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Abstract: Central nervous system (CNS) trauma activates a persistent repair response that leads to
fibrotic scar formation within the lesion. This scarring is similar to other organ fibrosis in many ways;
however, the unique features of the CNS differentiate it from other organs. In this review, we discuss
fibrotic scar formation in CNS trauma, including the cellular origins of fibroblasts, the mechanism of
fibrotic scar formation following an injury, as well as the implication of the fibrotic scar in CNS tissue
remodeling and regeneration. While discussing the shared features of CNS fibrotic scar and fibrosis
outside the CNS, we highlight their differences and discuss therapeutic targets that may enhance
regeneration in the CNS.
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1. Introduction

Tissue injury activates a cascade of wound healing mechanisms to clear cellular debris,
limit further damage, and initiate repair of the injured tissue. In this process, fibroblasts
deposit extracellular matrix (ECM) proteins, including fibrillar collagen and fibronectin,
which are essential for wound closure and healing. However, excessive and prolonged
deposition of these proteins due to an uncontrolled wound healing response leads to
fibrosis and fibrotic scar formation that affects the functional restoration of the tissue [1,2].
Apart from fibrosis in injured tissue, fibrosis is common in many pathological conditions,
occurring in organs such as the liver [3–7], heart [8–12], kidneys [13–17], lungs [18–21], and
systemic sclerosis [22–25].

Insult to the central nervous system (CNS) that is induced by trauma generates
cellular debris, activates resident cells, infiltrates circulating immune cells, and eventually
forms two distinct scars: glial scar and fibrotic scar [26]. The glial scar, unique in CNS
injuries, is mainly formed by reactive astrocytes, which are characterized by the increased
expression of glial fibrillary acidic protein (GFAP), hypertrophy, and the extension of
processes [27,28]. These cells surround the lesion and separate the injured area from
uninjured tissue. Oligodendrocyte precursor cells (OPCs) [29–32] and microglia [33–35]
are also located in the glial scar region. On the contrary, the fibrotic scar is located in
the lesion core and is characterized by the presence of fibroblasts and fibroblast-like cells
depositing ECM proteins [36]. Even though the CNS glial and fibrotic scars are in close
proximity and there is active cross-talk between them [28,37], they are well demarcated
with the glial scar on the lesion border and fibrotic scar located inside the injured area.
Compared to other organs, the literature on fibrosis in CNS is minimal. The outcomes of
fibrosis in the CNS and outside the CNS are similar. Both result in the overproduction
of ECM proteins, causing hardening/scarring of tissue and organ failure; however, their
path to accomplish this task are quite different. These differences may be assigned to the
unique CNS environment [38,39], including the immune-privileged and highly regulated
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neurovascular unit that is commonly referred to as the blood-brain barrier (BBB) and the
blood spinal cord barrier (BSCB) [40–43]. As a result, the cellular origins and cellular
mediators of fibrosis in the CNS are unique; thus, little is known about their implications in
CNS fibrosis. This review focuses on the current knowledge surrounding the pathogenesis
of fibrosis following trauma to the CNS. We will discuss the cellular origins of fibroblasts,
their spatial and temporal distribution, the mechanism of fibrotic scar formation, and the
pathological roles of the fibrotic scar. These are all factors that are important in gaining a
better understanding of fibrotic scar in CNS and more successful interventional treatments
for CNS trauma.

2. Fibrotic Scar Components

The components of fibrotic scar in CNS injuries are summarized in Table 1.

Table 1. This table summarizes the critical components that are found in the CNS fibrotic scar.

Fibrotic Scar Components Specific Integrant Reference

Fibroblast/Fibroblast-like cells – [36,44–47]

ECM
Collagen I, IV [48–51]

Fibronectin [36,52–54]
Laminins [36,54]

Others

EphB2 [37,55]
Phosphacan [56]

NG2 [56]
Tenascin [56]

Semaphorin III [57]

3. Timing of Fibrotic Scar Formation in the CNS

Fibrotic scar formation starts in the sub-acute phase of spinal cord injury (SCI), and
its maturation continues in the chronic phase [58]. In mouse SCI, fibroblasts start accumu-
lating in the lesion core around 5 days post-injury (dpi), and their number peaks around
7 dpi [36,44,45]. The increased fibroblasts in the lesion correlate with macrophage infiltra-
tion to the injury area [45]. As the number of fibroblasts increases, ECM protein deposition
becomes prominent in the lesion [36,59]. By 14 dpi, the matured fibrotic scar is formed in
the lesion core of the injured spinal cord and brain. This scar remains in the lesion core
chronically after injury (56 dpi) [36,45,59,60]. A glial scar surrounds the mature fibrotic scar
and infiltrated macrophages. Similar to the fibrotic scar, reactive astrocytes and microglia
contribute to the maturation of the glial scar by 14 days after SCI [28,33,61].

4. The Cellular Origins of Fibroblasts in the Fibrotic Scar

Fibroblasts are cells of the connective tissue that produce ECM proteins and main-
tain tissue homeostasis. Fibroblasts are activated in injured tissues and differentiate into
myofibroblasts, producing growth factors, depositing ECM proteins, and contracting the
wound [62,63]. In the CNS, fibroblasts are present in the meninges and choroid plexus at
birth. During the first few weeks after birth, they also appear in the perivascular space
in the parenchyma [39,64]. In adults’ healthy CNS, the localization of fibroblasts remains
limited to meninges, the perivascular space, and choroid plexus [39,65]. However, in CNS
injuries, the injury epicenter is filled with fibroblasts, raising the question of where these
fibroblasts come from. The origins of fibroblasts in the CNS fibrotic scar are discussed in
this review and summarized in Figure 1.
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Figure 1. Origins of fibroblasts in the CNS fibrotic scar. This figure summarizes the origins of 
fibroblasts that contribute to the deposition of ECM proteins and the formation of the fibrotic scar 
in the CNS. This image was created with BioRender.com. 

4.1. Meningeal Fibroblasts 
Meningeal fibroblasts have long been shown to play a role in the fibrotic scar for-

mation in CNS trauma after migrating into the lesion through the torn meninges 
[37,60,66,67]. Meningeal cells that are co-cultured with astrocytes do not mix and form a 
structure that is similar to the CNS lesions in vivo with fibroblasts in the core depositing 
the ECM proteins and astrocytes surrounding them as in the glial scar [68]. Initial reports 
suggest that if dura, the outermost layer of meninges, remains intact, meningeal fibro-
blasts cannot migrate into the lesion, and fibrotic scar formation is attenuated [69]. How-
ever, a fibrotic scar still forms in the contusive SCI mouse model, in which the dura re-
mains intact. This fibrotic scar has a different morphology compared to the one that is 
formed in the models in which the dura is damaged [36]. Also, a fibrotic scar is observed 
in non-traumatic pathologies such as multiple sclerosis (MS) [70], suggesting that fibro-
blast-like cells from different origins are present in addition to meningeal fibroblasts. 

4.2. Perivascular Fibroblasts 
Perivascular fibroblasts are located in the perivascular space and are loosely attached 

to the larger blood vessels in the CNS but are absent from the capillaries [65,71]. Peri-
vascular fibroblast contribution to CNS fibrotic scar formation was first described by 
Soderblom et al. using the Col1α1-GFP mouse model [36]. This transgenic mouse express-
ing GFP under collagen α1(I) (Col1α1) promotor is a valuable mouse model to study CNS 
fibroblasts in the mouse models of traumatic brain injury (TBI) and SCI [36,70–72]. Fol-
lowing contusive SCI, Col1α1-GFP cells accumulate in the injury epicenter and form the 
fibrotic scar 2 weeks after SCI. All of these Col1α1-GFP fibroblasts were also positive for 
platelet-derived growth factor receptor β (PDGFRβ). This study proposed that scar form-
ing fibroblasts originate from perivascular fibroblasts and not meningeal fibroblasts be-
cause the dura remained intact in contusive SCI and Col1α1-GFP cells were observed leav-
ing the blood vessels and migrating toward the fibrotic scar [36]. Moreover, in a rat model 
of brain injury that was induced by 3-nitropropionic acid (3-NP), cells expressing PDG-
FRβ, located abluminal to cells expressing smooth muscle actin (αSMA) on larger blood 

Figure 1. Origins of fibroblasts in the CNS fibrotic scar. This figure summarizes the origins of
fibroblasts that contribute to the deposition of ECM proteins and the formation of the fibrotic scar in
the CNS. This image was created with BioRender.com (accessed on 29 July 2022).

4.1. Meningeal Fibroblasts

Meningeal fibroblasts have long been shown to play a role in the fibrotic scar formation
in CNS trauma after migrating into the lesion through the torn meninges [37,60,66,67].
Meningeal cells that are co-cultured with astrocytes do not mix and form a structure that is
similar to the CNS lesions in vivo with fibroblasts in the core depositing the ECM proteins
and astrocytes surrounding them as in the glial scar [68]. Initial reports suggest that if dura,
the outermost layer of meninges, remains intact, meningeal fibroblasts cannot migrate into
the lesion, and fibrotic scar formation is attenuated [69]. However, a fibrotic scar still forms
in the contusive SCI mouse model, in which the dura remains intact. This fibrotic scar has
a different morphology compared to the one that is formed in the models in which the
dura is damaged [36]. Also, a fibrotic scar is observed in non-traumatic pathologies such as
multiple sclerosis (MS) [70], suggesting that fibroblast-like cells from different origins are
present in addition to meningeal fibroblasts.

4.2. Perivascular Fibroblasts

Perivascular fibroblasts are located in the perivascular space and are loosely attached
to the larger blood vessels in the CNS but are absent from the capillaries [65,71]. Perivascu-
lar fibroblast contribution to CNS fibrotic scar formation was first described by Soderblom
et al. using the Col1α1-GFP mouse model [36]. This transgenic mouse expressing GFP un-
der collagen α1(I) (Col1α1) promotor is a valuable mouse model to study CNS fibroblasts in
the mouse models of traumatic brain injury (TBI) and SCI [36,70–72]. Following contusive
SCI, Col1α1-GFP cells accumulate in the injury epicenter and form the fibrotic scar 2 weeks
after SCI. All of these Col1α1-GFP fibroblasts were also positive for platelet-derived growth
factor receptor β (PDGFRβ). This study proposed that scar forming fibroblasts originate
from perivascular fibroblasts and not meningeal fibroblasts because the dura remained
intact in contusive SCI and Col1α1-GFP cells were observed leaving the blood vessels
and migrating toward the fibrotic scar [36]. Moreover, in a rat model of brain injury that
was induced by 3-nitropropionic acid (3-NP), cells expressing PDGFRβ, located ablumi-
nal to cells expressing smooth muscle actin (αSMA) on larger blood vessels, resembling
perivascular fibroblasts spread to the extravascular area within the lesion core 14–28 days
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post-3-NP injection. Processes of PDGFRβ-expressing cells form a mesh that colocalizes
with collagen fibrils [73]. In experimental autoimmune encephalomyelitis (EAE) lesions,
CNS fibroblasts expressing Col1α1 are the main cells that are responsible for fibrotic scar
formation. However, the partial contribution of perivascular fibroblasts versus meningeal
fibroblasts cannot be distinguished as both express Col1α1 [47,70].

Despite these observations regarding the fibrotic scar formation by perivascular fibrob-
lasts, the molecular identity and morphology of perivascular fibroblasts have only been
recently characterized by single-cell RNA-sequencing (scRNA-seq) and in vivo two-photon
microscopy [65,71,74,75]. They are cells with flattened somata and thin ruffled processes.
Perivascular fibroblasts are enriched for transcripts that encode ECM proteins such as
fibrillar and non-fibrillar collagens, ECM modifiers, and ECM receptors [65,71]. Moreover,
scRNA-seq identified two subtypes of perivascular fibroblasts (Type I and II) in mice and
three subtypes in the human brain (Type I, II, and III) [65,75]. Based on the transcriptional
analysis in healthy humans, Type I perivascular fibroblasts are likely the primary subtype
that drives the fibrotic scar formation after CNS injuries [75]. More investigation is required
to determine the contribution of perivascular subtypes in fibrotic scarring.

4.3. Pericytes

Pericytes are perivascular cells covering blood vessels on the capillaries and venous
vasculature [74,76]. In contrast to perivascular fibroblasts, pericytes are firmly attached
to blood vessels as they are embedded in the basement membrane of the vessels [65].
They are identified by various markers such as platelet-derived growth factor receptor α
(PDGFRα), PDGFRβ, αSMA, desmin, CD13, and neuron-glial antigen 2 (NG2). Although
these markers are not pericyte-specific and overlap with other perivascular cells, such as
vascular smooth muscle cells and perivascular fibroblasts, they have been widely used
in pericyte studies as pericyte markers [77,78]. Observations regarding pericyte-derived
fibrotic scarring have been mainly based on the above-mentioned marker expression.
Pericyte-derived fibrotic scar has been reported in brain injury [79] epileptogenesis [80],
experimental ischemic lesions, and human stroke lesions [81], as well as in other tissues and
organs, including dermal fibrosis [82], kidney fibrosis [83–85], skeletal muscle fibrosis [86],
and liver fibrosis [87].

A subpopulation of pericytes, known as Type A pericytes, has been suggested as
fibroblasts’ origin in pathological scarring after SCI, TBI, and EAE [44,46]. Type A pericytes
proliferate and leave the blood vessels, deposit ECM proteins, and contribute to fibrotic scar
formation in CNS injuries. While Type A pericytes are identified based on the expression of
Glast, an astrocyte marker, they also express PDGFRα, PDGFRβ, and CD13 [44,46,88]. Type
A pericytes are abluminal to Type B pericytes, with Type B expressing desmin and αSMA in
addition to other pericyte markers [44]. Despite these observations and many other studies
regarding different subtypes of pericytes [89], a recent scRNA-seq study did not identify
pericytes subtypes in mouse brain vasculature [65]. However, two distinct subtypes have
been identified in the human brain by scRNA-seq [74]. Further investigations are required
to determine the role of pericytes subtypes in CNS fibrotic scarring.

4.4. Endothelial Cells

Endothelial cells are the innermost layer of cells forming the blood vessels. Endothelial
cells can transition to fibroblast-like cells through the process of endothelial to mesenchy-
mal transition (EndoMT) [90,91]. EndoMT is a process in which endothelial cells lose their
characteristic endothelial features and acquire mesenchymal properties [92,93]. During
EndoMT, the expression of endothelial markers such as vascular endothelial cadherin
(VE-cadherin), CD31, von Willebrand factor (vWF), and platelet endothelial cell adhe-
sion molecule-1 (PECAM-1) are reduced, and the expression of mesenchymal markers
such as αSMA and vimentin are increased [91,94–96]. In addition, endothelial cells tran-
sition towards a mesenchymal phenotype by acquiring spindle shape morphology and
contractibility [97,98], becoming migratory, and demonstrating increased ECM protein
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expression [99,100]. Transforming growth factor (TGF)-β acts as a master regulator of
EndoMT [101] and is the primary cytokine driving the formation of fibrotic scars in the
injury site [102,103].

Despite existing studies of EndoMT and endothelial-derived fibroblasts in different
tissues [104–107], it is unclear whether they contribute to CNS fibrotic scar formation. A
study in our lab has proposed endothelial cells as a possible cellular origin of fibroblast-
like cells in fibrotic scar after SCI [108]. This study showed that engulfment of myelin
debris induces changes in endothelial cell characteristics that resemble EndoMT. Moreover,
engulfment of myelin debris increased TGF-β1 expression, and specific blockage of TGF
signaling abrogated myelin debris-induced EndoMT. Autophagic processing of engulfed
myelin debris is crucial for myelin debris-induced EndoMT because the depletion of Atg5
in endothelial cells failed to induce EndoMT. In vivo, EndoMT is also observed in the
lesion core after SCI and in EAE. This study demonstrated that endothelial cells that
undergo EndoMT following myelin debris engulfment and processing could differentiate
into fibroblast-like cells that contribute to fibrotic scar formation in SCI lesions [108].

Moreover, a study investigating BBB dysfunction in experimental animal models of
stroke, MS, seizure, and TBI also suggested a potential role of endothelial cells in fibrotic
scar formation [109]. Based on these studies, transcription of some ECM proteins and
ECM modulators such as collagens, extracellular proteases, and extracellular protease
inhibitors are upregulated in brain endothelial cells with EndoMT implicated in these
disease conditions [109]. EndoMT is observed in human post-mortem MS brain tissues [110]
and stroke lesions in a mouse model [111]. Therefore, endothelial cells may be a common
cellular origin of fibroblast-like cells in CNS demyelinating diseases. More investigations
are required to understand the contribution of endothelial cells to CNS fibrosis.

4.5. Circulating Blood Fibrocytes

Circulating blood fibrocytes are bone marrow-derived mesenchymal progenitors that
simultaneously express stem cell markers, such as CD34, monocyte markers, such as CD45,
and have some fibroblasts characteristics, such as an active collagen I and fibronectin
synthesis [112]. Circulating blood fibrocytes migrate to the injured tissue following injury
and/or inflammation and differentiate into fibroblasts [113,114]. Fibrocytes contribute to
fibrotic reaction in skin wounds [115], atherosclerosis [116], liver fibrosis [117], cardiomy-
opathy [118], and lung fibrosis [119]. Fibrocytes in the CNS have been reported in fibrotic
wall formation in brain abscesses. During a pathogenic infection in the brain, collagen and
fibronectin deposition form a fibrotic wall to encapsulate the abscess and prevent its spread
to healthy parenchyma [120]. In the EAE model, fibrotic scarring is mainly attributed to the
proliferating CNS fibrocytes and not circulating blood fibrocytes [47]. It remains unclear
whether fibrocytes are involved in forming CNS fibrotic scars following sterile injuries such
as SCI and TBI.

4.6. Approaches for Studying the Origins of Fibroblasts in the Fibrotic Scar

Based on the studies that are discussed above, single approaches are insufficient to
accurately determine the origin of fibroblasts in the CNS fibrotic scar. This is primarily
because perivascular fibroblasts and mural cells have a similar marker expression and are
located near each other [39]. Therefore, immunostaining or using a single transgenic mouse
line cannot determine the origin of fibroblasts within the fibrotic scar. A combination of
approaches as used by Dorrier et al. to determine fibroblasts’ origin in EAE mouse model
must be used to avoid confusion in interpreting experimental results [47]. These approaches
include: first, lineage tracing using different transgenic mouse lines to exclude mural cells
as fibroblasts’ origin; second, using bone marrow chimeric mice to exclude fibrocytes as
fibroblasts’ origin; and finally, scRNA-seq to determine the molecular identity of fibroblasts
within the fibrotic scar more precisely [47].
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5. The Mechanism of Fibrotic Scar Formation

Organ fibrosis results from a persistent tissue healing response which starts with
an inflammatory response and macrophage infiltration into the damaged tissue to clear
cellular debris after trauma to the organ. Immune cells are polarized toward the healing
phenotype (M2 macrophages and Th2 lymphocytes) and secrete profibrotic factors activat-
ing fibroblasts to deposit ECM proteins, such as fibrillar collagens. If this healing response
persists, the continuous activation of fibroblasts and deposition of ECM proteins creates
stiff scar tissue, which is different from the original tissue structure. Alternatively, during
normal wound healing, fibroblasts undergo apoptosis, collagen is turned over during ECM
remodeling, and pathological scarring is absent [2,121].

Similar to fibrosis outside the CNS, the inflammatory response and macrophage
infiltration are involved in fibroblast accumulation in CNS injuries. In the mouse SCI
model, both fibroblasts and infiltrating macrophages reside in the lesion core, and there is a
timely correlation between the presence of fibroblasts and infiltrating macrophages [45].
The reduction of circulating macrophages in the injured spinal cord reduced the density
of fibroblasts at 7 and 14 days after SCI, providing evidence that infiltrating macrophages
are involved in recruiting fibroblasts to the lesion core [45]. In the EAE mouse model, the
infiltration of T lymphocytes and macrophages is followed by fibroblast accumulation,
implicating that the inflammatory response orchestrates fibrotic scar formation in MS [47].

The mechanism of fibroblast activation to secrete ECM proteins is not well understood
in the CNS. However, similar mechanisms and principles in other organ fibrosis may
activate fibroblasts and initiate fibrotic scar formation in the CNS. In general, fibroblasts can
be activated in three ways: (1) profibrotic cytokine-induced activation, (2) direct activation,
and (3) self-activation [2].

5.1. Fibroblast Activation by Profibrotic Cytokines

Profibrotic cytokines such as TGF-β and platelet-derived growth factors (PDGFs) are
mainly secreted by M2 macrophages [122–126], and their major roles are to recruit and
activate fibroblasts [127,128].

5.1.1. TGF-β

TGF-β is the most potent profibrotic cytokine in fibroblast activation in different tis-
sues [129,130]. For a review of the TGF-β signaling pathway and its role in fibrosis, we
refer to [131,132]. Elevated levels of TGF-β1 and TGF-β2 are seen in CNS injuries [133–137].
Local injection of recombinant TGF-β into the injured brain in rats increases the deposition
of fibronectin and laminins [102]. On the contrary, the local injection of anti-TGF-β1 [102]
or anti-TGF-β2 antibodies [138] into the injured brain attenuates fibrotic scar formation,
as depicted by the absence of laminins and fibronectin. While these studies show the
importance of TGF-β in CNS fibrotic scar formation, it is also essential to identify TGF-
β-producing cells and their target cells. Microglia/macrophages are the major source
of TGF-β1 in ischemia, MS, TBI, and SCI [134,137,139,140]. TGF-β1 is also produced by
astrocytes [137,141], meningeal fibroblasts [140], and neurons [137]. The identification of
cells that are expressing TGF-β receptors in CNS lesions can reveal the target cells of this
pathway. TGF-β receptors are not abundantly expressed in the normal brain [60]. However,
in active demyelinating regions of MS, both TGF-β Types I and II receptors (TGF-βR I and
II) are expressed on macrophages, hypertrophic astrocytes, and endothelial cells [141]. In
TBI lesions, TGFβ-RI and TGFβ-RII are expressed in meningeal fibroblasts [60]. Therefore,
TGF-β can bind to TGFβ receptors on the surface of macrophages, astrocytes, endothe-
lial cells, and fibroblasts during CNS injuries to initiate transmembrane signaling that
promotes fibrosis. Moreover, TGF-β has been identified as one of the main pathways
promoting EndoMT, resulting in more accumulation of ECM-depositing fibroblasts and
increased fibrosis [104,142–146]. As mentioned earlier in the review, myelin debris, which
is abundantly present in CNS injuries [147,148] and other demyelinating diseases [149,150],
increases TGF-β expression in endothelial cells upon its engulfment. This TGF-β expres-
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sion is followed by EndoMT, likely through autocrine signaling [108]. Future studies will
continue to provide more understanding of the role of TGF-β in CNS fibrosis.

5.1.2. PDGFs

PDGFs are dimers of A and B polypeptides with different isoforms, namely PDGF-AA,
PDGF-BB, PDGF-CC, PDGF-DD, and PDGF-AB [151]. PDGFs, particularly PDGF-BBs,
are the most critical profibrotic factors that stimulate fibroblast proliferation and migra-
tion [129,152–156]. In liver fibrosis, PDGF-BB is a prominent profibrotic cytokine that is
secreted by resident cells and infiltrating immune cells [157,158]. The secreted PDGF-BB
stimulates the proliferation and activation of hepatic satellite cells (HSCs) into myofibrob-
lasts causing these cells to be major depositors of ECM proteins during fibrosis [159]. PDGF
receptors (PDGFRs) are Class III receptor tyrosine kinases that have three dimeric forms
(-αα, -ββ, and -αβ) [156,160]. PDGF-BB has a high affinity for PDGFRαα, PDGFRαβ, and
PDGFRββ, while PDGF-AA has a high affinity for dimeric PDGFRαα [161]. The high
affinity of PDGF-BB to all three PDGFRs makes this cytokine a more potent chemoattrac-
tant for myofibroblasts than PDGF-AA [162]. PDGF-BB/PDGFRβ signaling is involved in
liver [163], myocardial [164], and lung fibrosis [165,166]. PDGF-DD, similar to PDGF-BB,
has an affinity for PDGFRβ [167]. PDGF-AA is involved in accelerating cell recycling and
inducing fibroblast proliferation [168]. In cutaneous wound healing, PDGF-AA that is se-
creted by senescent fibroblasts and endothelial cells stimulates myofibroblast differentiation
and wound closure [169]. Neutralizing PDGFRs with antibodies showed decreased PDGF-
AA and -BB-induced collagen I deposition in dermal and cardiac fibrotic tissue [170–172].
It also decreased the migration of PDGF-stimulated cells in dermal and lung fibrosis [170].
Prominent fibrotic scar tissue with PDGFRβ+ cells is observed in CNS injuries, implicating
the importance of the PDGF signaling pathway in CNS fibrosis [46,173]. A recent study
showed that the expression of PDGF-BB and PDGF-DD is increased in the mouse SCI
model. The exogenous injection of PDGF-BB and PDGF-DD induces fibrosis in the normal
spinal cord, which can be attenuated by a PDGFRβ inhibitor. Therefore, PDGF-BB and
PDGF-DD can induce fibrotic scarring by activating PDGFRβ. Astrocytes are identified as
the main producer of PDGF-BB, while macrophages/microglia and fibroblasts are the main
source of PDGF-DD in SCI lesions [173].

In addition to TGF-β and PDGFs, some cytokines can enhance fibrotic scar formation
indirectly by recruiting macrophages. For example, tumor necrosis factor (TNF) ligand
superfamily member 13 (TNFSF13), also known as APRIL, is involved in macrophage re-
cruitment to SCI lesion. In APRIL KO mice, fibrotic scarring following SCI is reduced [174].
Therefore, APRIL promotes fibrotic scar formation indirectly by promoting acute inflam-
matory response and recruiting macrophages to the lesion core [174].

5.2. Direct Activation of Fibroblasts

Necrotic cells that are generated from tissue damage release damage-associated molec-
ular patterns (DAMPs) such as histones, heat shock proteins, DNA, and RNA [175]. In vitro
treatment of fibroblasts with necrotic myocardial cells can increase fibroblast proliferation
and migration by activating Toll-like receptor 4 (TLR4) [176]. The injection of necrotic
myocardial cells into the mouse heart induces myocardial fibrosis in a TLR4-dependent
manner [176]. TLR4 activation in fibroblasts increases sensitivity to TGF-β and collagen I
expression in vitro [177]. The direct activation of fibroblast by DAMPs in CNS injuries is
yet to be investigated.

5.3. Mechanical Activation (Self-Activation)

In organ fibrosis, collagen cross-linking increases tissue stiffness and renders fibrosis ir-
reversible [178,179]. In cardiac fibrosis, tissue stiffness further activates fibroblasts [180,181].
Fibroblast activation by tissue stiffness can create a self-activation loop that triggers fibro-
sis [2]. Atomic force microscopy and elastic modulus measurements have shown that the
lesion site in rat models of TBI and SCI is less stiff than controls, with some increase in
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stiffness in the injured lesion tissue occurring 3 weeks after injury yet remaining softer than
the control’s tissue [182]. However, the lesion site is significantly stiffer at 12 weeks after
mouse contusion SCI, suggesting that tissue stiffening in the injured CNS is present in the
chronic lesions but not in the acute or sub-acute phases of injury [183]. Therefore, fibroblasts
in CNS injuries may be activated by the stiffness of the tissue in the chronic phase.

6. Potential Role of Fibroblasts in Neuroinflammation

Fibroblasts and cells that can transition into fibroblast-like cells, such as pericytes and
endothelial cells, have multiple properties to mediate the inflammatory response. First, they
can activate the innate and adaptive immune systems upon sensing DAMPs. For example,
NG2+ pericytes that are activated by DAMPs and pathogen-associated molecular pattern
molecules (PAMPs) increase the expression of C-X-C motif chemokine ligand 1 (CXCL1),
CXCL8, macrophage migration inhibitory factor (MIF), CCL2, and interleukin 6 (IL-6) that
attract the infiltration of immune cells such as monocytes and neutrophils. MIF that is
released from activated pericytes is sufficient to increase the expression of TLRs, integrins,
and matrix metalloproteinases (MMPs) in immune cells [184]. Similarly, 2 h after a systemic
infection that is caused by intraperitoneal injection of LPS, cells resembling perivascular
fibroblasts expressing PDGFRβ, Col1α1, and regulator of G protein signaling 5 (RGS5)
increase the expression of CCL2 in the brain [183]. In addition to innate immune responses,
fibroblasts are also involved in the adaptive immune response. Fibroblastic reticular cells
(FRCs) regulate the migration pattern of T-cells in the lymph nodes [185]. Upon exposure
to TNF-α and interferon (IFN)-γ, CNS pericytes are activated, and the expression of major
histocompatibility complex II (MHC-II) is increased, suggesting that the activated pericytes
can act as antigen-presenting cells to activate T lymphocytes [186].

Secondly, fibroblast/fibroblast-like cells can enhance immune cell accumulation by
increasing cell adhesion. For example, a subset of cancer-associated fibroblasts (CAFs)
produce fibroblast activation protein-α (FAP) which increases macrophage adhesion via
scavenger receptor A [187]. In another example, the activation of NG2+ pericytes by
DAMPs and PAMPs results in a significant increase in the expression of intercellular
adhesion molecule 1 (ICAM1), which enhances the adhesion of macrophages and neu-
trophils [184]. Vascular cell adhesion molecule 1 (VCAM-1) and ICAM-1 that is produced
by brain pericytes also facilitate pericytes-T-cell interactions [186,188].

Therefore, some fibroblasts/fibroblast-like cells can elicit the immune responses by
sensing the injury, releasing cytokines to recruit innate immune cells, activating the adap-
tive immune system, and increasing adhesion for immune cell infiltration and activation.
According to the characteristics that are discussed above, fibroblasts/fibroblast-like cells
that are derived from meningeal cells, endothelial cells, pericytes, and perivascular cells can
potentially play a role in neuroinflammation in CNS injuries. An example is the engulfment
of myelin debris by endothelial cells (sensing the injury), where endothelial cells transition
toward a fibroblast-like phenotype and overexpress important inflammatory molecules
such as CCL2, IL-6, and VCAM-1 (immune response) [108] (Figure 2).
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Figure 2. Role of endothelial cells in neuroinflammation in SCI lesions. Upon SCI, ongoing de-
myelination of axons causes the persistent presence of myelin debris in the injury area. Endothelial
cells sense the injury and engulf the myelin debris, resulting in EndoMT. These endothelial cells
secrete inflammatory factors that induce macrophage infiltration and attachment, promoting neuroin-
flammation. This image was created with BioRender.com (accessed on 29 July 2022).

7. Fibrotic Scar in CNS Tissue Remodeling and Regeneration

Remodeling is the critical phase of tissue repair in which unwanted cells in the gran-
ulation tissue undergo apoptosis, the ECM is reorganized, and tissue-specific cells grow
into the lesion to replace the lost cells and start the regeneration [189]. However, chronic
inflammation and persistence of fibroblasts for an extended period will lead to excessive
ECM protein deposition and scar formation, negatively affecting tissue remodeling and
regeneration [189]. In general, the fibrotic scar is the cause of pathologic tissue remodeling
and is an impediment to axonal regeneration in the chronic phases of different CNS dis-
eases and injuries such as stroke, MS, SCI, and TBI. The fibrotic scar does this through the
production of inhibitory molecules and establishing a physical barrier that prevents the
regeneration of axons through the lesion area [26,190–192].

One early study showed that axons grow into a glial scar within a brain lesion, but the
growth is then terminated once they reach the fibrotic scar [193]. The inhibition of fibrotic
scarring in the injured brain of rats by collagen neutralizing antibodies or inhibiting collagen
synthesis by administering an iron chelator allows axon regeneration, indicating that the
fibrotic scar is an obstacle to regeneration [194,195]. Similarly, delaying or reducing fibrotic
scar formation in SCI by an iron chelator [196], decorin treatment [197], or microtubule
stabilization [198], enhanced axonal growth and regeneration. After SCI, inhibiting the
proliferation of Type A pericytes reduces scar formation and ECM protein deposition,
promoting axonal regeneration and improving functional recovery [192]. Reducing fibrotic
scarring in the EAE mouse model enables more oligodendrocyte lineage cells to migrate
into the lesion core and reduces the worsening of motor abilities [47]. Although reducing
the fibrotic scar is beneficial in axonal regeneration and functional recovery, it is not enough
to impede demyelination and promote remyelination [47]. Other than being a physical
barrier, the fibrotic scar contains various molecules that can inhibit axonal growth including
phosphacan, NG2, tenascin-C [56], and semaphorin III [57,199]. Various studies have
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shown that eliminating these different inhibitory molecules enhances axonal regeneration
and, in some cases, promotes functional recovery after TBI and SCI [200–202].

Even though the fibrotic scar’s dense matrix acts as a physical barrier, preventing
axonal growth, ECM proteins do not inherently have an inhibitory growth effect on axons.
For example, between 7–14 dpi in rat SCI, axonal sprouting into the lesion core was
associated with collagen IV, suggesting that collagen IV is not an inhibitory factor for axon
regeneration [203,204]. The association of regenerating axons with laminins in SCI also
shows its non-inhibitory effect on axonal growth [204]. Biomaterial-based scaffolds such as
collagen scaffolds have been used in CNS injury treatment to support cell attachment and
guided growth. In addition, factors for enhancing axonal regeneration, including vectors for
gene therapy, can be incorporated into these scaffolds [205,206]. In rat SCI, a polylaminin-
based scaffold enhances regeneration and motor function recovery [207]. A fibronectin mat
that is placed on the injury site, or a dissolved fibronectin mat that is injected into the injured
spinal cord of rats, decreased apoptosis at the lesion site, suggesting a neuroprotective
role of fibronectin [208]. The systemic administration of synthetic fibronectin peptides has
also demonstrated a neuroprotective role in neural transplantation in the rat brain [209].
These studies suggest that collagen I and IV, fibronectin, and laminins do not inhibit axon
regeneration; however, their influence on the proliferation and migration of other types of
cells is of great interest. For example, collagen I significantly reduce the migration of OPCs
in vitro, while fibronectin and laminins increase their migration [47].

Interestingly, in studies that inhibited the formation of the fibrotic scar in SCI, there
was a complete failure in the sealing of the injury site and it had an overall negative impact
on tissue integrity [44]. In neonatal mouse SCI, collagen I and laminin deposition are
almost absent, and fibrotic scar fails to form. Under these conditions, microglia grow into
the lesion, depositing fibronectin into the lesion core and creating a bridge between the
two wound edges. This transient fibronectin expression by microglia at 3 dpi is crucial
for the nearly complete recovery that was observed in neonatal mice [210]. This study
highlights that the fibrotic scar wound healing mechanism is essential for closing the injury
site and maintaining tissue integrity. Reducing, rather than eliminating the fibrotic scar, or
reducing a specific isoform of fibronectin that is found in chronic fibrotic scarring after SCI
in mice, enhances axon growth and functional recovery [44,192]. This demonstrates that
while fibrotic scar formation can lead to pathologic tissue remodeling and the prevention
of axonal regeneration in many different CNS diseases and injuries, it also plays a critical
role in wound closure. The dynamic nature of fibrosis should be further investigated in
CNS pathology.

8. Therapeutic Targets for Fibrotic Scar
8.1. Targeting Macrophages

Macrophages play an essential role in fibroblast activation and fibrotic scar formation.
Intraperitoneal injection of clodronate liposome reduces macrophage recruitment following
SCI, thus, reducing fibrotic scar formation and enhancing axonal growth [45]. Intravenous
injection of immune-modifying nanoparticles such as carboxylated poly lactide-co-glycolide
(PLGA) reduced macrophage recruitment to the lesion site, thus, reducing fibrotic scarring,
increasing axonal density, and enhancing functional recovery in SCI mice [211]. In mice
lacking the ECM protein periostin, decreased macrophage infiltration and reduced prolifer-
ation of PDGFR-β-expressing pericytes in the lesion site are associated with reduced fibrotic
scar formation, resulting in improved functional recovery after SCI [212]. These studies
indicate the importance of inflammation regulation on fibrosis and functional recovery.

8.2. Targeting Fibroblasts and Fibroblast-like Cells

The fibrotic scar that is formed by meningeal fibroblasts can be reduced by repairing
the damaged dura. This approach, referred to as duraplasty, is performed by planting
a dura tissue graft at the lesion site. In rat SCI, duraplasty reduces fibrotic scarring and
is characterized by reduced basement membrane deposition (monitored by collagen IV
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and laminin immunostaining) in the scar tissue [69,213]. Dura repair reduces inflam-
mation, inhibits cystic cavitation, and enhances the functional recovery within rat SCI
lesions [213,214]. Duraplasty not only reduces scarring but also reduces the pressure on
the swollen damaged spinal cord [215]. Although duraplasty showed beneficial results, it
is insufficient to significantly improve the functional outcomes in a pig SCI model [216]
and human patients [217].

As mentioned earlier in this review, Glast-expressing pericytes (Type A) have been
demonstrated to proliferate and contribute to CNS fibrotic scar formation [44,46]. Therefore,
these cells are a possible target to reduce fibroblast proliferation in the fibrotic scar. The
deletion of the Ras gene, specifically in Type A pericytes, inhibits their proliferation and
reduces ECM protein deposition and fibrotic scar formation after SCI. This study suggests
that targeting pericyte-induced fibrosis may be a promising therapeutic option to improve
axon regeneration and functional recovery after SCI [192].

8.3. Targeting Profibrotic Cytokines

TGF-β is the master regulator of fibrosis and, therefore, is a target for excessive
scarring in CNS fibrosis. The local injection of TGF-β neutralizing antibody through
an intraventricular cannula for 10 days after injury attenuates fibrotic scar formation
in rat TBI [102,138]. The inhibition of TGF-β signaling in the injured mouse brain by
infusing LY-364947, a small molecule inhibitor of TGFβ-RI, attenuates fibrotic scar formation
and improves regeneration [103]. The inhibition of TGF-β signaling promotes neuron
survival, axon growth, and functional recovery after TBI and SCI [103,218–220]. Since
macrophages are a significant source of TGF-β in CNS lesions [134,137,139,140], targeting
macrophages may control TGF-β expression consecutively. However, Moon and Fawcett
showed that reducing scar formation by inhibiting TGF-β1/2 is insufficient to promote axon
regeneration in TBI [221]. Although TGF-β is a master regulator of fibrotic scar formation,
its inhibition can affect CNS functions. For example, inhibiting TGF-β signaling could
have detrimental effects because TGF-β is neuroprotective in CNS lesions. Additionally,
TGF-β is a key regulator in the induction of M2 polarization, a macrophage phenotype
that is important in tissue repair [222–224]. Therefore, by inhibiting TGF-β signaling,
one would suppress its role in fibrosis at the expense of its neuroprotective and anti-
inflammatory properties.

PDGFs are profibrotic cytokines and are, therefore, a therapeutic target to control CNS
fibrosis. In mouse SCI, the inhibition of PDGFRβ by intrathecal administration of PDGFRβ
inhibitor, SU16f, reduces fibrotic scarring, inflammation, and lesion size. This is followed
by enhanced axon regeneration and improved functional recovery [173].

8.4. Targeting Collagen

Targeting constituents of the ECM provides another therapeutic avenue for managing
excessive fibrotic scarring. For example, targeting prolyl 4-hydroxylase (PH), a key enzyme
in the collagen synthesis process, can aid in disrupting an excessive fibrillar collagen
concentration within the scar. An iron chelator can inhibit PH as iron is required for
its enzymatic activity [225]. In a rat transection SCI model, the local administration of
an iron chelator, BPY-DCA, and cAMP reduced fibrotic scar formation and enhanced
axon regeneration and functional recovery [196,226]. The local administration of another
clinical iron chelator, deferoxamine mesylate (DFO), reduced fibrotic scarring in a rat SCI
model [227].

Fibrillar collagens are the most important ECM constituents of any scar tissue. Fibrillar
collagens can self-assemble in vitro but the two major assembly pathways in vivo include
direct β1 integrin-mediated assembly and fibronectin-dependent assembly [167,228]. The
inhibition of fibril formation by the administration of a monoclonal antibody that binds to
the C-terminal telopeptide of the collagen α2(I) leads to degradation of free collagen and
controls excessive scarring in a keloid model [229].
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Targeting heat shock proteins (HSPs) is another therapeutic approach for inhibiting
excessive collagen deposition within the fibrotic scar. HSPs are intracellular proteins that
are expressed in high concentrations when there is an injury. In SCI, HSPs are involved
in modulating secondary injury [230]. The role of HSPs in CNS fibrosis has not been
explored, but one HSP that is known as HSP47 is involved in fibrosis outside of CNS.
HSP47 is located in the endoplasmic reticulum and is involved in the correct folding of
procollagen molecule and, therefore, collagen triple helix formation [231,232]. HSP47 is
overexpressed in fibrotic tissues [233], and inhibiting its expression attenuates collagen
production and improves fibrosis pathology [234,235]. Interestingly, a Phase 2 clinical trial
is currently testing a lipid nanoparticle, ND-L02-s0201, containing siRNA to silence HSP47
in subjects with idiopathic pulmonary fibrosis (Clinicaltrial.gov, accessed on 29 July 2022,
NCT03538301). This clinical study raises an exciting possibility of ND-L02-s020’s potential
in attenuating collagen production in a CNS injury (i.e., SCI) and improving regeneration.

9. Conclusions

Inflammation, fibroblast activation, and ECM protein deposition are all part of the
wound healing process. However, an escalation of this process leads to the formation of
a fibrotic scar that hampers regeneration [189]. In this review, we discussed fibrotic scar
formation in CNS injuries with information covering pathological fibroblasts’ origins and
the mechanism of fibroblast activation. We reviewed how a CNS fibrotic scar is an obstacle
for regeneration, and a transient repair response is more favorable for regeneration [210].
We finally discussed the known therapeutic targets for the fibrotic scar. There are still many
gaps in our knowledge regarding fibrotic scarring in the CNS, such as details surrounding
the mechanisms of fibrotic scarring. Fibroblasts’ interactions with other cells within the
lesion are not well explored and also require further investigation. We refer to [236] to
review current knowledge on fibroblasts’ cross-talk with other cells after SCI. Furthermore,
whether fibroblasts contribute to the neuroinflammation that is present chronically in CNS
injuries remains largely unknown [61]. Filling these knowledge gaps will lead to better
intervention strategies for the CNS fibrotic scar.
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