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GPS2-mediated regulation of the adipocyte
secretome modulates adipose tissue remodeling
at the onset of diet-induced obhesity
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ABSTRACT

Objective: Dysfunctional, unhealthy expansion of white adipose tissue due to excess dietary intake is a process at the root of obesity and Type 2
Diabetes development. The objective of this study is to contribute to a better understanding of the underlying mechanism(s) regulating the early
stages of adipose tissue expansion and adaptation to dietary stress due to an acute, high-fat diet (HFD) challenge, with a focus on the
communication between adipocytes and other stromal cells.

Methods: We profiled the early response to high-fat diet exposure in wildtype and adipocyte-specific GPS2-KO (GPS2-AKQ) mice at the cellular,
tissue and organismal level. A multi-pronged approach was employed to disentangle the complex cellular interactions dictating tissue remodeling,
via single-cell RNA sequencing and FACS profiling of the stromal fraction, and semi-quantitative proteomics of the adipocyte-derived exosomal
cargo after 5 weeks of HFD feeding.

Results: Our results indicate that loss of GPS2 in mature adipocytes leads to impaired adaptation to the metabolic stress imposed by HFD
feeding. GPS2-AKO mice are significantly more inflamed, insulin resistant, and obese, compared to the WT counterparts. At the cellular level, lack
of GPS2 in adipocytes impacts upon other stromal populations, with both the eWAT and scWAT depots exhibiting changes in the immune and non-
immune compartments that contribute to an increase in inflammatory and anti-adipogenic cell types. Our studies also revealed that adipocyte to
stromal cell communication is facilitated by exosomes, and that transcriptional rewiring of the exosomal cargo is crucial for tissue remodeling.
Loss of GPS2 results in increased expression of secreted factors promoting a TGFB-driven fibrotic microenvironment favoring unhealthy tissue
remodeling and expansion.

Conclusions: Adipocytes serve as an intercellular signaling hub, communicating with the stromal compartment via paracrine signaling. Our
study highlights the importance of proper regulation of the ‘secretome’ released by energetically stressed adipocytes at the onset of obesity.
Altered transcriptional regulation of factors secreted via adipocyte-derived exosomes (AdExos), in the absence of GPS2, contributes to the
establishment of an anti-adipogenic, pro-fibrotic adipose tissue environment, and to hastened progression towards a metabolically dysfunctional
phenotype.

© 2023 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. INTRODUCTION through de novo differentiation (hyperplasia) [61,100,144,150,160],

with the modality of expansion being critical in determining metabolic
The white adipose tissue (WAT) is a highly expansile endocrine organ, fitness of the obese state [150,159]. For a complete understanding of
capable of matching the metabolic conditions of which it is presented.  the mechanisms behind tissue expansion, it is critical to consider the
A critical aspect of the adaptation to conditions of excess food intake is ~ complex cellular composition of the adipose tissue, which includes not
tissue expansion to meet the increased demand for energy storage. only mature adipocytes, but also adipose stem and progenitor cells
Tissue expansion occurs through either an increase in the size of  (ASPC), vascular cells, and a variety of immune cells, collectively
existing adipocytes (hypertrophy) or an increase in adipocyte number  known as the stromal vascular fraction (SVF) [9,30,50,88,89,125]. The
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recent advent of single-cell RNA sequencing technologies has allowed
for the teasing apart of SVF heterogeneity, thus providing a framework
for understanding the plasticity of WAT under differing conditions of
nutrient intake [15,39,42,68,74,111,132,139,158]. Changes in
abundance and function of stromal cell populations, as well as
communication between fat-storing adipocytes and other cell types,
have emerged as critical-albeit incompletely understood-components
of the adaptive response to obesogenic stimuli.

G-Protein Pathway Suppressor 2 (GPS2) is a small, ubiquitously
expressed protein originally identified as a suppressor of Ras activation
in yeast [146], and a component of the NCoR/SMRT transcriptional
corepressor complex in mammalian cells [174]. Work done by us and
others revealed that GPS2 plays a central role in the regulation of cellular
homeostasis through modulation of cholesterol and triglyceride meta-
bolism, regulation of mitochondrial biogenesis, and inhibition of
inflammation [18,19,41,51,64,75,136,153,157]. These processes are
modulated by GPS2 through a combination of genomic and non-
genomic functions, that rely, at least in part, on the inhibition of non-
degradative ubiquitination by the E2 conjugating enzyme Ubc13 [92].

Here, we have utilized a mouse model of adipocyte-specific GPS2-
knockout (GPS2-AKO) to study the adaptive response to acute meta-
bolic stress imposed by a 5 week, 60% high-fat diet (HFD) through a
combination of single-cell RNA sequencing, FACs analysis, and semi-
quantitative proteomics. Previous work indicates that adipo-specific
deletion of GPS2 leads to increased body weight gain and adiposity,
due to a combination of defective thermogenesis, reduced mitochon-
drial content and increased insulin signaling across different depots
[18,21,41], however striking differences in the metabolic fitness of
obese GPS2-null mice were reported. Intriguingly, obesity was found to
be uncoupled from inflammation and metabolic dysfunction in chow-
fed mice GPS2-AKO mice [21], whereas GPS2-AKO mice exposed to
HFD presented increased inflammation and more severe insulin
resistance than their leaner, wild type littermates [40,41]. Based on
these phenotypic discrepancies observed under different dietary
conditions, we profiled GPS2-AKO mice response to short-term HFD
with the goal of investigating the molecular mechanisms underpinning
the early stages of development of insulin resistance and inflammation,
independently of those contributing to obesity, and to investigate the
impact of adipocyte adaptation, or lack of thereof, on adipose tissue
remodeling and expansion.

2. METHODS

2.1. Bioinformatic analyses using omics data from mouse cohorts
Phenome-wide association studies (PheWAS) results for Gps2 was
retrieved from https://www.systems-genetics.org/phewas  [93].
Phenotype and Gps2 expression data from the CTB6F2 cohort (F2
cross cohort between CAST/EiJ and C57BL/6J) [138] was downloaded
from GeneNetwork (http://genenetwork.org/).

2.2. Animal studies & metabolic analysis

Previously generated fat-specific GPS2 knockout mice (GPS2-AKO)
were utilized along with wildtype littermate controls. All experiments
used male mice between 6 and 8 weeks of age. For details of gen-
eration of the mouse line, please see [21]. Mice were maintained on a
60% high-fat diet (HFD) (Research Diets, D12492i) for 5 weeks. Insulin
tolerance tests (ITT) were performed at the completion of HFD feeding.
Mice were starved for 4 h, and blood glucose levels were measured
first at time zero, and then at 15-minute intervals up to 1 h, following
aninitial IP injection of insulin (Humulin R, Lilly) (0.5 U/kg body weight).
Blood is obtained through tail vein nicking and measured using a

OneTouch Ultra glucometer. All animal studies were approved by the
Boston University Institutional Animal Care and Use Committee (JACUC)
and performed in strict accordance with NIH guidelines for animal care.

2.3. H&E staining

Following mouse euthanasia, subcutaneous and epididymal adipose
tissue was incubated at 4 deg C in 10% neutral buffered formalin
solution (Sigma) overnight. Tissues were then transferred to 70%
ethanol, paraffin embedded, sectioned, stained with hematoxylin &
eosin following the standard protocols employed by the Tufts Medical
School Animal Histology Core.

2.4. Immunofluorescence staining, imaging, & quantification

Tissue sections were first deparaffinized and washed, followed by
heat-mediated antigen retrieval (10 mM sodium citrate, 0.05% Tween
20, pH 6.0). From there, slides were then permeabilized for 45 min at
room temperature in buffer (0.2% Triton X-100 in PBS) and a hydro-
phobic barrier was drawn around each tissue section using the A-PAP
pen (Sigma). Slides were then washed in blocking solution (10%
donkey serum, 1% BSA, PBS) for 1 h at room temperature. Excess
blocking buffer was removed, and primary antibody was added to each
section (1:100 dilution in blocking solution; Galectin 3 monoclonal
antibody, eBioscience, ThermoFisher Scientific). After three washes of
5 min each with PBS, slides were incubated with secondary antibody
for 1 h at room temperature, light protected (Cy5-conjugated AffiniPure
Donkey Anti-Rat IgG, Jackson ImmunoResearch Laboratories). Slides
were then washed three times for 5 min each with PBS, and ProLong
Gold antifade reagent with DAPI mounting medium (Invitrogen by
ThermoFisher Scientific) was applied (2 drops per slide), followed by a
coverslip. Slides were dried for 1 h at room temperature in the dark,
and then edges of each coverslip were sealed with nail polish. For
longer-term storage and prior to imaging, slides were kept at 4 deg C
in the dark. Stained slides were imaged on a Zeiss Axio Observer
fluorescence microscope at 20 x magnification. Images were analyzed
and processed for publication using FIJI.

2.5. Protein isolation and western blot analysis

Protein extracts were prepared from mouse primary adipocytes or
whole tissue through homogenization in lysis buffer (50 mM HEPES, pH
7.4, 40 mM NaCl, 2 mM EDTA, 1.5 mM NaV0,4, 50 mM NaF, 10 mM
sodium pyrophosphate, 10 mM sodium [-glycerophosphate, 1%
Triton X-100, 0.1% SDS, 1% sodium deoxycholate). Lysates were
centrifuged for 5 min, 1000 rpm in order to remove triglyceride layer.
Concentrations were analyzed using the Bradford assay (Biorad) and
normalized for protein loading. The following antibodies were used for
western blotting: Rb Phospho-AKT ser473 (193H12) (#4058T, 1:1000,
Cell Signaling), Rb Total AKT (#9272S, 1:1000, Cell Signaling).

2.6. Isolation of primary adipocytes and stromal vascular cells from
mouse adipose tissue

Upon completion of 5 week 60% high-fat diet (HFD), C57BL6/J WT and
GPS2-AKO mice were euthanized, and adipose tissue depots (sub-
cutaneous and epididymal, scWAT and eWAT respectively) were
excised. The tissue was then minced in cold PBS in a tissue culture
dish, and filtered through 250 micron mesh. Following filtration, the
minced tissue was placed in a 50 mL Falcon tube with collagenase
type 1 (Worthington Biochemical Corporation) digestion buffer (eWAT:
0.025 g collagenase, 0.5 g BSA; scWAT: 0.05 g collagenase, 0.5 g
BSA). The total buffer volume is 25 mL DMEM media (with 4.5 g/L
glucose & L-glutamine, without sodium pyruvate). The Falcon tubes
were then placed in a shaker for at least 1 h at 37°, moving at 120
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RPM. Depending on the initial size of the depot, the time in the shaker
can be increased in order to facilitate more adequate digestion.
Following digestion, the milieu was filtered through 250 micron mesh
and transferred to a new Falcon tube. In order to neutralize digestion,
5 mL FBS was added. The layer of lipid-laden adipocytes floating to the
top of the suspension was removed, and the remaining volume was
spun down at 500x g for 10 min to pellet the cells that constitute the
stromal vascular fraction (SVF).

2.7. Single-cell RNA sequencing sample preparation &
bioinformatic analysis

Following SVF preparation from digested adipose tissue, the cells were
resuspended in 200 uL 1X PBS (calcium and magnesium free) con-
taining 0.04% BSA. The cells were then quantified using a hemocy-
tometer, and 10 3’v3 RNA libraries were generated and quantified on
a bioanalyzer for mean size, concentration, and molarity within the
smear range, displayed via electropherogram results. We then pro-
ceeded to lllumina Sequencing on the NextSeq 500 within the
Microarray & Sequencing Resource Core Facility at Boston University
School of Medicine. FASTQ files were generated via demultiplexing the
llumina base call files (BCL) through implementation of the Cellranger
pipeline commands. Each FASTQ file was then aligned to the MM10
reference transcriptome, which was provided by 10X Genomics
through the Cellranger count command. An aggregate of samples was
then created via the Cellranger Aggr command in order to create a
single matrix for downstream analysis using a Scanpy and Seurat
combination. Cell QC was performed by plotting the distribution for
counts per barcode, number of genes per barcode, and percent of
reads aligned to mitochondrial genes. These distributions were applied
in order to filter out outliers by visual thresholding. Gene counts were
then normalized to 10,000 reads per cell using a counts per million
normalization. The data was then logarithmized using the log1 Scanpy
transformation function. Genes with a high degree of variability were
selected by their mean to variance ratios using the Scanpy highly
variably genes function. Each gene was scaled to unit variance
following effects of total counts per cell and percent mitochondrial
genes expressed being regressed out of the data. Visualization of the
data was done through neighborhood graphs using the PCA repre-
sentation of the matrix, and this was generated using the Scanpy
Neighbors function and was embedded in 2D using the UMAP pro-
jection. Neighborhood graph clustering was performed using the Lei-
den Graph Clustering Methhod, and marker genes for each cluster’s
identity were determined by a Wilcoxon rank sum test. This test
compared the expression of genes in a single cluster vs all of the other
clusters combined. Differential expression analysis was performed
within clusters between WT and KO samples, and was performed
through application of the MAST (Model-based Analysis of Single-cell
Transcriptomics) statistical framework, developed and offered on
github by the Gottardo Lab at the Fred Hutchinson Cancer Research
Center (Seattle, WA).

2.8. mRNAseq analysis

mRNAseq libraries were subjected to basic quality control and read
trimming using the FASTQC and Trimmomatic packages. Trimmomatic
was run in paired end mode with the following parameters:LEADING: 3
TRAILING: 3 SLIDINGWINDOW:4:15 MINLEN:50. Trimmed reads were
analyzed using Salmon with default parameters to obtain mRNA
abundance estimates using the Gencode M10 reference containing
protein-coding and IncRNA transcripts. Principal component analysis
was performed to visually inspect samples for the presence of potential
outliers. One wild-type sample from the epididymal isolated adipocytes
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was dropped from the analysis. Abundance estimates were concate-
nated into a single matrix and filtered by removing genes with an
average mean of <10. Normalization and differential expression of the
abundance matrix was performed using DESeq2 with a design formula
including factors for litter and condition. Differentially expressed genes
were considered significant with a FDR <0.1.

2.9. FACS analysis

Purification of SVF cells was done as described above. Analyses were
performed using 34 anti-mouse antibodies, split between immune and
non-immune panels. For the immune, the following antibodies were
used: BUV395 anti-CD11b (BD Biosciences), BUV661 anti-CD4 (BD
Biosciences), BUV737 anti-CD80 (BD Biosciences), BUV805 anti-CD8
(BD Biosciences), BV421 anti-CD206 (Biolegend), €450 anti-CD19
(Thermo Fisher), BV480 anti-F4/80 (BD Biosciences), BV510 anti-
CD3 (Biolegend), BV570 anti-NK11 (Biolegend), Super Bright 645
anti-Siglec F (Thermo Fisher), BV711 anti-BST2 (Biolegend), Super
Bright 780 anti-CD40 (Thermo Fisher), FITC anti-MHC2 (Biolegend),
Alex Fluor 532 anti-CD45 (Thermo Fisher), PerCP-e710 anti-Mertk
(Thermo Fisher), PE anti-CD103 (Biolegend), PE-Dazzle594 anti-CCR7
(Biolegend), PE-Cy5 anti-CD86 (Thermo Fisher), PE-Cy7 anti-CD64
(Biolegend), APC anti-CD370 (Biolegend), Alex Fluor 700 anti-Ly6G (BD
Biosciences), APC-Fire 750 anti-CD11c (Biolegend). For the non-
immune, the following antibodies were used: BUV737 anti-CD24 (BD
Biosciences), Super Bright 436 anti-PDGFRo. (Thermo Fisher), Super
Bright 600 anti-Scal (Thermo Fisher), PE-Cy7 anti-CD38 (Biolegend),
Spark Blue 550 anti-CD45 (Biolegend), PerCP-e710 anti-CD29
(Thermo Fisher), PE anti-PDGFRf (Biolegend), PE-Dazzle594 anti-
CD31 (Biolegend), FITC anti-CD34 (Miltenyi), APC anti-CD9 (Thermo
Fisher), APC-Fire750 anti-Ly6C (Biolegend). Red blood cells within the
SVF were first lysed briefly using 3 mL RBC lysis buffer (Biolegend).
The mix was then washed using 10—12 mL FACs buffer (PBS + 2 mM
EDTA + 0.5% BSA) and centrifuged at 500x g for 10 min. The SVF
pellet was then resuspended in PBS and single cell suspensions were
stained with Zombie NIR dye (Biolegend), washed with FACs buffer,
pre-blocked with mouse FcBlock (Biolegend), and stained with anti-
body cocktails also containing Brilliant Violet buffer (BD Biosciences)
along with Monocyte blocker (Biolegend) for 30 min on ice, covered.
Samples were then washed with 120 uL FACs buffer and centrifuged
at 500 g for 10 min, twice, and then resuspended with a final volume
of 120 uL FACs buffer. Ultracomp eBeads Plus (Thermo Fisher) stained
with each of the previously mentioned antibodies were used for
compensation. All data were acquired on the Cytek Aurora flow cy-
tometer (Cytek). At least 100,000 events were collected per sample,
with analysis performed using FlowJo 10.8. Results presented are
from four independent experiments, and statistical significance is
established through calculation of two-tailed Welch’s f test. Interro-
gation of specific statistical measures include frequency of parent,
which is the percentage of cells in the gated population out of the
parent population one level up, as well as median fluorescence in-
tensity, which is the number of molecules of a particular marker
present on a specific population gated cells.

2.10. Adipocyte-derived Exosome isolation, quantification, and
functional application

Exosomes were isolated from primary adipocyte conditioned media
utilizing the Exo-spin™ mini Exosome Purification Kit (Cell Guidance
Systems, Protocol Version 8.0). Ad-Exo suspensions were injected
using a syringe pump on the Nanosight NS300 instrument (Malvern
Panalytical), coupled with a sSCMOS camera. Analysis was performed
using the Nanosight NTA (nanoparticle tracking analysis) software,
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version 3.4 (Malvern Panalytical). For all assays, exosomes were uti-
lized within a range of 10°—10"" particles/mL.

2.11. Exosome protein extraction

EV pellets were solubilized in GuHClI lysis buffer [6 M GuHCI, 100 mM
Tris pH 8.5, 10 mM tris(2-car- boxyethyl)phosphine, 40 mM 2-
chloroacetamide] and heated for 5 min at 95 °C. Lysates were
cooled on ice for 10 min, sonicated (Branson probe sonifier 10% duty
cycle, 3 times, 20 s), and heated again (95 °C for 5 min). Lysates were
centrifuged for 30 min at 10,0009 at 4 °C, and cleared supernatant
was removed to a clean tube. GuHCI concentration was diluted to less
than 0.75 M using 100 mM Tris pH 8.5, and the samples were
incubated overnight at 37 °C with trypsin (1:50 w/w). The reaction was
stopped by adding trifluoroacetic acid to a final concentration of 0.1%,
and the peptides were desalted using C18 Sep-Pak cartridges.

2.12. Secretome analysis by mass spectrometry

Peptides were analyzed with easy-nLC 1100 (Proxeon) coupled to Q-
Exactive HF-X. Raw MS files were analyzed by MaxQuant 1.6 with the
Andromeda search engine. Tandem MS spectra were searched against
the “Reference proteome” of mouse (taxonomic ID 10090) downloaded
from UniProt. The search included variable modifications of methionine
oxidation and N-terminal acetylation and fixed modification of cysteine
carbamidomethylation. Peptides of minimum 7 amino acids and
maximum 2 missed cleavages were allowed for the analysis. False
discovery rate of 1% was used for the identification of peptides and
proteins. As per standard practice, all ‘contaminants’ and ‘reverse hits’
were removed and the data sets were log transformed and quantile
normalized before evaluating for statistically significant changes.

2.13. In vitro adipocyte differentiation

To differentiate primary mouse adipocytes, the stromal vascular fraction
(SVF) was isolated from subcutaneous and epididymal adipose tissue
after collagenase digestion as described above. The SVF was resus-
pended in DMEM with 4.5 g/L glucose & L-glutamine, without sodium
pyruvate, and with 10% bovine calf serum (BCS) (HyClone) and 1% pen/
strep. Once the cells reached two days past confluence, adipogenic
differentiation was induced using a cocktail comprised of insulin, IBMX,
and DEX, along with 10% fetal bovine serum (FBS) replacing the BCS in
the media. After two days, the induction media is removed and replaced
with maintenance media (DMEM with 4.5 g/L glucose & L-glutamine,
without sodium pyruvate, and with 10% FBS and 1% pen/strep for 10
days).

2.14. Qil-Red O staining

Staining was performed on primary in vitro differentiated adipocytes
fixed in 10% neutral buffered formalin at room temperature for 30 min.
Fixed cells were then incubated in working solution (3:2 ratio stock
solution to water) for 10 min at room temperature (Oil Red O Stock
solution made with 0.5 g of oil Red powder dissolved in 100 mL of
isopropanol and then sterile filtered using a syringe and a 0.20 uM
filter (Corning Incorporated)). Cells were then washed with water
several times to remove excess stain and any precipitate that forms
prior to imaging.

2.15. RNA isolation, cDNA synthesis, & RT-qPCR analysis

RNA was isolated from mouse adipocytes, using a combination of
phenol-chloroform extraction and the manufacturer protocol for the
RNeasy Kit (QIAGEN). Synthesis of cDNA was performed using the
Biorad iScript cDNA Synthesis System, followed by SYBR-green qPCR
amplification. Data normalization was performed using amplification of

housekeeping gene CyclophilinA, and all gPCRs were performed in
triplicate for each biological replicate. Data are expressed as sample
mean between ftriplicate experiments +/— SEM. Statistical signifi-
cance for all experiments was calculated by Welch’s t test.

2.16. Omics data availability

Genomics Data were deposited to SRA with submission ID
SUB11770965, BioProject ID PRJNA858249. Proteomics Data were
deposited on Proteome Xchange with submission ID 1-20220712-511.

3. RESULTS

3.1. Genetic association between obesity-related traits and GPS2
expression and gene variants

To investigate GPS2 relevance in protecting against obesity and meta-
bolic disorders, we first took advantage of the BXD inbred mouse cohort,
the largest and most extensively characterized murine genetic reference
panel for investigating gene-by-environment interaction [2,4,94]. Unbi-
ased reverse genetic phenome-wide association studies (PheWAS)
revealed a strong genetic association between obesity-related traits and
GPS2 gene variants (Figure 1A). Significant correlations between
numerous obesity-related traits and GPS2 expression levels in adipose
tissue were also recorded in the F2 cross cohort between CAST/EiJ and
C57BL/6J (CTB6F2), for both male and female mice [138] (Figure 1B).
These results are in accord with GPS2 deletion leading to cellular hy-
pertrophy and accumulation of triglycerides in human adipocytes [6] and
with the increased adiposity observed in adipose-specific GPS2-null
mouse models [21,40,41]. Previous genetic association studies in
humans had also revealed a significant correlation between the down-
regulation of GPS2 at the onset of obesity and the development of
obesity-associated inflammation [153]. This is in accord with the
observation that HFD-fed, GPS2-AKO mice are not only more obese than
their WT counterparts, but also more inflamed and insulin-resistant
[40,41,51]. However, it is noteworthy that the obesity developed by
GPS2-AKO mice under chow diet remains uncoupled from insulin
resistance and inflammation, at least in part due to enhanced insulin
signaling [21]. These results, together, indicate that GPS2 plays a critical
role in the maintenance of adipose tissue homeostasis, and suggested
that a better characterization of these contrasting phenotypes provided a
unique opportunity for investigating the mechanism(s) regulating adi-
pose tissue expansion and cellular adaptation to dietary stress.

3.2. Characterization of adipocyte-specific GPS2-AKO mice
exposed to short term HFD

To best characterize the underlying mechanisms that contribute to
failed adaptation to dietary stress in GPS2-AKO mice, we first sought to
determine the point at which GPS2-null mice begin exhibiting meta-
bolic dysfunction when switched from chow to HFD feeding. To this
end, we tracked weekly the body weight gain of male mice between 6
and 8 weeks of age under a 60% HFD. In accord with the pattern
previously observed under chow diet [21], weights between littermate
mice begin to diverge within the first 2—3 weeks, with the AKO mice
weighing significantly more than the WT by week 4—5 (Figure 1C).
Based on this kinetic, we examined the ability of the mice to clear
glucose through insulin tolerance testing after 5 weeks of HFD. As seen
in Figure 1D, by 5 weeks GPS2-AKO mice are significantly more insulin
resistant than their WT counterparts, as evidenced by the delayed
insulin-induced glucose clearance over time. These results are in
accord with long term studies in which early signs of insulin resistance
and low-grade meta-inflammation in GPS2 KO were observed after 4
weeks of HFD feeding [40,41,51].
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Figure 1: GPS2 function is critical in maintaining metabolic health at the cellular, tissue, and whole organism level. (A) Manhattan plot for GPS2 shows genetic as-
sociation between obesity related traits and GPS2 gene variants in the BXDs. Phenotypes were arranged and colored according to respective phenotypic categories. Phenome-wide
significance was determined based on Bonferroni correction using the total number (upper red dashed line) as well as the effective number (lower dark red dashed line) of
phenotypes. Significant phenotypes include: -log;o(p) 6.21, Fat mass after activity wheel_HFD, males (g); -logo(p) 5.83, Body weight after activity wheel_HFD, males (g); -log1o(p)
5.36, Lean mass as percentage of body weight after activity wheel_HFD, males (%); -log;o(p) 5.32, Fat mass as percentage of body weight after activity wheel_HFD, males (%). (B)
Pearson correlations between obesity and adipose tissue related traits and expression levels of GPS2 in the adipose tissue of CTB6F2 mice; red dots indicate males, dark red dots
indicate females. (C) Significant body weight gain in GPS2-AKO mice compared to WT littermates with weekly monitoring, n = 22 WT, 20 KO. (D) Insulin tolerance test (ITT)
following completion of 5 week, 60% high-fat diet regimen; mice were injected i.p. with 0.5U/kg body weight insulin following a 4 h fasting period, n = 15 WT, 16 KO. (E)
Representative H&E staining of paraffin embedded epididymal and subcutaneous white adipose tissue sections imaged at 10x magnification. (F) Crown-like structure quanti-
fication as performed via immunofluorescence staining performed on eWAT and scWAT sections imaged at 20x magnification, using the Mac2/Galectin 3 monoclonal antibody;
both representative images and quantification are shown, n = 7 WT, 7 KO for eWAT and n = 5 WT, 5 KO for scWAT. (G)Representative H&E staining of paraffin embedded liver
sections imaged at 10x magnification. All quantification results are presented as mean + SEM. Statistical significance for all experiments was calculated by Welch’s t test;
**gignifies p value < 0.01, ***signifies p value < 0.001.
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Next, we performed phenotypic profiling of adipose tissue and other
metabolic organs at this early stage to investigate the appearance of
inflammatory marks and ectopic lipid deposition in GPS2-AKO mice as
compared to matching WT littermates. While profiling of neither
epididymal (eWAT) or subcutaneous (SCWAT) adipose tissue depots by
H&E staining showed significant adipocyte hypertrophy (Figure 1E),
eWAT sections from GPS2-AKO mice displayed a dramatic increase in
the appearance of crown-like structure (CLS), a histological hallmark
indicative of macrophages surrounding dead or dying adipocytes
(Figure 1E). This represent a major phenotypic difference with chow-
fed GPS2-AKO mice in which we did not observe any sign of inflam-
mation in presence of similar or higher body weight [21]. As a means
of confirming and quantifying these findings, we performed immu-
nofluorescence staining for macrophages with the Galectin 3/Mac-2
antibody. As depicted in Figure 1F, a significantly higher number of
CLS was observed in the eWAT of AKO mice as compared to WT lit-
termates, whereas no differences were recorded in the SCWAT. At this
stage, neither eWAT nor scWAT presented evidence of fibrosis by
Picro-sirius red staining regardless of the genotype (Supplemental
Fig. S1A). Also, no major differences were observed in skeletal mus-
cle gross morphology (Supplemental Fig. S1B). In contrast, repre-
sentative liver sections from GPS2-AKO mice showed budding lipid
droplets at the time when none is yet observed in WT livers (Figure 1G).
Thus, together, these results indicate that the switch from the meta-
bolically healthy phenotype observed under a chow diet to the more
inflamed and dysfunctional phenotype reported after long term HFD
occurs within the first few weeks of HFD feeding, at the time when the
adipose tissue of GPS2-AKO mice has not yet reached the expansion
capacity that in older chow-fed mice remained associated with insulin
sensitivity [21]. Notably, at this stage, AKT signaling is still enhanced in
adipose tissue from GPS2-AKO mice as compared to WT littermates
(Supplemental Fig. S1C), in accord with previous reports of insulin
resistance setting in prior to the disruption of AKT signaling
[63,116,170].

3.3. Single-cell RNA sequencing of WAT SVF following short-term
HFD reveals GPS2-dependent changes in stromal composition

To further characterize GPS2-regulated, diet-induced changes in the
cellular composition of the adipose tissue, we compared collagenase-
isolated SVF from eWAT and scWAT of WT and GPS2-AKO littermates
after 5 weeks of 60% HFD by scRNA-seq (2 male mice/genotype, 2000
cells/mouse, depth 35K reads, 2K genes/cell). Clustering analysis of all
reads combined, following current best practices [54,155,164,179],
identified a number of immune and non-immune populations com-
parable to those described by others, including macrophages, dendritic
cells, NK, Band T cells, in addition to several distinct adipose precursor
subpopulations (named eAP1-3 in the eWAT and scAP1-5 in the
SCWAT) [15,42,47,68,115,132,139] (Figure 2A,B, Supplemental
Figs. S2A and S2B, Supplemental Tables 1 and 2). Adipose pre-
cursors included both Pdgfra—expressing multipotent progenitor
populations (€AP1-2, scAP1-2 and scAP4-5) (Figure 2C) and more
committed preadipocytes (eAP3 and scAP3) characterized by the
expression of adipogenic markers such as PPARy, Fabp4, Lpl, Fabp5,
Car3, and CD36 (Figure 2D) [15,29,56,59,68-176]. Comparison of our
data with the characterization of mouse white adipose tissue cell
populations across eWAT and inguinal (iWAT) depots recently pub-
lished by Emont and colleagues [47] shows that in the SCWAT SVF, the
Pdgfro™, Dpp4™, Pi16" scAP1 and scAP5 early progenitor clusters
strongly overlaps with mASPC2 and partially with mASPC3, whereas
Pdgfro™, Pdgfr3" scAP2 and scAP4 clusters include cells further
down in the differentiation path as shown by partial overlap with

mASPC1 and mASPC6 in addition to mASPC3, and by the expression of
adipogenic markers such as Lpl, Adgfr5 and FABP4 (Figure 2C and
Supplemental Tables 1 and 2). Similarly, in the eWAT, comparative
analysis between the top 100 DEG defining each cluster indicates that
the Pdgfro™, Dpp4™, Pi16" eAP2 progenitor population share 65% of
marker genes with mASPC2 and almost 50% with mASPC3, whereas
Pdgfro.™, PdgfrB™ eAP1 closely resembles mASPC3 with some overlap
with mASPC1 and mASPC6, representing more differentiated clusters
previously shown to expand upon HFD [47] and to align with differ-
entiating ASC’s from Burl et al., committed preadipocytes from Hepler
et al., and the Fabp4+ “G2” cluster from Schwalie et al. [15,68,139].
In agreement with this characterization, scAP1, scAP5 and eAP2 also
share defining genes with the Ly6c1™ FIPS fibro-inflammatory pro-
genitors, and the Ebf2" G1 and FAP3 progenitors previously reported
by other groups [15,137,139], while scAP2 and eAP1 appear to
encompass the Cd742+ Areg precursors first described by Schwalie
et al. and later shown to overlay with mASPC4 [47,139] (Figure 2E and
Supplemental Fig. S2C, Supplemental Tables 1 and 2).

Next, we analyzed the scRNAseq data separated by genotype. As
expected, we did not observe any change in GPS2 expression within
the stromal compartment, thus confirming that deletion is specific to
mature adipocytes (Supplemental Fig. S2D). To identify, in an unbiased
manner, cell clusters that differ in abundance between WT and AKO
mice we used scCODA, a Bayesian model for addressing cell-type
compositional differences between conditions [16]. Using WT as co-
variate condition, this approach led to the identification of the eAP3
preadipocyte population as the only cluster significantly different be-
tween WT and KO mice (Supplemental Fig. S2E). Beyond the changes
identified through stringent analysis by scCODA, we also observed
trending changes in the proportions of other clusters that appeared
consistent across the littermate replicates (Figure 2F, Supplemental
Fig. S2E). In eWAT, this includes an increase in the abundance of
Pdgfro”™ eAP1 and eAP2 progenitors (clusters 2 and 3), and B-cells
(cluster 8), a decrease in dendritic cells (cluster 5), and changes in the
respective abundance of different macrophage subpopulations (cluster
0 and 1) (Figure 2F, left). In the sSCWAT, we observed an increase in
pro-inflammatory M1 macrophages (cluster 3), and the appearance of
collagen-expressing macrophages (cluster 7) and ScAP4/scAP5 pro-
genitors (cluster 10 and 14) (Figure 2F, right). Together, these results
indicate that loss of GPS2 in mature adipocytes leads to broad changes
in adipose tissue composition, at the level of both immune and non-
immune cell types, which underlie the overall response to excess
nutrients intake.

3.4. Flow cytometric profiling of stromal populations following 5-
week 60% HFD highlights depot- and genotype-dependent
differences in ASPCs

As a means of validating and quantifying the changes identified by the
scRNAseq, we designed a comprehensive panel of cell markers that
allow for measurement of immune and non-immune cell types and
used it to profile by FACS the eWAT and scWAT SVF of mice exposed to
5 weeks of HFD feeding. The non-immune panel includes 11 markers
selected based upon prior research on adipose stem cells and
established flow cytometry panels (Supplementary Table 3)
[27,68,101,104,106,121,134,178]. The immune panel contains 23
markers, also curated based upon established literature
[27,68,101,104,106,121,134,178] (Supplementary Table 3). All anti-
bodies were optimized and validated using both spleen and adipose
tissue samples.

First, we characterized the non-immune compartment of the eWAT.
While there was no significant difference in the overall abundance of
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Figure 2: Single-cell RNA sequencing of SVF from eWAT and scWAT of WT and GPS2-AKO mice following 5 week, 60% HFD reveals clustering unique to each depot. (A)
Leiden plot of cell clusters identified in eWAT, with associated legend outlining 14 distinct populations. (B) Leiden plot of cell clusters identified in sScWAT, with associated legend
outlining 15 distinct populations. (C) Heat map expression levels of markers used to define early adipocyte progenitors, overlayed with our sScRNAseq clustering in both eWAT and
sCWAT. (D) Heat map expression levels of markers used to define committed preadipocytes, overlayed with our scRNAseq clustering in both eWAT and scWAT. (E) Violin plots
outlining the expression of select early adipose progenitor markers Ebf2 and Aldhia3 across all eWAT and scWAT clusters identified in our scRNAseq. (F) Changes in the
proportions of eWAT and scWAT clusters as assessed by heat maps for both WT and GPS2-AKO littermate replicates.
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CD45°CD31°CD34" ASPCs (Figure 3A), we observed a shift in pro-
genitor subtypes (Figure 3B). In particular, using the same gating
strategy used by Hepler and colleagues [68], we observed a significant
increase in Ly6C*CD9™ fibro-inflammatory and anti-adipogenic pre-
cursors in the eWAT of AKO mice as compared to their WT littermates.
On the converse, Ly6C~CD9™ MLCs (mesothelial-like cells) showed a
noticeable decrease in AKO mice, albeit not a statistically significant
change (Figure 3B). No significant differences were observed in the
abundance of classic Ly6C~CD9™ adipogenic ‘APCs’ (adipocyte pre-
cursor cells) (Figure 3B). In contrast, in the scWAT we did record an
increase in the overall abundance of ASPCs accompanied by a
decrease in the proportion of CD45+ immune cells (Figure 3C).
Next, we interrogated if the expression of specific markers revealed
any differences in the signature of these populations between WT and
AKO. We compared the median fluorescence intensity (MFI) measured
for established progenitor and preadipocyte markers, including SCA-1,
CD34, CD24, CD38, PDGFRa. and PDGFRP [20,76,90,130]. across WT
and AKO samples, as well as quantification of the markers separated
by progenitor population for the eWAT. While we did not observe
substantial differences between the two genotypes in neither eWAT or
SCWAT depots at large, in the eWAT we observed significant differ-
ences within the CD9'Ly6C™~ compartment in the expression of CD38
(decreased in AKO) and PDGFRa (increased in AKO) (Supplemental
Fig. 3A). Recent single cell profiling of Wi cells has shown that
mesothelial cells do not differentiate into adipocytes [163], thus sug-
gesting that this result may reflect an accumulation of pluripotent
adipose progenitors at the expense of more committed precursors,
rather than actual gene expression changes in mesothelial cells per se.
Altogether, these findings confirm that adipocyte-specific deletion of
GPS2 associates with the accumulation of ASPCs, including an in-
crease in the eWAT in the abundance of fibro-inflammatory progenitors
previously shown to display anti-adipogenic properties [68].

3.5. Flow cytometric profiling of the adipose immune compartment
highlights genotype-dependent differences in macrophage
recruitment and identity

Similar to the methodology used for the non-immune compartment, we
also investigated by FACS the impact of adipo-specific GPS2 deletion
on the immune compartment. Based on the differential clustering
observed by RNA-seq and the increase in CLS, we focused on B cells,
Dendritic cells, and Macrophage populations. As expected upon HFD
[28,55,70,99,114], macrophages gated on the basis of general
markers CD11b and F4/80 are strongly represented in both AT depots
(Figure 3D). Macrophages were also found significantly increased in
the scWAT of AKO mice as compared to WT littermates (Figure 3D,E).
When dissecting the different macrophage subtypes based on pres-
ence of selective markers, we observed three distinct populations,
shown via representative plots in Figure 3F, that correspond to clas-
sically activated M1 macrophages (CD11c"9", CD206""), alternatively
activated M2  macrophages  (CD11¢°",cD206™9"),  and
CD11c"9" cD206M" M2-like macrophages [117,118]. The M2-like
are more greatly represented in the eWAT than scCWAT, whereas the
classic M1 subtype is more abundant in the scWAT (Figure 3E,F). In
comparing these populations across littermates, we found that the
proportion of M2 cells was increased, most significantly in the eWAT,
in the SVF of AKO mice (Figure 3E,F). As shown in Supplemental
Fig. 4A, no significant differences were observed between WT and
AKO when examining the expression of CD206 or CD11c, nor in the
expression of these markers across the two depots, regardless of
genotype. In contrast, comparing the MFI of specific markers of
macrophage activation/subtypes within specific subpopulations

revealed a decrease in CD86 and CD40 expression in M2 cells from
eWAT AKO mice as compared to WT (Supplemental Fig. 4B) thus
pointing towards possible differences in macrophage-dependent T cell
activation [113]. We also recorded a near significant increase in the
expression of CD64 in M2-like cells from the scWAT of AKO mice as
compared to WT littermates, which could be indicative of increased
polarization of this subtype towards an M1 phenotype in accord with
the increase in macrophages with an M1 signature observed by
scRNAseq [134] (Supplemental Fig. 4B).

Lastly, we addressed other immune cell types of interest. No differ-
ences were observed in the abundance of B cells, which comprise a
small fraction compared to the rest of the cellular milieu, between WT
and AKO mice, nor in the expression level of CD19, an essential B-cell
marker, via MFI quantification (Supplemental Fig. 4C). There was also
no significant difference between WT and AKO in terms of: (i) overall
dendritic cells abundance, as defined by MHCIl and CD11c expression
(Supplemental Fig. 4D); (i) proportion of conventional cDC1 and ¢DC2
subtypes, which was found to be skewed, as expected, towards the
¢DC2 phenotype (Supplemental Fig. 4D) [7,26,69,103,145,147]; (iii)
the expression of specific DC markers via MFl quantification
(Supplemental Fig. 4E) [13,31,71,161,175].

Overall, these results indicate that the major impact of GPS2 deletion in
adipocytes, in term of both cell number and functional profile of im-
mune cells within the adipose tissue, is on the macrophage
compartment, with an increase and possibly functional rewiring of
CD206™" M2 and M2-like macrophages.

3.6. Profiling of adipocyte gene expression and protein cargo of
adipo-secreted EVs from WT and GPS2-AKO mice

Together, the scRNAseq and FACs results indicate that loss of GPS2 in
mature adipocytes has a profound impact on the cellular composition
of the adipose tissue and its reorganization upon dietary challenge,
thus suggesting that GPS2 contributes to regulating the crosstalk
between adipocytes and other cell types in the early phases of
adaptation to HFD feeding. This led us to question how cell-to-cell
communication is facilitated. Because adipocytes are endocrine
cells, responsible for secreting factors that signal both locally and long-
range to other organs [3,12,65,128,133,139,149], we hypothesized
that loss of GPS2-mediated remodeling of gene expression in stressed
adipocytes impacts upon adipose tissue expansion via altered
expression of secreted factors. In accord with this hypothesis, gene
expression profiling by RNAseq of adipocytes from the eWAT and
scWAT WT and AKO mice exposed to 16 weeks of HFD showed an
enrichment for genes involved in cell communication and inflammatory
processes (visualized with EnrichR) [22,84,165] (Supplemental Table 4
and Figure 4A,B). In particular, when focusing on putative secreted
factors (as defined by application of the functional annotation tool
DAVID) [72,140], and visualized using ToppGene Suite [23], among
DEGs from both eWAT and scWAT, we observed a significant enrich-
ment for terms related to the extracellular matrix (ECM), including both
components of the ECM as well as remodeling enzymes (Figure 4C).
Genes upregulated in GPS2 null adipocytes included several collagens
(COL3A1, COL14A1, COL6A5, COL1A1, COL1A2), along with matrix
metallopeptidases (MMP2, MMP12, MMP13) and their inhibitors
(TIMP1, TIMP2), whereas other factors associated with ECM remod-
eling (ADAMTS1, ADAMTS5, HTRA1, CELA1) were found down-
regulated together with specific adipokines (RARRES2) and cytokines
(IL7) (Supplemental Fig. 5A). A similar trend was observed among
genes specifically regulated only in one depot (Supplemental Fig. 5B
and C), suggesting that loss of GPS2 may have a broad impact on
the expression of adipocyte secreted factors in HFD-fed mice.
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Figure 3: Comprehensive fluorescence activated cell sorting (FACS) of the SVF from WT and GPS2-AKO mice following 5 week, 60% HFD feeding, validates and
quantifies changes observed in immune and non-immune cell populations first observed in scRNAseq. (A) Gating strategy implemented to separate out non-immune from
immune stromal cells, on the basis of CD34 and CD45 expression, in both eWAT and scWAT. (B) Further characterization of the eWAT non-immune compartment, using a Ly6C vs
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separate out macrophages from other immune cell subtypes, done so on the basis of general macrophage markers F4/80 and CD11b, in both eWAT and scWAT. (D) Further
dissection of the macrophage compartment using markers classically associated with M1 (CD11c¢) and M2 (CD206) macrophage subtypes, resulting in separation of three distinct
clusters: M1 (CD11¢™9", CD206'"), M2 (CD11¢", CD206™9"), and M2-like (CD11c™", CD206™"). (E) Quantification of the general macrophage and macrophage subtype gates,
utilizing the frequency of parent statistic. Representative FlowJo plots and the accompanying frequency of parent statistic quantification for A,B,C,D,&E are from 4 independent
biological replicates, n = 7 WT, 9 KO. All quantification results are presented as mean + SEM. Statistical significance for all experiments was calculated by Welch’s ¢ test;

*signifies p value < 0.05, **signifies p value < 0.01.
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Figure 4: Adipocyte gene expression profiling from bulk RNA sequencing of adipocytes isolated from WT and GPS2-AKO mice following 16 weeks 60% HFD feeding
reveals transcriptional signatures related to inflammation, cellular communication and remodeling, and metabolic reprogramming. (A) Gene ontology enrichment
analysis of the upregulated differentially expressed genes from eWAT isolated adipocytes at 16 weeks of 60% HFD feeding (B) Gene ontology enrichment analysis of the
upregulated differentially expressed genes from scWAT isolated adipocytes at 16 weeks of 60% HFD feeding (C) Differentially expressed factors identified in adipo-derived
exosomes from the eWAT and scWAT of GPS2-AKO mice as compared to WT littermates, visualized using STRING (https:\\string-db.org) (D) Gene ontology enrichment anal-
ysis for differentially regulated secreted factors from both eWAT and scWAT AdExos. (E) ChiPseq tracks for Prdx1, Acaa2, Dist, and Dlat, showing peaks for SMRT, GPS2, RXR, and
PPARY during the course of 3T3-L1 differentiation (day 0 and day 6 respectively), (F) RT-qPCR gene expression in isolated adipocytes from WT and GPS2-AKO eWAT and scWAT
following 5 weeks, 60% HFD, for Prdx1, Acaa2, Dist, and Dlat. Data are expressed as sample mean between triplicate experiments +/— SEM. Statistical significance for all
experiments was calculated by Welch’s t test *signifies p value < 0.05.

In analyzing these signatures, we noticed that about half of the
differentially expressed genes were previously reported as being
associated with exosomes, as annotated by the Exocarta database
[81,107,109,143] (Supplemental Table 4). Adipocyte-derived exo-
somes (AdExos) are small extracellular vesicles secreted by adipocytes
and known to mediate cellular communication within the adipose

tissue as well as across different organs [32,33,44,60]. To further
characterize whether GPS2 deletion in adipocytes impacts the exo-
somal cargo, we decided to profile the protein content of exosomes
released by primary adipocytes isolated from GPS2-AKO and WT mice
via semi-quantitative mass spectrometry. AdExos were isolated from
adipocyte-derived conditioned media following completion of the 5
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week 60% HFD regimen (across two separate cohorts of mice for a
total of n = 4 WT, 6 KO), and subjected to protein extraction followed
by LC-MS/MS analysis. Across the eWAT and scWAT, we detected 316
unique proteins, 90% of which had been previously associated with
exosomal cargo, including half of the top 100 proteins that are
commonly regarded as general exosome markers [81,107,109,143]
and many factors previously identified as AdExo specific cargo
[38,67,86] (Supplemental Table 5).

Among these candidate signaling factors, we determined those that
were differentially secreted from WT and AKO adipocytes in each
depot. The largest majority of differentially regulated proteins were
upregulated in exosomes secreted from GPS2-AKO as compared to
WT littermates (Supplementary Table 5). This included 92 proteins in
AdExos from eWAT and 22 proteins from scWAT, whereas only 14
and 8 were found downregulated in eWAT and scWAT respectively.
Overall the differentially regulated factors were enriched for trans-
lation factors, fatty acid metabolism (ACAA2, FASN, ECH1), glycol-
ysis and TCA cycle (PGAM1, DLAT, GAPDH, DLST), focal adhesion
and integrin signaling (THBS1, LAMB1, LAMA4, LAMC1) (Figure 4D),
and thus likely involved in both remodeling of the ECM and metabolic
reprogramming of target cells, as described for exosome-mediated
communication across a variety of cell/tissue models
[58,152,168,173].

3.7. GPS2 is required for transcriptional regulation of exosomal
cargo proteins

These results confirmed that lack of GPS2 has a significant impact on
the content of AdExos that are released by energy-stressed adipo-
cytes from WT or GPS2-AKO mice at the onset of diet-induced
obesity, likely due to altered gene expression of selected cargo
factors. Because of the well-characterized role of GPS2 in tran-
scriptional regulation, we next asked whether differentially regulated
proteins are direct targets of GPS2 and other cofactors in the NCoR/
SMRT corepressor complex. Integration of the list of proteins
differentially regulated in GPS2-AKO eWAT and scWAT AdExos with
previous ChIPseq datasets [17,51,153] revealed that indeed 83 out of
92 proteins upregulated in the eWAT KO and 17 out of the 22 proteins
upregulated in the sScWAT KO are putative targets of GPS2-mediated
transcriptional regulation, based on its recruitment to the promoter
region of the gene in 3T3-L1 cells and RAW macrophages
(Supplemental Table 6). The large majority (65—80% depending on
the depot) of these genes are also bound by SMRT and/or NCoR,
indicating that GPS2 is likely recruited to their promoters as part of
the NCoR/SMRT corepressor complex (Supplemental Table 6 and
Figure 4E). Comparative analysis of these data sets also revealed that
GPS2 binding to the promoter region remains consistent - if not
increased - during 3T3-L1 differentiation, whereas NCoR and SMRT
are released upon induction of adipogenesis often concomitant to
PPARY binding (Figure 4E). These observations suggest that these
genes are repressed by the NCoR/SMRT corepressor complex in
preadipocytes, and their expression is likely upregulated as pre-
adipocytes differentiate into mature adipocytes. They also reveal that
the contribution of GPS2 to their transcriptional regulation extends
beyond basal repression, as previously shown for other PPARYy target
genes [19], and suggest that the lack of GPS2 may impair the re-
establishment of transcriptional repression in energy stressed adi-
pocytes. Indeed, via RT-gPCR analysis, we observed significant or
near significant upregulation of several candidate genes in GPS2-null
adipocytes from either depot, as compared to WT, including Prdx7,
Dist, and Dlat, whereas the upregulation of others, like Acaa2, may
depend on post-translational regulation (Figure 4F).
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3.8. Impact of AdExos on adipose-to-ASPCs communication

To confirm that changes in the exosomal cargo secreted from GPS2
null adipocytes are, at least in part, responsible for the phenotypic
differences in cellular composition of the SVF observed by scRNAseq
and FACS in HFD-challenged mice, we assessed the effect of AdExos
on adipocyte differentiation in vitro. Because of limited differentiation
capacity of eWAT SVF in vitro [49,102,105,151], we used primary
SCWAT SVF derived from the WT and GPS2-AKO mice following the
HFD regimen, and differentiated them in presence or absence of
exosomes released by eWAT adipocytes isolated from either WT or
AKO HFD-fed mice. As shown in Figure 5A, at baseline, addition of
adipogenic cocktail results in SVF differentiation (as indicated by OQil
Red O staining, a dye used for staining neutral triglycerides and lipids
that is commonly used as a measure of adipocyte maturation) for both
WT and GPS2-AKO-derived cells, even though the adipogenic capacity
of the GPS2-AKO SVF appears to be slightly lower. Upon addition of WT
AdExos to either WT or GPS2-AKO SVF, the same pattern displayed at
baseline is observed. However, in presence of GPS2-KO AdExos, cell
differentiation is drastically reduced, with the KO SVF in particular
showing only few lipid-laden cells (Figure 5A). These results confirm
that factors present in the cargo of AdExos released by GPS2-null
adipocytes have a negative impact on the differentiation capacity of
stromal APSCs.

To identify, among differentially expressed AdExos cargo proteins,
possible mediators of direct adipocyte-to-SVF signaling, we compared
the list of differentially expressed proteins with genes identified as
putative receptor—ligand pairs across adipose tissue cell types via
scRNAseq combined to CellPhoneDB analysis [43,47]. Out of the 92
proteins significantly upregulated in GPS2-AKO epiWAT AdExos, we
found 14 “ligands” that are putative mediators of communication
between adipocytes and other immune and non-immune cell types in
the adipose tissue, including critical growth factors IGF2 and TGFp1
and several collagen types. Similarly, out of 22 proteins upregulated in
GPS2-AKO scWAT exos, 5 overlapped with reported ligand—receptor
pairs (Supplemental Table 7). When focusing on putative mediators
of adipocyte-to-ASPC communication, we identify THBS1 and LAMC1
as upregulated in both depots, as well as two collagen family members
COL5A1 and COLGA2 (Figure 5B). Gene expression analysis by RT-
gPCR confirmed that they are all, except for COL6A2, upregulated in
GPS2 null adipocytes (Figure 5C), with their regulation likely occurring
at the transcriptional level as indicated by promoter occupancy by
GPS2 in differentiating adipocytes (Figure 5D). Intriguingly, these
proteins are important for remodeling of the extracellular matrix to-
wards a more fibrotic phenotype and have been associated with feed-
forward  loops  with  anti-adipogenic ~ TGFB  signaling
[1,34,52,62,83,85,91,98,112,156]. Because TGFp itself had been
identified among the proteins upregulated in GPS2-AKO eWAT AdExos
(Supplemental Table 5), we measured the expression of the Tgfb1
gene as well by RT-gPCR and found it significantly upregulated in
primary adipocytes isolated from the eWAT of GPS2-AKO mice as
compared to their WT counterparts (Figure 5E). Notably, interrogation
of ChIPseq data confirmed that the Tgfb7 gene is also a direct target of
GPS2 transcriptional regulation (Figure 5E).

These results together suggested increased pro-fibrotic, TGF[3 signaling
being released through exosomes by the energy stressed adipocytes
lacking GPS2, as compared to the adipocytes of WT littermates. In
accord with this conclusion, inhibiting TGFf signaling with TGFBR1
kinase inhibitor SB431542 rescues adipogenesis in presence of KO-
derived AdExos (Figure 5F). Moreover, treatment with SB431542
alone provides a slightimprovement in the differentiation capacity of the
SVF isolated from GPS2-AKO mice (Figure 5F), suggesting that aberrant
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Figure 5: GPS2KO0 derived Ad-Exos display a functional impact on the differentiation capacity of stromal progenitor cells through exacerbation of a pro-fibrotic
remodeling signature and putative direct delivery of cellular cargo. (A) Comparison of the differentiation capacity of primary WT and GPS2-AKO scWAT SVF cells following 5
week, 60% HFD, with addition of adipogenic cocktail and differing combinations of WT and GPS2-AKO AdExos. Lipid droplet accumulation is visualized by Qil Red O staining. AdExos
were added within a range of 10°-1 O”/uL. (B) Graphical representation of CellPhoneDB analysis, highlighting shared mediators between eWAT and scWAT that represents direct
adipocyte-to-SVF signaling. Created with BioRender.com. (C) RT-qPCR gene expression in isolated adipocytes from WT and GPS2-AKO eWAT and scWAT following 5 weeks, 60%
HFD, for Thbs1, Lamc1, Col5a1, and Col6aZ; Data are expressed as sample mean between triplicate experiments +/— SEM. Statistical significance for all experiments was calculated
by Welch’s ttest, **signifies p value < 0.01. (D) Representative ChIPseq tracks showing promoter occupancy by GPS2 in differentiating adipocytes for Thbs?, Lamc1, and Col5al. (E)
ChiPseq tracks showing promoter occupancy by GPS2 in differentiating adipocytes for Tgfb1, along with RT-qPCR analysis in isolated adipocytes from WT and GPS2-AKO eWAT and
SCWAT following 5 weeks, 60% HFD for Tgfb1. Data are expressed as sample mean between triplicate experiments +/— SEM. Statistical significance for all experiments was calculated
by Welch’s ttest, **signifies p value < 0.01 (F) Comparison of the differentiation capacity of primary WT and GPS2-AKO scWAT SVF cells following 5 week, 60% HFDin presence of
GPS2-AKO AdExos alone or with TGFBR1 kinase inhibitor SB431542 (SB) (5 umol/L). Lipid droplet accumulation is visualized by Oil Red O staining.
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TGFP signaling is a contributing factor to the development and main-
tenance of antiadipogenic progenitors in culture.

To further investigate the extent to which upregulation of TGF(
signaling may be impacting on the fate of adipose progenitors, we also
analyzed the differential gene expression signature of each AP cluster
previously defined by scRNAseq using the MAST statistical framework
and the Seurat R toolkit [54,66], and then employed EnrichR as a
means of visualizing these signatures [22,84,165] (Supplemental
Table 8). Strikingly, terms related to TGFP regulation and pro-fibrotic
ECM remodeling were found significantly enriched across all eAP
clusters, including ASPCs eAP1 and eAP2, and committed eAP3
(Supplemental Fig. 6A), thus confirming that changes in signaling
molecules secreted from GPS2-null adipocytes promote rewiring of
ASPCs gene expression. An enrichment in genes associated with TGF[3
signaling was also observed among the DEGs between GPS2-AKO and
WT M2 macrophage cluster, along with several inflammation/inflam-
matory signaling terms (Supplemental Fig. 6B). Interestingly, results
consistent with a TGFB-related enrichment were also observed for
SCWAT clusters scAP1, scAP2, and scAP3 (Supplemental Fig. 6C), even
though elevated expression of TGFB1 was restricted to the eWAT at
both protein and mRNA level. Collectively, these results support that
gene expression signatures of both immune and non-immune stromal
cells at the onset of obesity are remodeled towards a pro-fibrotic and
anti-adipogenic profile in response to signals driven by GPS2-null,
energy stressed adipocytes

4. DISCUSSION

Diet-induced adipose tissue expansion is a complex adaptive response
that requires coordinated reprogramming of many different cell types

NCoR/SMRT
corepressor

GPS2

complex
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and thus relies on rewiring of intercellular communication pathways.
Here, we have shown that failed rewiring of exosome-mediated
signaling from energy stressed adipocytes to other stromal cells at
the onset of obesity contributes to accelerated progression towards
metabolic dysfunction. Profiling of the stromal compartment of GPS2-
AKO mice exposed to short term HFD through scRNA-seq and FACS
has revealed that loss of GPS2 in mature adipocytes has a profound
effect on the overall remodeling of eWAT and scWAT tissues, with both
depots exhibiting changes in the immune profile and accumulation of
anti-adipogenic progenitors. Our results indicate that transcriptional
regulation by GPS2 and associated cofactors plays an essential role in
the reprogramming of the adipocyte secretome. In particular, in the
absence of GPS2, the transcriptional regulation of several factors that
are secreted by adipocytes through adipocyte-derived exosomes
(AdExos) is impaired, leading to elevated levels of TGF( and other pro-
fibrotic signaling factors in the cargo of AdExos released by GPS2-null
energy-stressed adipocytes, and thus to the establishment of an anti-
adipogenic and fibroinflammatory environment (Figure 6).

TGFP signaling is known to inhibit adipogenesis and adipocyte stem
cell (ASC) commitment, and its downregulation is required for adipo-
genesis and healthy adipose tissue remodeling, particularly in visceral
tissue depots [45]; M.-J. [87]; S.-N [96,123,127,167]. In agreement
with other studies [11,115,117,124,135,154], our data emphasize the
importance of a fine-tuned temporal regulation of TGF[3 secretion and
support the hypothesis that pro-fibrotic TGFf signaling in the adipose
tissue is driven by different cell types, with adipo-derived TGFf3
signaling being amplified by increased recruitment of TGF[-secreting
macrophages.

Unexpectedly, our results also indicate that adipo-derived TGFp is, at
least in part, secreted through exosomes, which may be facilitating its
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Figure 6: Impact of GPS2 deletion in adipocyte on cellular crosstalk. Schematic representation of the effects of adipose-specific GPS2 deletion on the crosstalk between
energy-stressed mature adipocytes and other stromal cells. Loss of GPS2 leads to an increase in the expression of secreted factors that contribute to ECM remodeling and
metabolic reprogramming of target cells. In particular, GPS2 binds to and regulates the expression of several genes that are secreted, upon translation, through Adipose-derived
Exosomes (AdExos), including mediators of TGFf signaling such as Tgfb1, Thbs1, LamC1, Col5a1 and others. Adipo-derived signaling promotes the rewiring of gene expression in
progenitor and immune target cells, contributing to the accumulation of anti-adipogenic progenitors and the rewiring of the macrophage compartment as revealed by scRNAseq.
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uptake by target cells. Exosomes have recently emerged as critical
players in intercellular communication [80,108,122]. Adipose-derived
exosomes in particular have been associated with regulation of lipid
metabolism, inflammation and insulin-resistance [166,169,171]; B
[172,177,180]. However, a clear understanding of the role and rele-
vance of exosomes secreted by different cell types within the adipose
tissue and the molecular mechanisms controlling the loading of spe-
cific proteins/miRNAs into the exosomes at any given time is currently
lacking. Overall, our results highlight the importance of exosomes
secreted by energy-stressed adipocytes in mediating paracrine
communication to other adipose stromal cells, and suggest that the
gene expression profiles of both adipose macrophages and ASPC
populations gets rewired towards an anti-adipogenic fate upon expo-
sure to AdExos secreted by GPS2-null adipocytes. Integrated analysis
of the mature adipocyte transcriptome and the proteome of adipocyte-
derived exosomes from GPS2 WT and AKO mice exposed to short term
HFD has in fact revealed that the gene expression program regulated
through GPS2-mediated repression in energy stressed adipocytes,
includes many anti-adipogenic exosomal proteins, including TGFf3 and
other pro-fibrotic factors. Intriguingly, this signature presents striking
similarities with that of fibrosis-inducing exosomes secreted by tubular
cells exposed to high glucose in diabetic kidney disease [162]. Based
on these findings, we speculate that transcriptional rewiring of the
adipo-derived exosomal cargo at the onset of diet-induced obesity is
critical for promoting an environment that is conducive to healthy
tissue expansion through de novo adipogenesis, as opposed to one
favoring hypertrophy and tissue fibrosis.

The impact of GPS2-mediated transcriptional regulation of exosomal
components on inter-organ communication processes remains to be
determined, but it is important to acknowledge that exosomes
contribute to long range inter-organ communication as well as to
local paracrine signaling [8,25,36,57,82,126]. This suggests that the
altered exosomal content observed in the absence of GPS2 may also
play a direct role in contributing to the worsening of whole body
metabolic fitness in addition to the indirect effects caused by
increased lipid spillover, enhanced local inflammation, and cytokine
and adipokine signaling. As an example, loss of adipose GPS2 was
found to be inhibitory for insulin secretion from pancreatic islets [40].
As AdExos were recently involved in adipose-pancreas crosstalk [60],
future studies should investigate the extent to which altered
expression of their cargo may play a role in this process. In the
absence of GPS2, for example, we observed the upregulation of Dbj,
a factor with a well-established record of involvement in pancreatic
signaling and regulation of body mass homeostasis and obesity
[10,77,97,142]. that may be relevant to the modulation of insulin
secretion by beta cells.

Other exosomal factors found upregulated in the absence of GPS2
instead are good candidates for mediating the communication be-
tween adipocytes and adipose stromal cells. Among them LAMC1,
COL5A1, and THBS1 were previously identified as candidate ligands
for signaling to ASPCs and macrophages [47] and are known as
important ECM regulators and profibrotic signaling molecules
[14,24,37,78,110]. Glycoprotein Thrombospondin-1 (THBS1), in
particular, is an adipokine acutely upregulated in obesity with
established connections to adipose inflammation, insulin resistance,
and modulation of preadipocyte proliferation [83,98,156]. THBST1
was shown to activate fibrotic tissue damage by promoting collagen
deposition and to participate in a feed forward loop in which it
licenses the activation of latent TGFp and is activated by TGFf
through SMAD3 transcription [35]. Thbs1 expression is tightly

regulated at the transcriptional level, and previous studies high-
lighted the importance of a negative regulatory region located in the
same area where we recorded GPS2/SMRT occupancy [148].
Intriguingly, an enrichment for thrombospondin genes was also
present in human adipose-derived exosomes shown to promote
breast cancer progression and epithelial—mesenchymal transition
(EMT), thus showing a thread worth pursuing about the role of
exosomal cargo rewiring in the adaptation to obesity and its impact
on the pathogenesis and progression of cancer in obese and dia-
betic patients [73].

Mechanistically, our results indicate that the maladaptive rewiring of
the exosomal cargo in the absence of GPS2 includes the upregulation
of several profibrotic genes through transcriptional derepression.
Indeed, most of the factors we found differentially regulated in exo-
somes secreted by GPS2-null adipocytes are transcriptionally
repressed by the GPS2-containing NCoR/SMRT corepressor complex in
preadipocytes and are marked by both GPS2 and PPARY promoter
occupancy in differentiating adipocytes. Based on structural evidences
about the interplay between different corepressors in the NCoR/SMRT
corepressor complex [120], we propose that compromised assembly
of the NCoR/SMRT corepressor complex in the absence of GPS2 may
explain the observed increase in gene expression. This provides a
mechanistic explanation for failed rewiring of the exosomal cargo
secreted by energy stressed adipocytes in GPS2-AKO mice exposed to
a short-term dietary challenge, in a similar fashion to the derepression
of inflammatory cytokines reported in GPS2-null macrophages [153],
and adds to a large body of literature highlighting the importance of
NCoR/SMRT corepressors and associated cofactors in the modulation
of lipid metabolism, adipose tissue functions, and metabolic health
[5,46,48,53,79,95,119,129,131,141]. Future studies investigating the
extent to which this can be rescued by modulating aberrant ubiquiti-
nation activity in the absence of GPS2 may provide useful translational
insights for the treatment of obesity and associated metabolic disor-
ders. The fact that common regulatory strategies are employed for
modulating the expression of multiple factors converging on promoting
a maladaptive phenotype, in particular, may provide unique opportu-
nities for developing therapeutic approaches targeting the mechanism
of increased secretion rather than aiming at blocking individual pro-
fibrotic factors.
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