-1α as one of the connecting
links between these major cell networks [83]. The examples mentioned above show that although
the problem is of fundamental interest, the data available now are too scarce. They do not allow
deduction of the molecular genetic mechanisms of remodeling cytoskeletons and the formation of
the ligand-receptor clusters in the process of cell-cell adhesion.

1.6. Circulating Cancer Cells Form Clusters through Tomo- and Heterotypic Intercellular Adhesions That Are
Responsible for Metastasis and Possess the Stemness Property

Carcinoma cells can metastasize, still maintaining cell–cell contacts [84–86]. One reason for this
may be that the epithelial cancer cells use stromal cells during invasion [87,88] (see more detail below).
Solid tumors secrete a large number of highly heterogeneous circulating tumor cells (CTCs) into
the bloodstream [89–95]. Still, only a small proportion of the CTCs (0.2% reported by Tripathi et al. [96])
can survive and ultimately result in metastatic changes. Efficient metastasis (>90% [96]) has been
attributed to the CTCs clusters, sometimes referred to as the circulating tumor microemboli [94],
defined as groups of two or more aggregated CTCs. According to the estimates, tumor cells detach
from the primary tumor at 3.2 × 106 cells per gram of tumor per day, but more than half of the detached
tumor cells die. Approximately only one cell per 106–107 leukocytes remain [94]. The molecular
mechanisms responsible for the formation and spread of clusters, and the pathways supporting their
survival and metastatic potential remain mostly unknown [93].

Most data on CTC clusters participation in metastasis describe homotypic clusters [97,98].
It is evident that adhesion and cytoskeleton processes actively participate in such kind of clusterization.
Furthermore, changes in the cell adhesion properties are required to establish and maintain the trait



Cancers 2020, 12, 806 8 of 16

of cancer cell stemness [99]. Persistent and adhesion-dependent survival signals in the CTC clusters
can support the survival stimuli, thereby facilitating active metastases. While individual CTCs may
experience problems with survival, such as oxidative stresses and immune effects, leading to apoptosis,
the CTCs in clusters remain protected [92]. In particular, the CD44-dependent aggregation in blood
circulation confers traits to the CTC clusters that are similar to those of cancer stem cells, which leads
to a more efficient metastasis in the secondary organs [97,98].

However, CTCs can also contain other components, such as leukocytes, endothelial cells, platelets,
and cancer-associated fibroblasts (CAFs) that provide a microenvironment favorable for survival [93].
The role of CAFs in metastasis has been widely studied [100–102]. The interactions between CAFs
and cancer cells were reported to produce a reciprocal and convergent set of signaling activities that
promote cancer invasion and metastasis [24]. Santi et al. suggested that cancer and stromal cells
of invasive tumors may have been in direct contact and may have established complex crosstalk
during tumor development [98]. CAFs induce the formation of metastasizing clusters of tumor
cells, with the participation of an intercellular adhesion [103]. According to the authors, CAFs may
drive the formation of tumor cell clusters composed of two distinct cancer cell populations, one
in a highly epithelial state and another in a hybrid epithelial/mesenchymal state and confer invasive
and metastatic traits upon tumor cells. The stromal cell-derived factor 1 (SDF-1) and transforming
growth factor-β (TGF-β) mediate the tumor cell cluster formation, invasion, and metastasis via Src
activation. The authors also detected in cancer cells, CAFs induced cell–cell adhesion molecules
(E-cad, CAM5, or CAM), causing the formation of tumor cell clusters. One can suggest that these
same molecules take part in the adhesion between CAFs and tumor cells, providing a tight contact
(synapse?) for efficient SDF-1 and TGF-β crosstalk. Following the above data, CAF, as has been
shown [104], can promote aggressive metastatic phenotypes of non-invasive bladder cancer cells
through an EMT induced by the secretion of IL-6. A critical study [105] showed that CAFs induced
invasion through a heterophilic adhesion to both the participating N-cadherin on the membranes
of CAFs and the E cadherin on the membranes of the cancer cells. The weakening of this adhesion
blocked the ability of the CAFs to direct the collective migration of cells and cancer cell invasion.
Nectins and afadin (organizers of cell contacts) were recruited simultaneously to interfaces between
the CAFs and the cancer cells. These data suggest that active heterophilic adhesion between CAFs and
cancer cells may lead to a cooperative tumor invasion. Contacts between the CAFs and the cancer cells
may be formed due to interactions of the Eph-receptors and the corresponding ephrine ligands [106].
It suggests that these direct contacts may form synapse-like structures that may enhance the paracrine
communications. One of these communication strategies may be the directed secretion of soluble
growth factors and chemokines [105].

A remarkable example of direct contacts between the stromal (the fibroblasts and the mesothelial
cells) and the cancer cells can be seen in spheroids of the ovarian carcinoma ascites [107–110].
When in the abdominal cavity, tumor cells combine with the free-floating myofibroblast cells forming
multicellular heterotypic spheroids. This enables the tumor cells to avoid anoikis and acquire a more
invasive phenotype. Macrophages have also been demonstrated to play an active role in the formation
of spheroids [111]. The multicellular spheroids attach to the mesothelial cells using various cell adhesion
molecules. Adhesion molecules, including integrins and cadherins, mediate adhesion between cells
and cell interaction with the extracellular matrix and play a role in the formation and metastasis of
ovarian cancer [112]. However, the mechanisms of CAFs–cancer cell interactions during collective
migration are still far from being investigated. In particular, the question of whether the signaling
clusters are formed between the two entities remains untouched.

1.7. Why are CAFs “Chosen” for Cancer Cell Partners and Direct Contacts

Cancer-associated fibroblasts (CAFs) are ideal stromal partners for the collective invasion of cancer
cells [87,113]. The CAFs were shown to be one of the predominant cell types in the stroma [21,23,24,27,29,113].
They are a heterogeneous cell “family” or a “group” demonstrating mesenchymal-like properties.
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CAFs are often close to or in direct contact with the tumor cells [23,24,27,114]. However, only a few
studies have provided experimental data supporting the direct interaction of CAFs and cancer cells
and its functional consequences. It has been hypothesized that the transformation of normal fibroblasts
into CAFs occurs due to the continuous signals from the malignant cells [115–118]. In response,
CAF populations produce paracrine signals, which affect cancer progression. The most evident and
important consequence of such an interaction is the involvement of CAFs in the stimulation of EMT of
cancer cells, as well as in their invasion and metastasis [87,100,105,119–122], as a special case of collective
cell migration typical for multicellular organisms [123]. Gaggioli et al. [87] showed that in collectively
invading co-cultures of the squamous cell carcinoma (SCC) cells and the stromal fibroblasts, the leading
cells were always the fibroblasts. The special tests demonstrated that the invasion by the SCC cells
requires either proximity to or direct contact with the CAFs. One more argument for this can be found
in the review by Yamaguchi et al. [122].

To study the input of the direct intercellular contacts and the paracrine signal factors
in the metastasis of the non-small cell lung carcinoma (NSCLC) cells, Choe et al. [120] used two
variants of co-culturing. These included direct co-culturing of an NSCLC cell line with the primary
CAF cultures from patients with a resected NSCLC, and an indirect co-culturing with a permeable
membrane. In these experiments, the CAFs induced an EMT more actively in direct co-culturing,
indicating that physical contacts between the NSCLC cells and the CAFs can control the metastatic
potential of the NSCLC cells. It does not exclude the possible role of the paracrine interaction.
This is enhanced by the physical cell interactions similar to that in immunological synapses. A review
by Santi et al. [100] contains data showing that the CAFs adjacent to the cancerous regions can
increase the invasiveness of the cancer cells under cell–cell interactions assisted by various pro-invasive
molecules, such as cytokines, chemokines, and inflammatory mediators.

The malicious role of the direct CAF contacts with the cancer cells makes the disruption of
these contacts an important target for cancer therapy. Yamaguchi et al. [122] attempted to find
the inhibitors of direct interactions between the CAFs and the cancer cells. They found that the Src
inhibitor, Dasatinib, efficiently blocked the physical bonds between the CAFs and the scirrhous gastric
cancer (SGC) cells with a minimal cytotoxic effect. Dasatinib was also effective against the peritoneal
dissemination of SGC cells in a mouse model. According to histological analysis, mice treated with
Dasatinib were found to contain fewer metastasizing tumors associated with the stromal fibroblasts
than in the controls. It implies that the direct interaction between the CAFs and the SGC cells can
be a target for anti-metastasis therapy [122]. However, the authors recommended that the results
be treated with caution as a decrease in CAF levels led to a faster progression of pancreatic cancer.
Despite the inconsistency of these results, they emphasized the requirement for safety tests for
inhibitors of the CAF–cancer cell interactions in anti-cancer therapy. In contrast, using the CAF–cancer
contacts instead of the CAFs as therapeutic targets is a safer approach, as this strategy will not affect
the CAF levels.

2. Conclusions

The Power of Clusters in Signal Transmission, and Their Vulnerability to a Directed Disruption

Any intercellular recognition between two membranes may include hundreds, possibly thousands,
of receptors that may enhance the avidity of intercellular contacts to a level sufficient to trigger a signal
event [63,64,124].

Synapse-like structures can be identified by several features:

1. The proximity of the interacting cells.
2. The presence of receptor clusters and corresponding ligands on the interacting cells.
3. The presence of strong interactions that allow cancer cells to migrate together with the stromal

cells within circulating clusters.
4. A remodeled cytoskeleton in the interacting cells.
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5. Characteristic changes in the transcription regulation [81] and possible epigenetic changes.

The detection of synapse-like structures that emerge during the interaction of cancer and the stromal
cells, mostly with the CAFs, will open a new dimension in cancer treatment. This may supplement
the immune checkpoint therapy, which is also targeted at disrupting synapses between the cancer
cells and cells of the immune system. The formation of the clusters suggests that several different
incoming signals could already be integrated at the plasma membrane level via direct allosteric
interactions between the protomers that form the cluster [125]. It should lead to the emergence
of new unpredictable features different from those expected from the properties of the interacting
monomeric ligand-receptor pairs. The elucidation of these properties can open new therapeutic
horizons. The proximity of adhesion molecules in clusters in itself opens up new possibilities for
therapeutic agents directed at nearby receptor-ligand pairs in the clusters. For example, the application
of bivalent ligands composed of two functional pharmacophores linked by a spacer. This is considered
in pharmacology as one of the most promising strategies for the treatment of homo or heterodimeric
receptors (see, for example, [125,126]. Such kind of therapy may be a new way of tumor destruction.

The above pertains to cancerous tumors and their metastasis, and there is no doubt that these
processes involve many, if not all, cells of the stromal environment of cancer. Studies will be
needed on the selection of the most “malicious” partners of the cancer cells that protect them from
a therapeutic action and facilitate their proliferation and metastasis. Among these partners are CAFs
that, as suggested in this review, may interact with the cancer cells forming synapse-like structures.
It justifies the title of a paper [127]: “Cancer-associated-fibroblasts and tumor cells: a diabolic liaison
driving cancer progression”. Disrupting these detrimental connections is a challenging but still
achievable and promising task.
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