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A deep learning adversarial autoencoder
with dynamic batching displays high performance
in denoising and ordering scRNA-seq data

Kyung Dae Ko1,* and Vittorio Sartorelli1,2,*

SUMMARY

By providing high-resolution of cell-to-cell variation in gene expression, single-cell RNA sequencing
(scRNA-seq) offers insights into cell heterogeneity, differentiating dynamics, and disease mechanisms.
However, challenges such as low capture rates and dropout events can introduce noise in data analysis.
Here, we propose a deep neural generative framework, the dynamic batching adversarial autoencoder
(DB-AAE), which excels at denoising scRNA-seq datasets. DB-AAE directly captures optimal features
from input data and enhances feature preservation, including cell type-specific gene expression patterns.
Comprehensive evaluation on simulated and real datasets demonstrates that DB-AAE outperforms other
methods in denoising accuracy and biological signal preservation. It also improves the accuracy of other
algorithms in establishing pseudo-time inference. This study highlights DB-AAE’s effectiveness and po-
tential as a valuable tool for enhancing the quality and reliability of downstream analyses in scRNA-
seq research.

INTRODUCTION

Single-cell RNA sequencing (scRNA-seq) has revolutionized gene expression profiling by revealing the transcriptome of individual cells. This

method has provided valuable insights into cell heterogeneity, facilitated the discovery of rare cell populations, and enhanced our under-

standing of themolecularmechanisms underlying cellular function and disease.1 Despite important analytical advances, scRNA-seq still faces

certain technical challenges, including low capture rates and dropout events. These limitations introduce noise that can interfere with data

analysis and interpretation.

Dropout is a phenomenon observed when a given gene transcript is expressed at a low or moderate expression in one cell but is not de-

tected in another cell of the same cell-type population.2 It occurs due to low sequencing depth, amplification bias, or biological factors, and

can impact on downstream analysis such as clustering, trajectory analysis, and differential expression analysis. To mitigate the effects of

dropout, numerous imputation or denoising methods have been developed that can be categorized into matrix factorization, nearest-

neighbor method, probabilistic model, and deep learning-based method.3

Matrix factorization decomposes a matrix into lower-rank matrices to approximate the original matrix and estimates missing values based

on data patterns.4 The accuracy of the imputed values depends on the characteristics of the data and the selection of factorization method

and hyperparameters. Nearest-neighbor methods, such as K-nearest neighbors (KNN) imputation, estimate missing values by considering

values from the nearest neighbors.5 KNN has a high computational cost to impute or denoise large datasets, and the accuracy decreases

if the proportion of missing value is high in the dataset, or the missing values are not related to the key values. Probabilistic models, like

the zero-inflated negative binomial (ZINB) model and Gaussian mixture model (GMM), infer missing values based on observed information

and distribution assumptions.3 While useful, thesemethods can introduce biases in the denoised dataset and struggles to accurately denoise

datasets, when the proportion of missing values is high, or the distribution of missing values is non-random.

Deep learning methods, specifically autoencoders, have been developed to capture non-linear relationships in scRNA-seq data.6–9

Autoencoders use feature extraction and latent space reconstruction to reduce noise and impute missing values. However, they can be sen-

sitive to sparse data and batch effects.10 To address these issues, the deep count autoencoder (DCA) combines autoencoders with a negative

binomial model to capture missing values and mitigate batch effects.11 Since mean and dispersion of an input matrix are used for the recon-

struction of latent space, DCA can suffer overfitting and information loss. Variational autoencoders (VAEs) further improve upon this approach

by incorporating a probabilistic generative framework, creating a smoother latent space, and capturing complex non-linear patterns among

gene expression values.12 However, VAEs can suffer from mode collapse or loss of informative features in the latent space if lowly expressed

genes in the dataset do not follow a particular statistical distribution such as negative binomial or Gaussian.
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In this paper, our objective is to tackle the challenges associated with imputation and denoising in scRNA-seq data using a novel gener-

ative framework that leverages the power of adversarial autoencoders (AAEs). AAE combines autoencoders and generative adversarial net-

works (GANs).13 Traditional AAE frameworks primarily focus on training the generator and the encoder through the adversarial network to

generate realistic outputs, making it difficult for the discriminator to distinguish between the generated and real data. Originally designed

for synthesizing realistic images, AAEs with statistical models have been applied in scRNA-seq data for tasks such as dimension reduction,

clustering, and integration.14,15 However, the potential of AAEs in denoising and imputing scRNA-seq datasets remains underexplored. In

addition, while traditional AAEs exhibit good performance in the analysis of scRNA-seq data,15 there is a risk of information loss if the variance

of gene expression does not follow the statistical models.10 To enhance denoising performance andmitigate information loss during analysis,

we propose the dynamic batching adversarial autoencoder (DB-AAE) employing a competitive model that directly captures optimal features

from input data rather than using statisticalmodels. Batching is one of pivotal techniques in deep learning, whereinmultiple input samples are

processed concurrently as a batch.16 Numerous studies17–20 emphasize the crucial impact of batch size on the performance of training in deep

neural networks. A large batch size may become stuck at local minima, while a small batch size can lead the loss function to converge to a

biased minimum.16 Adapting the batch size according to the dataset’s characteristics has been shown to enhance the efficiency of neural

network algorithms.16 To dynamically adjust the batch size during neural network training, three prominent algorithms are considered. First,

random search21 involves the random selection of combinations of batch sizes. Second, Bayesian optimization22 utilizes Bayes Theorem to

guide the search for the optimal batch size. Lastly, the Hyperband approach,23 a variant of random search, aims to determine the best

resource allocation for adjusting the batching size. In our research, we employ the Hyperband algorithm for dynamic batching in AAEs to

enhance the reconstruction performance and converge to an optimal minimum in the loss function. DB-AAE excels at retaining important

features, such as cell type-specific gene expression patterns, even in the presence of noise in scRNA-seq data. This enhanced feature pres-

ervation significantly improves the reliability and accuracy of downstream analysis tasks such as clustering and pseudo-time inference.

We tested and performed a comprehensive evaluation of our proposed method, comparing it with other commonly used approaches,

using both simulated and real datasets. Our analysis indicates that DB-AAE surpasses the performance of other methods in terms of denois-

ing accuracy and preservation of biological signal. Moreover, our findings indicate that this method can significantly enhance the accuracy of

other algorithms specifically designed for pseudo-time inference. These results not only validate the effectiveness of our approach but also

emphasize its potential as a valuable tool for improving the quality and reliability of downstream analyses in scRNA-seq analysis.

RESULTS

DB-AAE improves denoising of simulated scRNA-seq data

AAE is a deep neural network that combines the advantages of autoencoders and GANs to facilitate unsupervised learning tasks and

generate new samples that closely resemble the input data by sampling from a learned latent space, and there are several advantages

Figure 1. Dynamic batching adversarial autoencoder (DB-AAE)

Schematic illustration of the different components of the DB-AAE. Blue circles represent nodes, x0 represent reconstructed output in the DB-AAE structure. After

preprocessing data, the encoder generates the authentic latent space using the current input batch, while the generator creates a simulated latent space by

emulating the characteristics of the output through the autoencoder with the prior input batch during training. The encoder and decoder components are

optimized until the discriminator cannot differentiate between the true and simulated latent spaces across the entire batch.
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of AAEs compared to traditional GANs. First, since AAEs are designed to perform both generative and reconstructive tasks, AAEs can

be efficient for tasks such as data denoising and imputation. Second, AAEs can control the generation process of latent space because

they explicitly encode input data into a latent space. This makes it easier to decode output data with specific characteristics of the input.

However, GANs do not provide a direct mapping from input to a latent space. AAE consists of three key components: encoder,

decoder, and adversary modules (Figure 1). The encoder transforms input data into a lower-dimensional latent space, while a decoder

reconstructs the input data from the latent space. The adversary modules encompass a generator and discriminator. The generator uti-

lizes the latent space encoded by samples from the input data to produce synthetic data, whereas the discriminator distinguishes be-

tween the synthetic data and real data obtained from the original input’s latent space. In AAE, the encoder and decoder components

are optimized in such a way that the discriminator cannot differentiate between synthetic samples generated by the generator and real

data. This adversarial training process empowers the AAE to acquire a more meaningful and structured representation of the latent

space.13 For their optimization, several statistical models have been used but information may be lost if the distribution does not follow

statistical models.10 To remedy this potential loss, we implemented DB-AAE containing a novel adversarial framework with dynamic

batching by sampled inputs.

To investigate the characteristics of theDB-AAEmodel,we conductedperformance evaluationusing simulated scRNA-seqdatagenerated

by the Splatter package24 after creating a count matrix consisting of 200 genes across 2,000 cells. We modified the simulation to introduce

variations in the number of cell types (two, six, or eight virtual cell types) under either dropout or non-dropout conditions. Clustering efficacy

and denoising capabilities of the DB-AAE model were evaluated by comparing it to five other methods, SCANPY, MAGIC (Markov affinity-

based graph imputation of cells),25 DCA,11 scImupte,26 and SCVI (single cell variational inference).12 Figure 2 (left panels) illustrates the clus-

tering results obtained by each method in the uniform manifold approximation and projection (UMAP) dimension. The performance of each

clustering was assessed using the silhouette score (SC).7,27 The SC (Figure 2, right panels) quantifies the similarity of gene expression patterns

within a cluster and the dissimilarity between different clusters, with values ranging from �1 to +1.28 An SC approaching 1 indicates that the

clustering results are well-defined and that the cells are appropriately assigned to their respective clusters, suggesting a more reliable and

meaningful clustering outcome. In the absence of dropout-induced noise in the small number of groups, DB-AAE, MAGIC, and DCA were

able to regenerate clusters corresponding to the number of cell types, and their SCs did not differ significantly (no dropout in Figure 2A). How-

ever, after denoising datasets containing dropout noise in the large number of groups, DB-AAE exhibited superior performance compared to

other algorithms in clustering cells belonging to the same cell types (dropout Figures 2B and 2C). In fact, while DB-AAE showed similar per-

formance without noise in Figure 2 (no dropout), DB-AAE demonstrated superior performance compared to other methods in complex data-

sets with strong noise, as shown in Figure 2 (dropout), even though the silhouette score of the original simulateddataset in dropout is negative

because the dataset is highly diverse and thus difficult to cluster. These simulated results provide evidence that DB-AAE outperforms other

methods in terms of denoising and clustering efficiency.

DB-AAE favorably compares to other approaches in denoising real scRNA-seq data

The denoising performance of DB-AAEwas compared to five popular methods (SCANPY for clustering,29MAGIC usingMarkov affinity-based

graph imputation,25 DCA using deep count autoencoder,11 scImupte using a statistical method26 and SCVI using variational autoencoder12)

using ten published scRNA-seq datasets reported in Table 1. Our aimwas to assess DB-AAE’s ability to capture cell-based clusters in datasets

with complex cell heterogeneity. In Figure 3A, we first present clustering results of a scRNA-seq mouse pancreas dataset.30 Compared to the

original dataset (SCANPY Figure 3A), DB-AAE more effectively clustered endocrine pancreatic cells (alpha, beta, and delta cells) which were

clearly distinct from exocrine ductal pancreatic cells (Figure 3A). Moreover, the similarity among cells belonging to the same cell type ob-

tained by DB-AAEwas improved compared to othermethods. For instance, insulin-secreting pancreatic beta cells were assigned to one clus-

ter by DB-AAE while other approaches assigned them to two or more clusters (Figure 3A, red clusters). We further analyzed the functional

characteristics of the clusters related to pancreatic beta cells using gene ontology (GO) analysis.31 The three clusters identified as pancreatic

beta cells in the original dataset (Figure S1A, left panel, labeled as c0, c1, and c2) shared GO terms not directly related to their endocrine

function (Figure S1A, right panel). DB-AAE grouped these three clusters (Figure S1B, left panel) and identified ‘‘insulin receptor binding’’

term, related to pancreatic function,32 in each of the clusters c0, c1, and c2 (Figure S1B, right panel). Thus, DB-AAE denoising improved ac-

curacy of GO analysis allowing identification of a critical function of pancreatic beta cells which was not evident in the original dataset. To

assess the potential impact of biological overfitting on the analysis of a small-sized dataset, we analyzed scRNA-seq dataset comprising blas-

tomeres of mouse embryos (124 cells), spanning zygote to late blastocyst stages.33 As shown in Figure 3B, DB-AAE successfully identified all

clusters associated with cells of five developmental stages. Also in this case, as observed for the pancreas dataset, DB-AAE tightly assigned

cells of the same developmental stage to a unique cluster (Figure 3B). Adjacent clusters identify cells with similar genetic-functional charac-

teristics.34,35 Silhouette scores were calculated for the mouse pancreas dataset30 analyzed in Figure 3C (left panel) and embryo scRNA-seq

dataset33 (Figure 3C, right panel). DB-AAE consistently achieved higher scores than the othermethods across the two datasets. In both cases,

Figure 2. Identification of cell types in simulated data

(A) UMAP (left) and silhouette score bar (right) plots of two distinct cell types without dropout noise (top) and with dropout noise (bottom) using different

algorithms.

(B) Six distinct virtual cell types without dropout noise (top) and with dropout noise (bottom).

(C) Eight distinct virtual cell types without dropout noise (top) and with dropout noise (bottom).
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but especially for the embryo datasets, DB-AAE generated clusters with a closer internal distance between cells compared to the other

methods.

To conduct a thorough assessment of DB-AAE performance, we utilized and aggregated ten distinct datasets (Figure 4A), each containing

various cell types, ranging from hundreds to thousands, derived from either human or mouse samples. The comparison of silhouette scores

across these datasets provides a robust evaluation using six different methods. The average silhouette scores for each method using the ten

datasets are presented in Figure 4B. Remarkably, DB-AAE consistently outperformed all other methods across all ten scRNA-seq datasets.

Next, we focused on scRNA-seq datasets derived from skeletal muscle stem cells (MuSCs) to check the biological impact of DB-AAE.43 In

homeostatic condition, MuSCs are quiescent, have a low metabolic rate49 and a widespread low level of transcription,50 making it difficult to

recover rare transcripts. Isolation procedures lead to transcriptional changes associated withMuSCs activation.50,51 We employedDB-AAE to

assess its capability in detecting expression of rare transcripts expressed in FACS-isolated MuSCs consisting of close-to-quiescence (cQ) and

early-activated (eA) MuSCs.43 Prior to employing DB-AAE, rare transcripts were barely detected and DB-AAE improved their identification

(Figure 5A). Next, we wished to evaluate transcripts expressed in cQMuSCs.52 Also in this case, DB-AAE greatly improved detection of lowly

expressed transcripts (Figure 5B). These results highlight the capability of DB-AAE not only to remove noise but also to recover valuable gene

expression patterns that might otherwise be missed.

DB-AAE enhances resolution of pseudo-time inference

Pseudo-time inference is one of important procedures in the analysis of the single cell transcriptome and computationally infers the order

of these cells along developmental trajectories.53 Even though DB-AAE does not have a function of pseudo-time inference, it can support

to improve the performance of other algorithms for the inference. Therefore, we performed an evaluation of pseudo-time inference after

applying denoising techniques to determine the impact of denoising DB-AAE on pseudo-time inference. We conducted a comprehensive

evaluation of three popular autoencoder approaches, aiming to assess their performance on six diverse datasets (Table 1, pseudo-time

inference). These datasets encompass various developmental cell states ranging from three to eight, originating from different tissues

and organs. After utilizing denoising techniques, we inferred pseudo-time using the widely used Slingshot algorithm.54 Next, we employed

squared R scores to measure the correlation between the inferred pseudo time and annotated developmental stages.38,55 A higher

squared R score indicates a closer alignment between the predicted pseudo-time and the annotated stages. In this analysis, DB-AAE

consistently outperformed the other methods across all scRNA-seq datasets (Figure 6A). In Figure 6B, we present the results obtained

for MuSCs datasets,43 comprising three differentiation stages (quiescent MuSCs, activated MuSCs isolated 60 h after muscle injury, and

culture myoblasts). Our analysis revealed that, by combining DB-AAE denoised with Slingshot, we achieved higher accurate predictions

of the pseudo-time corresponding to the three differentiation cell stages, compared to other methods. These findings highlight the su-

periority of the DB-AAE denoising method in combination with Slingshot for pseudo-time inference and accurate prediction of develop-

mental stages.

Table 1. References of datasets employed to evaluate performance and pseudo-time inference

Dataset Tissue # of cell # of cell type Accession ID Reference

Clustering efficiency

baron Mouse pancreas 1886 13 GSE84133 Baron et al.30

zeisel Mouse brain 3005 9 GSE60361 Zeisel et al.36

goolam Mouse embryo 124 5 E-MTAB-3321 Goolam et al.33

xin Human pancreas 1600 8 GSE81608 Xin et al.37

lake Human brain 3042 16 phs000833.v3.p1 Lake et al. 2016

Slyper Human blood 13316 8 SCP345 Tran et al.38

deng Mouse embryo 268 6 GSE45719 Deng et al.39

Wang Human pancreas 457 7 GSE83139 Wang et al.40

Muraro Human pancreas 2126 10 GSE85241 Muraro et al.41

usoskin Mouse brain 622 4 GSE59739 Usoskin et al.42

Pseudo time inference

sartorelli Mouse muscle 11046 3 GSE126834 Dell’Orso et al.43

ponce Mouse pancreas 36351 4 GSE132188 Bastidas et al.44

treut Mouse embryo 315 5 GSE67310 Treutlein et al.45

qiu Mouse pancreas 575 7 GSE87375 Qiu et al.46

yuzwa Mouse cortex 6000 4 GSE107122 Yuzwa et al.47

vlado Mouse cerebellum 55000 8 GSE118068 Vladoiu et al.48
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DISCUSSION

scRNA-seq provides valuable insights into the diversity of cells and the mechanisms underlying diseases.1 Nonetheless, this approach comes

with challenges, including issues such as limited capture rates and dropout events, which have the potential to introduce undesired variability

Figure 3. Performance of cell-based clustering with five different methods in biological data

(A) UMAP plot of thirteen cell types from a pancreas dataset.

(B) UMAP plot of five cell types from embryo dataset.

(C) Silhouette score bar plots of thirteen cell types from a pancreas (left) and five cell types from embryo (right) dataset.
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in the process of data analysis.2 Even though numerous imputations or denoisingmethods have been developed tomitigate the effects of the

issues, there are still technical limitations.3

In this study, we introduce a novel generative framework called DB-AAE to address the challenges associated with denoising and

imputation in scRNA-seq data. This framework leverages the power of AAEs, which combine autoencoders and GANs. While traditional

AAEs rely on statistical modeling to generate a latent space that captures expression patterns within scRNA-seq data, the DB-AAE in-

troduces a paradigm shift by employing an adversarial technique. This technique directly samples from the input data to create the

latent space, circumventing the limitations of statistical modeling. To evaluate the effectiveness of DB-AAE, we conducted comprehen-

sive testing using both simulated and real datasets. The proposed method was compared to other commonly used approaches such as

MAGIC,25 DCA,11 scImupte26 and SCVI,12 and the analysis demonstrated that DB-AAE outperformed other methods in terms of denois-

ing accuracy and the preservation of biological signal. Additionally, the results showed that DB-AAE significantly improved the accuracy

of other algorithms designed for pseudo-time inference, including Slingshot. These findings not only validate the effectiveness of the

proposed approach but also highlight its potential as a valuable tool for enhancing the quality and reliability of downstream analyses in

scRNA-seq research.

Throughout this study, we show that generative adversarial methods based on deep learning neural networks provide a promising alter-

native to existing methods. This approach also preserves important features such as cell type-specific gene expression patterns and robust-

ness to noise in scRNA-seq data. DB-AAE can improve the reliability of downstream analyses such as clustering and pseudo-time inference by

minimizing information loss during analysis. The DB-AAE framework can be integrated with other existing single-cell sequencing analysis

methods to create more comprehensive pipelines. For example, combining DB-AAE with existing clustering algorithms, dimensionality

reduction techniques, or trajectory inference methods could lead to more robust and accurate downstream analyses. In addition, optimiza-

tion techniques can be explored to enhance the training process and convergence of the DB-AAE framework. Techniques like advanced reg-

ularization methods, different loss functions, or learning rate can be investigated to improve the stability and efficiency of the model. Addi-

tionally, incorporating techniques such as pre-training on related datasets could be explored to leverage prior knowledge and improve

performance on specific datasets.

Figure 4. Evaluation of clustering performance using ten datasets with five different methods

(A) Reference for the ten datasets employed for performance evaluation.

(B) Comparison of average silhouette scores for the ten datasets obtained with different algorithms.

Figure 5. Impact of denoising by DB-AAE in gene-expressing patterns

(A) Recovery of gene transcripts in close-to-quiescent and early activated (cQ + eA) MuSCs before and after denoising with DB-AAE.

(B) Recovery of gene transcripts in cQ MuSCs before and after denoising with DB-AAE.
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Limitations of the study

Since DB-AAE are implemented on a deep-learning model, our study is limited to provide more detailed insights into the precise acquisition

and utilization of specific features or gene expression patterns by the model. This is due to the intricate nature of deep learning models,

composed of numerous layers with complex interactions between nodes. As a result, internal workings or processes are not easily under-

standable or interpretable. Although the DB-AAE framework has demonstrated effectiveness on both simulated and real datasets used in

the study, further evaluation of additional datasets fromdifferent tissues, organisms, or experimental conditions is required. In addition, since

the performance of theDB-AAE framework is sensitive to hyperparameters,56 a comprehensive hyperparameter tuningwould be necessary to

ensure the stability and robustness of the method.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

Figure 6. Impact of denoising by DB-AAE in pseudo-time inference

(A) Comparison of average squared R scores for five datasets after processing with four different combined algorithms.

(B) Pseudo-time ordering of homeostatic MuSCs (quiescent, qui), activated MuSCs (60 h after injury) and proliferating myoblasts (MB) after data processing with

four different combined algorithms.
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39. Deng, Q., Ramsköld, D., Reinius, B., and
Sandberg, R. (2014). Single-cell RNA-seq
reveals dynamic, random monoallelic gene
expression in mammalian cells. Science 343,
193–196. https://doi.org/10.1126/science.
1245316.

40. Wang, Y.J., Schug, J., Won, K.J., Liu, C., Naji,
A., Avrahami, D., Golson, M.L., and Kaestner,
K.H. (2016). Single-Cell Transcriptomics of the
Human Endocrine Pancreas. Diabetes 65,
3028–3038. https://doi.org/10.2337/
db16-0405.

41. Muraro, M.J., Dharmadhikari, G., Grün, D.,
Groen, N., Dielen, T., Jansen, E., van Gurp, L.,
Engelse, M.A., Carlotti, F., de Koning, E.J.P.,
and van Oudenaarden, A. (2016). A Single-
Cell Transcriptome Atlas of the Human
Pancreas. Cell Syst. 3, 385–394.e3. https://
doi.org/10.1016/j.cels.2016.09.002.

42. Usoskin, D., Furlan, A., Islam, S., Abdo, H.,
Lönnerberg, P., Lou, D., Hjerling-Leffler, J.,
Haeggström, J., Kharchenko, O.,
Kharchenko, P.V., et al. (2015). Unbiased
classification of sensory neuron types by
large-scale single-cell RNA sequencing. Nat.
Neurosci. 18, 145–153. https://doi.org/10.
1038/nn.3881.

43. Dell’Orso, S., Juan, A.H., Ko, K.D., Naz, F.,
Perovanovic, J., Gutierrez-Cruz, G., Feng, X.,
and Sartorelli, V. (2019). Single cell analysis of
adult mouse skeletal muscle stem cells in
homeostatic and regenerative conditions.
Development 146, dev174177. https://doi.
org/10.1242/dev.174177.

44. Bastidas-Ponce, A., Tritschler, S., Dony, L.,
Scheibner, K., Tarquis-Medina, M., Salinno,
C., Schirge, S., Burtscher, I., Bottcher, A.,
Theis, F.J., et al. (2019). Comprehensive
single cell mRNA profiling reveals a detailed
roadmap for pancreatic endocrinogenesis.
Development 146, dev173849. https://doi.
org/10.1242/dev.173849.

45. Treutlein, B., Lee, Q.Y., Camp, J.G., Mall, M.,
Koh, W., Shariati, S.A.M., Sim, S., Neff, N.F.,
Skotheim, J.M., Wernig, M., and Quake, S.R.
(2016). Dissecting direct reprogramming
from fibroblast to neuron using single-cell
RNA-seq. Nature 534, 391–395. https://doi.
org/10.1038/nature18323.

46. Qiu, W.L., Zhang, Y.W., Feng, Y., Li, L.C.,
Yang, L., and Xu, C.R. (2017). Deciphering
Pancreatic Islet beta Cell and alpha Cell
Maturation Pathways and Characteristic
Features at the Single-Cell Level. Cell Metab.
25, 1194–1205.e4. https://doi.org/10.1016/j.
cmet.2017.04.003.

47. Yuzwa, S.A., Borrett, M.J., Innes, B.T.,
Voronova, A., Ketela, T., Kaplan, D.R., Bader,
G.D., and Miller, F.D. (2017). Developmental
Emergence of Adult Neural Stem Cells as
Revealed by Single-Cell Transcriptional
Profiling. Cell Rep. 21, 3970–3986. https://doi.
org/10.1016/j.celrep.2017.12.017.

48. Vladoiu, M.C., El-Hamamy, I., Donovan, L.K.,
Farooq, H., Holgado, B.L., Sundaravadanam,
Y., Ramaswamy, V., Hendrikse, L.D., Kumar,
S., Mack, S.C., et al. (2019). Childhood
cerebellar tumours mirror conserved fetal
transcriptional programs. Nature 572, 67–73.
https://doi.org/10.1038/s41586-019-1158-7.

49. Rocheteau, P., Gayraud-Morel, B., Siegl-
Cachedenier, I., Blasco, M.A., and Tajbakhsh,
S. (2012). A subpopulation of adult skeletal
muscle stem cells retains all template DNA
strands after cell division. Cell 148, 112–125.
https://doi.org/10.1016/j.cell.2011.11.049.

50. van Velthoven, C.T.J., de Morree, A., Egner,
I.M., Brett, J.O., and Rando, T.A. (2017).
Transcriptional Profiling of Quiescent Muscle
Stem Cells In Vivo. Cell Rep. 21, 1994–2004.
https://doi.org/10.1016/j.celrep.2017.10.037.

51. Machado, L., Esteves de Lima, J., Fabre, O.,
Proux, C., Legendre, R., Szegedi, A., Varet, H.,
Ingerslev, L.R., Barrès, R., Relaix, F., and
Mourikis, P. (2017). In Situ Fixation Redefines
Quiescence and Early Activation of Skeletal
Muscle Stem Cells. Cell Rep. 21, 1982–1993.
https://doi.org/10.1016/j.celrep.2017.10.080.

52. Garcı́a-Prat, L., Martı́nez-Vicente, M.,
Perdiguero, E., Ortet, L., Rodrı́guez-Ubreva,
J., Rebollo, E., Ruiz-Bonilla, V., Gutarra, S.,
Ballestar, E., Serrano, A.L., et al. (2016).
Autophagy maintains stemness by
preventing senescence. Nature 529, 37–42.
https://doi.org/10.1038/nature16187.

53. Saelens, W., Cannoodt, R., Todorov, H., and
Saeys, Y. (2019). A comparison of single-cell
trajectory inference methods. Nat.
Biotechnol. 37, 547–554. https://doi.org/10.
1038/s41587-019-0071-9.

54. Street, K., Risso, D., Fletcher, R.B., Das, D.,
Ngai, J., Yosef, N., Purdom, E., and Dudoit, S.
(2018). Slingshot: cell lineage and
pseudotime inference for single-cell
transcriptomics. BMC Genom. 19, 477.
https://doi.org/10.1186/s12864-018-4772-0.

55. Harrell, F.E. (2015). General aspects of fitting
regression models. In Springer Series in
Statistics (Springer), pp. 13–44. https://doi.
org/10.1007/978-3-319-19425-7_2.

56. Goodfellow, I., Bengio, Y., and Courville, A.
(2016). Regularization for deep learning. In
Adaptive Computation and Machine
Learning Series (lMIT Press), pp. 221–265.

57. Li, W.V., and Li, J.J. (2018). An accurate and
robust imputation method scImpute for
single-cell RNA-seq data. Nat. Commun.
9, 997.

58. Stuart, T., Butler, A., Hoffman, P.,
Hafemeister, C., Papalexi, E., Mauck, W.M.,
3rd, Hao, Y., Stoeckius, M., Smibert, P., and
Satija, R. (2019). Comprehensive Integration
of Single-Cell Data. Cell 177, 1888–1902.e21.
https://doi.org/10.1016/j.cell.2019.05.031.

ll
OPEN ACCESS

10 iScience 27, 109027, March 15, 2024

iScience
Article

http://refhub.elsevier.com/S2589-0042(24)00248-7/sref21
http://refhub.elsevier.com/S2589-0042(24)00248-7/sref21
http://refhub.elsevier.com/S2589-0042(24)00248-7/sref21
http://refhub.elsevier.com/S2589-0042(24)00248-7/sref22
http://refhub.elsevier.com/S2589-0042(24)00248-7/sref22
http://refhub.elsevier.com/S2589-0042(24)00248-7/sref22
http://refhub.elsevier.com/S2589-0042(24)00248-7/sref22
http://refhub.elsevier.com/S2589-0042(24)00248-7/sref22
http://refhub.elsevier.com/S2589-0042(24)00248-7/sref23
http://refhub.elsevier.com/S2589-0042(24)00248-7/sref23
http://refhub.elsevier.com/S2589-0042(24)00248-7/sref23
http://refhub.elsevier.com/S2589-0042(24)00248-7/sref23
http://refhub.elsevier.com/S2589-0042(24)00248-7/sref23
https://doi.org/10.1186/s13059-017-1305-0
https://doi.org/10.1016/j.cell.2018.05.061
https://doi.org/10.1016/j.cell.2018.05.061
https://doi.org/10.1038/s41467-018-03405-7
https://doi.org/10.1038/s41467-018-03405-7
https://doi.org/10.1016/j.gpb.2018.10.003
https://doi.org/10.1016/j.gpb.2018.10.003
https://doi.org/10.1109/Dsaa49011.2020.00096
https://doi.org/10.1109/Dsaa49011.2020.00096
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1186/s13059-017-1382-0
https://doi.org/10.1016/j.cels.2016.08.011
https://doi.org/10.1016/j.cels.2016.08.011
https://doi.org/10.1007/978-1-0716-0301-7_11
https://doi.org/10.1007/978-1-0716-0301-7_11
https://doi.org/10.3390/biom13030495
https://doi.org/10.3390/biom13030495
https://doi.org/10.1016/j.cell.2016.01.047
https://doi.org/10.1016/j.cell.2016.01.047
https://doi.org/10.1038/s10038-020-00851-4
https://doi.org/10.1038/s10038-020-00851-4
https://doi.org/10.1038/s41598-022-18340-3
https://doi.org/10.1126/science.aaa1934
https://doi.org/10.1126/science.aaa1934
https://doi.org/10.1016/j.cmet.2016.08.018
https://doi.org/10.1016/j.cmet.2016.08.018
https://doi.org/10.1038/s41467-021-21312-2
https://doi.org/10.1038/s41467-021-21312-2
https://doi.org/10.1126/science.1245316
https://doi.org/10.1126/science.1245316
https://doi.org/10.2337/db16-0405
https://doi.org/10.2337/db16-0405
https://doi.org/10.1016/j.cels.2016.09.002
https://doi.org/10.1016/j.cels.2016.09.002
https://doi.org/10.1038/nn.3881
https://doi.org/10.1038/nn.3881
https://doi.org/10.1242/dev.174177
https://doi.org/10.1242/dev.174177
https://doi.org/10.1242/dev.173849
https://doi.org/10.1242/dev.173849
https://doi.org/10.1038/nature18323
https://doi.org/10.1038/nature18323
https://doi.org/10.1016/j.cmet.2017.04.003
https://doi.org/10.1016/j.cmet.2017.04.003
https://doi.org/10.1016/j.celrep.2017.12.017
https://doi.org/10.1016/j.celrep.2017.12.017
https://doi.org/10.1038/s41586-019-1158-7
https://doi.org/10.1016/j.cell.2011.11.049
https://doi.org/10.1016/j.celrep.2017.10.037
https://doi.org/10.1016/j.celrep.2017.10.080
https://doi.org/10.1038/nature16187
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1186/s12864-018-4772-0
https://doi.org/10.1007/978-3-319-19425-7_2
https://doi.org/10.1007/978-3-319-19425-7_2
http://refhub.elsevier.com/S2589-0042(24)00248-7/sref56
http://refhub.elsevier.com/S2589-0042(24)00248-7/sref56
http://refhub.elsevier.com/S2589-0042(24)00248-7/sref56
http://refhub.elsevier.com/S2589-0042(24)00248-7/sref56
http://refhub.elsevier.com/S2589-0042(24)00248-7/opttc7VFlpCvv
http://refhub.elsevier.com/S2589-0042(24)00248-7/opttc7VFlpCvv
http://refhub.elsevier.com/S2589-0042(24)00248-7/opttc7VFlpCvv
http://refhub.elsevier.com/S2589-0042(24)00248-7/opttc7VFlpCvv
https://doi.org/10.1016/j.cell.2019.05.031


STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed and will be fulfilled by the lead contact, Vittorio Sartorelli (vittorio.

sartorelli@nih.gov).

Materials availability

This study did not generate new unique reagents.

Data and code availability

This paper analyzes existing publicly available data. The accession numbers of the datasets employed in this study are listed in Table 1.

All original codes have been deposited at GitHub (https://github.com/LMSCGR/DB-AAE) and are publicly available as of the date of

publication.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

METHOD DETAILS

Data preprocessing

Table 1 describes 16 single-cell datasets (clusteringefficiency:10 andpseudo time inference:6) used indata analysis. Somedatasets30,36,37,39–48

were downloaded fromGene ExpressionOmnibus (GEO). Other datasets33,38 were downloaded from Broad Institute Single Cell Portal. After

removing cells with ambiguous labels in the datasets, we converted the datasets into the standard h5 anndata format for trainingDB-AAE and

evaluation of the performance.

Dynamic batching adversarial autoencoder

We designed amodified version of AAE (AAE) to mitigate losing information during training procedure. Traditional AAE consists of three key

components: encoder, decoder, and adversarymodules (Figure 1). The encoder usually transforms input data into a lower-dimensional latent

space, and the input of the encoder is normalized gene expression profile using highly variable genes annotated by dispersion-based

method.58 First, after transforming the gene expressions to z-scores using Equation 1, we calculated the normalized variance of each

gene and ranked the genes by the normalized variances. Finally, we selected genes as the input of encoder with high variances using pre-

processing module in Figure 1.

zmn =
Gmn � ~Gm

sm
(Equation 1)

where zmn is Z score of genem in cell n,Gmn is expressing value of genem in cell n, ~Gm is mean expressing value of genem, sm is the expected

standard deviation of feature m derived from the global mean-variance.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Code for development and evaluation This paper https://github.com/LMSCGR/DB-AAE

Software and algorithms

Scanpy Wolf et al.29 https://github.com/scverse/scanpy

MAGIC van Dijk et al.25 https://github.com/pkathail/magic

DCA Eraslan et al.11 https://github.com/theislab/dca

scImpute Li and Li,57 https://github.com/Vivianstats/scImpute

SCVI Lopez et al.12 https://github.com/scverse/scvi-tools

Slingshot Street et al.54 https://github.com/kstreet13/slingshot

R The R Project for Statistical Computing https://www.r-project.org/

Python Python Software Foundation https://www.python.org/downloads/source/

Custom scripts This paper https://doi.org/10.5281/zenodo.10478925
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Subsequently, we implemented dynamic batching procedures utilizing the Hyperband algorithm.23 As illustrated in Figure 1, we initialize

the starting, ending, and increment values for the batching size within the optimizing batch size module. In each cycle, the input data are

segmented into batches using predetermined step-ups from the optimizingmodule. The encoder generates the authentic latent space using

the current input batch, while the generator creates a simulated latent space by emulating the characteristics of the output through the au-

toencoder with the prior input batch. The training process involves continuous iterations, with the autoencoder and discriminator refining

their models until the discriminator can no longer differentiate between the true and simulated latent spaces across the entire batch.

Defining a selected gene expressing profile of cell m as input x, the architecture of AAE can be formulated as follows:

xb = SðxÞ

zb = leðxbÞ

aloss = Dðzb;nrÞ (Equation 2)

x0
b = ldðzbÞ

x0 =
[n
i = 0

x0bi

where xb is an input batched from input data x, zb is the latent representation from the batched input xb, nr is the latent representation from

x0b, x
0
b is reconstructed input from xb, aloss is adversarial loss, S is batch sampling function, le is encoder layer, D is discriminator layer, ld is

decoder layer, U is union of x0b , x0 is reconstructed output from batched inputs, n is the number of batches.

The encoder layer is defined below:

le = LeakReLUðXWeÞ (Equation 3)

where X represents input, We represents weight values in encoder layer.

The decoder layer is defined below:

ld = LeakReLUðZWdÞ (Equation 4)

where Z represents latent matrix, Wd represents weight values in the decoder layer.

To complete adversarial training, DB-AAE uses a discriminator network to distinguish between the true latent space using the current input

batch and a synthetic latent space bymimicking the features of the output generated in the preceding input batch tominimize reconstruction

(autoencoder) and generator loss, while maximizing the discriminator loss.

For reconstruction loss, we used binary cross-entropy between batched input x and reconstructed output x’ below:

Lrec = � 1

N

XN
i = 1

 
xi log

�
x0
i

�
+ ð1 � xiÞlog

�
1 � x0

i

�!
(Equation 5)

The generator loss is defined below:

Lgen = � 1

N

XN
i = 1

log
�
1 � D

�
le
�
x0
i

�ÞÞ (Equation 6)

The discriminator loss is defined below:

Ldisc = � 1

N

XN
i = 1

ðlogðDðleðxiÞÞ+ log
�
1 � D

�
le
�
x0
i

�ÞÞ (Equation 7)

where N is batch size, D(x) represents the output of the discriminator.

Through these formulas, the autoencoder, generator, and discriminator are updated iteratively until DB-AAE discovers a balance between

the reconstruction capability and the ability to generate realistic encoded samples.

After each cycle, the BatchingModule stores the current batch size, accuracy, and theminimum loss function values of the autoencoder. A

new batch size is then initialized for the subsequent cycle. This process is repeated until the batch size reaches its maximum value in the pre-

determined step-ups. The batch size associated with high accuracy and low minimum loss is selected from the results of all cycles. Using the

chosen batch size, the DB-AAE performs a final training cycle to construct an optimal denoising model.

Hyperparameters

The encoder network dimensions are set to input-1024-512-512, where input stands for the dimension of input data, and the decoder has a

symmetric structure with the encoder. In addition, the discriminator network is built with dimensions 512-256-1. the activation function of the
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last layer of encoder, decoder, and discriminator is relu, while fully connected layers are all activated by LeakyReLU. In the training stage, we

utilize the optimizer RMSprop with learning rate 0.00002 for all the datasets.

Measurement of performance with other algorithms

Software and algorithms used for to evaluate the performance of DB-AAE are cited in the appropriate sections in the STARmethods. For the

evaluation, we used silhouette score and r (unstandardized Pearson’s correlation).2 Silhouette score for clustering performance is calculated

using the mean intra-cluster distance (a) and the mean nearest-cluster distance (b) for each sample, and the formula is defined below:

si =
bi � ai

maxðbi ; aiÞ (Equation 8)

,bi is the inter cluster distance defined as the average distance to closest cluster of data point I except for that it’s a part of

bi = min
ksi

1

jCk j
X
j∊Ck

dði; jÞ (Equation 9)

, and ai is the intra cluster distance defined as the average distance to all other points in the cluster to which it’s a part of

ai =
1

jci j � 1

X
j∊ci ;isj

dði; jÞ (Equation 10)

The value of silhouette score is between �1 and 1, and the value close to 1 means the clusters are well-defined and well-separated from

each other. In addition, it shows that the data points within each cluster are more similar to each other than to points in other clusters.

r2 for the accuracy of pseudo time inference is calculated using Fit-regression model defined below:

by = a + bx;b = r

�
sy
sx

�
and a = y � bðxÞ (Equation 11)

where sy , sx is standarddeviations of y and x, y, x aremeans of y and x, r is unstandardized Pearson’s correlation. The high value of r2 indicates

that actual predicted pseudo times are close to target or reference timepoints.
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