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ABSTRACT
Coronavirus is still the leading cause of death worldwide. There are a set number of COVID-19 test
units accessible in emergency clinics because of the expanding cases daily. Therefore, it is important
to implement an automatic detection and classification system as a speedy elective finding choice to
forestall COVID-19 spreading among individuals. Medical images analysis is one of the most promising
research areas, it provides facilities for diagnosis and making decisions of a number of diseases such
as Coronavirus. This paper conducts a comparative study of the use of the recent deep learning mod-
els (VGG16, VGG19, DenseNet201, Inception_ResNet_V2, Inception_V3, Resnet50, and MobileNet_V2) to
deal with detection and classification of coronavirus pneumonia. The experiments were conducted
using chest X-ray & CT dataset of 6087 images (2780 images of bacterial pneumonia, 1493 of corona-
virus, 231 of Covid19, and 1583 normal) and confusion matrices are used to evaluate model perform-
ances. Results found out that the use of inception_Resnet_V2 and Densnet201 provide better results
compared to other models used in this work (92.18% accuracy for Inception-ResNetV2 and 88.09%
accuracy for Densnet201).

ARTICLE HISTORY
Received 24 April 2020
Accepted 6 May 2020

KEYWORDS
Computer-aided diagnosis;
coronavirus automatic
detection; Covid-19; CT and
X-ray images; pneumonia;
deep learning

1. Introduction

Identified first time in Wuhan city of China in late December
2019 (Aanouz et al., 2020; Elfiky & Azzam, 2020; Elmezayen
et al., 2020; Enayatkhani et al., 2020; Fausto et al., 2020;
Ghosh et al., 2020; Muralidharan et al., 2020; Phulen et al.,
2020; Rajib et al., 2020; Rothan & Byrareddy, 2020; Rowan &
Laffey, 2020; Salman et al., 2020; Sourav et al., 2020; Umesh
et al., 2020), Covid19 is a respiratory disease that is caused
by the new coronavirus SARS-CoV-2 (Severe Acute
Respiratory Syndrome Coronavirus 2 (SARS-Cov-2) 2019
(Abdelli et al., 2020; Rakesh et al., 2020; Rameez et al., 2020;
World Health Organization, 2020). Covid19 is the name given
by the World Health Organization (WHO) on 11 February
2020 (World Health Organization, 2020). It causes illnesses
ranging from the common cold to more severe pathologies
(Rowan & Laffey, 2020). First people to have contracted the
virus went to Wuhan market in China’s Hubei Province. The
disease would, therefore, to have originated from an animal
(zoonosis) but the origin has not been confirmed (Boopathi
et al., 2020; CNHC, 2020; El Zowalaty & J€arhult, 2020; Kandel
et al., 2020; Manoj et al., 2020; Pant et al., 2020; Roosa et al.,
2020; Sun et al., 2020; Wilder-Smith et al., 2020).

The period between contamination and appearance of
the first Covid19 symptoms can extend to 15 days. Therefore,
people carrying the virus without knowing can affect other
people, which allows the spread of the virus in a large way.

In fact, after a few weeks of confirmed cases in Wuhan,
Covid19 was not only spread into China but crossed the bor-
der (212 countries) and the number of people affected
increased and claimed many victims. Indeed, on 11 February
2020, the World Health Organization declared COVID19 a
pandemic (Djalante et al., 2020; Landry et al., 2020; Lee &
Morling, 2020; Rowan & Laffey, 2020; Saurabh et al., 2020;
Wahedi et al., 2020; World Health Organization, 2020). While
writing this paper, the number of confirmed cases has
reached 3,641,205 including 251,943 deaths, and 1,192,948
recovred (Worldometers, 2020) (Last updated: May 04, 2020,
23:45 GMT).

The main symptoms of Covid19 are fever (38 �C or
higher), dry cough, the difficulty of breathing, tiredness,
aches, and pains, sore throat, and diarrhea for some people.
Sudden loss of smell, without nasal obstruction and total dis-
appearance of taste, are also symptoms that have been
observed in patients. In people developing more severe
forms, respiratory difficulties are found, which can lead to
hospitalization in intensive care and death (Landry et al.,
2020; Sharifi-Razavi et al., 2020; Simcock et al., 2020; World
Health Organization, 2020).

The way with Covid19 is transmitted makes it a very dan-
gerous disease. In fact, the disease can be transmitted by
droplets (secretions projected invisible when talking, sneez-
ing, or coughing). It is therefore considered that close con-
tact with a sick person is necessary to transmit the disease:
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the same place of residence, direct contact within one meter
when talking, coughing, sneezing, or in the absence of pro-
tective measures. One of the other preferred vectors of virus
transmission is in contact with unwashed hands soiled with
droplets (Anwarul et al., 2020; Elfiky, 2020a; Enmozhi et al.,
2020; Landry et al., 2020; Li, Guan, et al., 2020; Liu, Han, et al.,
2020; Lu et al., 2020; Rowan & Laffey, 2020; Yang et al., 2020).

Waiting for a vaccine of Covid19, the World Health
Organization is advising that certain precautions be taken
(Elkbuli et al., 2020; Li et al., 2020; World Health Organization,
2020). We can cite the following precautions: frequent hand
washing with soap or a hydroalcoholic solution; avoid close

contact, such as kissing or shaking hands, with people who are
coughing or sneezing; covering of mouth with the crease of
the elbow, or a disposable handkerchief, when coughing or
sneezing; no touching the eyes, nose or mouth; in case of
respiratory symptoms and fever, wearing a mask. To limit the
spreading of Covid19, some countries limited the movements,
and the activities in the cities, and others are under lockdown
(Elfiky, 2020; Ghosh et al., 2020; Li et al., 2020).

The real-time polymerase chain reaction (RT-PCR) is the
standard for detecting Covid19, but its problem is that it
takes time to confirm patients as well as it’s expensive
(Huang et al., 2020). Therefore, medical image processing
can overcome this problem by affirming positive covid19
patients. Indeed, Chest X-ray and Computed Tomography
(CT) are the most used image in medical image processing
(Liu et al., 2020; Ng et al., 2020) and several researches used
them to develop models that can help radiologists to predict
the disease. On the other hand, in the last years, deep learn-
ing gave an excellent result in medical image analysis and
this allows the specialists to make good decisions when
diagnosing patients. Hence, various studies have demon-
strated the capacity of neural systems, particularly convolu-
tional neural systems to precisely recognize the presence of
Pneumonia (Gozes et al., 2020; Xu et al., 2020). In this study,
we are going to present a comparison of different Deep
Convolutional Neural Network (DCNN) algorithms (VGG16,
VGG19, DenseNet201, Inception_ResNet_V2, Inception_V3,

Figure 1. Block diagram of the proposed methodology.

Figure 2. Examples of Chest X-rays in patients with pneumonia.

Table 1. Confusion matrix structure.

Predicted

Bacteria Coronavirus Normal

Actual Bacteria Pbb Pcb Pnb
Coronavirus Pbc Pcc Pnc
Normal Pbn Pcn Pnn

where:
Pbb :Bacteria class were correctly classified as Bacteria.
Pcb :Bacteria class were incorrectly classified as Coronavirus.
Pnb :Bacteria class were incorrectly classified as Normal.
Pbc :Coronavirus class were incorrectly classified as Bacteria.
Pcc :Coronavirus class were correctly classified as Coronavirus.
Pnc :Coronavirus class were incorrectly classified as Normal.
Pbn :Normal class were incorrectly classified as Bacteria.
Pcn :Normal class were incorrectly classified as Coronavirus.
Pnn :Normal class were correctly classified as Normal.
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Resnet50, and MobileNet_V2) to automatically classify X-ray
images into Coronavirus, Bacteria, and Normal.

The contributions of our paper are as follows: (1) We design
fined tuned versions of (VGG16, VGG19, DenseNet201,
Inception_ResNet_V2, Inception_V3, Resnet50, and MobileNet_V2),
(2) To avoid over-fitting in different models, we used weight decay
and L2-regularizers. (3) The models have been tested on the chest
X-ray & CT dataset for multiclass classification.

The structure of this paper is as follows. The paper starts
with detailing the literature review in Section 2, Section 3
describes the proposed method, Section 4 presents some
results obtained and their interpreting. The discussion is
given in Section 5. Conclusion section ends the paper along
with few upcoming tasks to be headed in the section”
Conclusions and future directions”.

2. Related work

Since the vaccine is not yet developed, the right measure to
reduce the epidemic is to isolate people who are positively
affected. But the problem is making a quick diagnostic to
distinguish positive patients from negative. In this scenario,
several studies were presented allowing to identify abnor-
malities in Chest X-ray and CT images. Indeed, Gozes et al.
(2020) proposed a model allowed to differentiate coronavirus
patients from healthy patients. The proposed system pro-
duced a localization map of the lung abnormality as well as
measurements. Indeed, it was split into two subsystems:
Subsystem A: a 3D analysis was used to detect nodules and
small opacities using commercial off-the-shelf software there-
after measurements and localization were provided.
Subsystem B: the first step is the lung Crop stage where the
lung region of interest (ROI) was extracted using a lung seg-
mentation module (U-net architecture). The second step is
the detection of coronavirus abnormalities using deep con-
volutional neural network model ResNet50. The third step
was the abnormality localization step. If a new slice identified
positive, the network-activation maps were extracted using

the Grad-cam technique. Thereafter, after the combination of
the output of subsystem A and subsystem B, the authors
added a Corona score calculated by a volumetric summation
of the network-activation maps.

An automatic and deep learning-based method using X-
ray images to predict Covid19 was proposed by Narin et al.
(2020). The proposed method used three Deep Convolution
Neural Network architectures. They have used a dataset con-
taining 50 X-ray images of covid19 patients and 50 normal
X-ray images and all the images were resized to 224� 224.
To overcome the problem of the limited number dataset, the
authors used transfer learning models. The dataset was div-
ided into two parts: 80% for training and 20% for testing.
The developed DCNN was based on pre-trained models
(ResNet50, Inception_V3, and Inceptio_ResNet_V2) allowed to
identify Covid19 from normal X-ray images. They used also a
transfer learning technique and the k-fold method was used
as a cross-validation method with k¼ 5. The obtained results
showed the pre-trained model ResNet50 gave good (the
value of accuracy is equal to 98%).

In Hemdan et al. (2020), a deep learning classifiers frame-
work “COVIDX-Net” helping radiologists to automatically iden-
tify Covid19 was proposed. The developed framework allows
classifying Covid19 X-ray images into positive and negative
Covid19. Authors used seven DCNN architectures (VGG19,
DenseNet121, ResNetV2, InceptionV3, InceptionResNetV2,
Xception, and MobileNetV2). They also used a dataset including
50 X-ray images split into two categories normal and Covid19
positive cases (25 X-ray images for each). The images were
resized to 224� 224 pixels. 80% of images were used for the
training stage and 20% for testing. The obtained results
depicted that VGG19 and DenseNet201 architectures have
good performances with an F1 score of 89% and 91% for nor-
mal and covid19.

In order to identify Covid19 cases from other Pneumonia
(Bacteria and virus) and normal cases, Farooq and Hafeez
(2020) proposed a convolutional neural network (CNN)
framework. They used the COVDIX dataset made by Wang
and Wong (2020). The dataset contains 5941 chest radiog-
raphy images collected from 2839 patients. In this work, they
used a portion of the COVIDX dataset, and it was divided
into four sets: Covid19 (48 images), Bacterial (660), Viral
(931), and Normal (1203 images). In the training step, which
was performed in 3 steps, the Cyclical Learning Rate was
used for helping to select the optimal learning rate and that
for each step. The obtained results depict that the proposed
Covid-ResNes gave good identification accuracy of 96.23%
compared to Covid-Net 83.5%.

Bhandary et al. (2020) reported a deep learning frame-
work to classify lung abnormalities like pneumonia using
chest X-ray images and cancer using lung CT images. The
proposed model was based on a Modified AlexNet model
(MAN). Hence, they proposed two models: A) a MAN model

Table 2. Evaluation metric for DenNet201.

Class TP TN FN FP Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 Score (%)

Normal 513 1062 22 41 31.31 95.88 96.28 92.59 94.21
Bacteria 528 959 40 111 32.23 92.95 89.62 82.62 87.48
Coronavirus 402 1060 133 43 24.54 75.14 96.10 90.33 82.04

Figure 3. Confusion matrix of DensNet201.
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combined with Support Vector Machine (SVM) used to iden-
tify pneumonia images from normal images. For the results,
the proposed model showed good results (accuracy 96.8%)
compared to other models AlexNet, VGG16, VGG19,
ResNet50, and MAN_Softmax. B) For this examination, the
lung CT images were used. Authors merged MAN with
Ensemble-Feature-Technique (EFT) to improve the perform-
ance of classification. After extracting features from images,
the Principal Component Analysis (PCA) was implemented.
Finally, to classify CT images into Malignant and Benign, the
model was combined with SVM, k-Nearest Neighbors (k-NN),
and Random Forest (RF). The obtained results depicted that
MAN combined with SVM achieved good accuracy with and
without EFT 97.27% and 86.47 respectively.

In Zhang et al. (2020), the authors presented a deep
learning model allowed to detect Covid19 from healthy peo-
ple using Chest X-ray images. The model was based on three
components: The first one is the backbone network which is
composed of 18 layers residual convolutional neural network.
Its rule is to extract the high-level features from the chest X-
ray image. The second one is the classification head
intended to generate a classification score Pcls. It was pow-
ered by the extracted features by the backbone network.
The third component is the anomaly detection head allows
generating a scalar anomaly score Pano. After calculating the
classification score and scalar anomaly score, the decision
was made according to a threshold T. The obtained results
showed that the sensitivity decreased as long as the value of
threshold T decreased (sensitivity of 96% for T¼ 0.15).

The work (Xu et al., 2020) reported a method to distin-
guish COVID-19 from Influenza-A viral pneumonia and
healthy images using deep learning techniques. They used
multiple CNN to classify Computed Tomography (CT) images.
The presented process can be summarized as 4 steps: 1) the
images were pre-processed to extract effective pulmonary
regions 2) a 3D CNN was used to segment multiple candi-
date image cubes 3) a model of image classification was
used to distinguish the images patch into Covid19, Influenza-
A and normal 4) by using the noisy-or Bayesian function an

overall analysis report for one CT sample was calculated. The
VNET-IR-RPN model was used for the segmentation while
ResNet-18 model and ResNet-18 with the location-attention
mechanism model were used for the classification step. The
experimental results show that the ResNet-18 model with
the location-attention mechanism gave the overall accuracy
rate of 86.7%.

A new deep learning model, that allows segmenting and
quantifying infection regions in CT scans of COVID-19
patients, was reported by Shan et al. (2020). Authors used
VB-Net Neural Network and a human-in-the-loop (HITL)
approach in the order to help radiologists to clarify auto-
matic annotation of each case. Then, they used evaluation
metrics to assess the effectiveness of the model (volumes
and percentage of infection in the whole lung). They divided
the CT images into a set of collections. These CT images that
were contoured manually by the radiologists will feed the
segmentation network for training. Then, the segmentation
results were manually corrected by radiologists and were
considered as new data to feed the model. This process was
repeated to iteratively build the model.

El Asnaoui et al. (2020) presented a comparison of recent
DCNN architectures for automatic binary classification of
pneumonia images based on fined tuned versions of VGG16
(Simonyan & Zisserman, 2014; Zhang et al., 2019), VGG19
(Simonyan & Zisserman, 2014; Zhang et al., 2019),
DenseNet201 (Huang et al., 2017), Inception_ResNet_V2
(Szegedy et al., 2016), Inception_V3 (Szegedy et al., 2015),
Resnet50 (He et al., 2016) and MobileNet_V2 (Sandler et al.,
2018). The proposed work has been tested using chest X-ray
& CT dataset.

The study selection is designed for high sensitivity over
precision, to guarantee that no relevant studies were leaved
out. At this time, all works done in this field focus on binary
classification except few studies. For this purpose, the main
goal of this work is going to present a comparison of recent
deep convolutional neural network architectures for automatic
multiclass classification of X-ray and CT images between nor-
mal, bacteria, and coronavirus in order to answer to the follow-
ing research questions (RQ): RQ1). Is there any DL technique
that distinctly outperforms other DL techniques? RQ2). Can DL
use to early screen coronavirus from CT and X-ray images?
RQ3). What is the diagnostic accuracy that DL can be attained
based on CT and X-ray images? RQ4). Can DL assist in the
efforts to accurately detect and track the progression or reso-
lution of the coronavirus?

3. Materials and methodology

In this study, we built our contribution for automatic multi-
class classification on two new publicly available image data-
sets (chest X-ray & CT dataset) (Cohen et al., 2020; Kermany

Table 3. Evaluation metric for Inception_Resnet_V2.

Class TP TN FN FP Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 Score (%)

Normal 523 1072 12 31 31.92 97.75 97.18 94.40 96.05
Bacteria 544 1002 24 68 33.21 95.77 93.64 88.88 92.20
Coronavirus 443 1074 92 29 27.04 82.80 97.37 93.85 87.98

Figure 4. Confusion matrix of Inception_ResNet_V2.
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et al., 2018). Figure 1 depicts the diagram of the main pro-
posed methodology. As it is shown, the entire contribution is
mainly divided into four steps: dataset, data pre-processing,
pre-trained transfer models, and finally training and classifica-
tion. The following sections provide in detail the steps of the
present contribution.

3.1. Dataset

This present work introduces two publicly available image
datasets that contain X-ray and computed tomography (CT)
images. The first dataset (Kermany et al., 2018) is named
chest X-ray & CT dataset and composed of 5856 images and
has two categories (4273 pneumonia and 1583 normal)
whereas the second one is named Covid Chest X-ray Dataset
(Cohen et al., 2020). It contains 231 Covid19 Chest X-ray
images. We added images of the second dataset to the first
one in order to constitute our dataset which finally com-
posed of 6087 images (jpeg format) and has three classes
(2780 bacterial pneumonia, 1724 coronavirus (1493 viral
pneumonia, 231 covid19) and 1583 normal). Figure 2 depicts
an example of chest X-rays in patients with pneumonia, the
normal chest X-ray (Figure 2(a)) shows clear lungs with no
zones of abnormal opacification. Moreover, Figure 2(b) shows
a focal lobar consolidation (white arrows). In addition, Figure
2(c) shows with a more diffuse “interstitial” pattern in both
lungs (Kermany et al., 2018) while Figure 2(d) presents an
image of patient infected by covid19 (Cohen et al., 2020).

3.2. Data preprocessing

The next stage is to pre-process input images using different
pre-processing techniques. The motivation behind image
pre-processing is to improve the quality of visual information
of each input image (eliminate or decrease noise present in
the original input image, improve image quality through
increased contrast, delete the low or high frequencies, etc).
In this study, we used intensity normalization and Contrast

Limited Adaptive Histogram Equalization (CLAHE) (El Asnaoui
et al., 2020).

For data splitting, the dataset was randomly split in this
experiment with 80% of the images for training and 20% of
the images for validation. We ensure that the images chosen
for validation are not used during training in order to per-
form successfully the classification task.

3.3. Pre-trained transfer models

In this study, we implemented the present contribution for
automatic multiclass classification based VGG16, VGG19,
DenseNet201, Inception_ResNet_V2, Inception_V3, Resnet50,
and MobileNet_V2 models for the classification of Chest X-
ray images to normal, bacteria and coronavirus classes. These
different models are explained in (El Asnaoui et al., 2020).
Moreover, these deep learning models require a large
amount of training data, which is yet not available in this
field of applications (El Asnaoui et al., 2020). Following the
context of no availability of medical imaging dataset and
motivated by the success of deep learning and medical
image processing, the present work is going to apply transfer
learning technique that was utilized by using ImageNet data
to overcome the training time and insufficient data.

Data augmentation is used for the training process after
dataset pre-processing and splitting and has the goal to
avoid the risk of over-fitting. Moreover, the strategies we
used include geometric transforms such as rescaling, rota-
tions, shifts, shears, zooms, and flips (El Asnaoui et al., 2020).

3.4. Training and classification

After data pre-processing, splitting, and data augmentation
techniques used, the training dataset size is increased and
ready to be passed to the feature extraction step with the
proposed models in order to extract the appropriate and
pertinent features. The extracted features from each pro-
posed model are flattened together to create the vectorized
feature maps. The generated feature vector is passed to a
multilayer perceptron to classify each image into correspond-
ing classes. The Cyclical Learning Rate was used for helping
to select the optimal learning rate (Smith, 2017).

4. Experiments

4.1. Experimental parameters

The present experimentations were performed based on the
following experimental parameters: For simulation, Python
programming language is used, and Keras/tensorflow as
deep learning backend. The training and validation steps
were performed on NVIDIA Tesla P40 with 24 Go RAM.

Table 4. Evaluation metric for Inception_V3.

Class TP TN FN FP Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 Score (%)

Normal 511 1069 24 34 31.19 95.51 96.91 93.76 94.62
Bacteria 525 963 43 107 32.05 92.42 90.00 83.06 87.50
Coronavirus 406 1048 129 55 24.78 75.88 95.01 88.06 81.52

Figure 5. Confusion matrix of Inception_V3.
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Moreover, all the images of the dataset were resized to
224� 224 pixels except those of Inception_V3 and
Inception_Resnet_V2 models that were resized to 299� 299. To
train the models, we set batch size, number of epochs, and
learning rate to 32, 300, and 0.00001 respectively. The learning
rate used is based on Cyclical Learning Rates (Smith, 2017) with
these parameters: base_lr ¼ 0.00001, max_lr ¼ 0.001, step_size
¼ 2000, mode¼ exp_range and gamma ¼ 0.99994. Adam with
b1¼ 0.9, b2¼ 0.999 is used for optimization. Besides, we
employed weight decay to reduce the over-fitting of the mod-
els. A fully connected layer was trained with the Rectified
Linear Unit (ReLU). For fine-tuning, we modified the last dense
layer in all models to output three classes corresponding to
normal, bacteria and coronavirus instead of 1000 classes as was
used for ImageNet. Categorical_crossentropy was used in this
work as a classical loss function. The implementation of the
proposed deep transfer learning models is done using a com-
puter with Processor: Intel (R) Core (TM) i7- 7700 CPU @

3.60GHZ and 8 Go in RAM running on a Microsoft Windows 10
Professional (64-bit).

4.2. Performance metrics

The performance of the proposed classification model was
evaluated based on accuracy, sensitivity, specificity, precision,
and F1 score (Bhandary et al., 2020; Blum & Chawla, 2001).
Given the number of false positives (FP), true positives (TP),
false negatives (FN) and true negatives (TN), the parameters
are mathematically defined as follows:

Accuracy ¼ TPþ TN
TNþ TPþ FPþ FN

Sensitivity ¼ TP
TPþ FN

Secificity ¼ TN
TNþ FP

Precision ¼ TP
TPþ FP

F1 ¼ 2� Re call � precision
Re call � precision

(1)

Moreover, the present study supports the use of confu-
sion matrix analysis in validation (Ruuska et al., 2018) since it
is strong to type of relationship and any data distribution, it

makes a stringent evaluation of validity, and it provides extra
information on the type and sources of errors. Before starting
the analysis of the confusion matrix of each model, let’s first
see how it is structured and define all the parameters and
variables that can be extracted (Table 1).

Using these parameters, we can define other variables:

True Positives TP: True Negatives TN:

False Positives FP: False Negatives FN:

4.3. Multi-classification results

In this section, we present the multi-classification results fol-
lowed by a brief discussion of the results given by
each model.

4.3.1. DensNet201
The table (Table 2) of Densnet201 reports that Normal class
was identified with good precision, sensitivity and specificity
(92.59%, 95.88%, and 96.28% respectively), that means that
the sum of false positives was low, the sum of false nega-
tives was low and the sum of true negatives was high
respectively. The accuracy value is equal to 31.31% which is
a third of the model’s accuracy (Figure 3).

For Bacteria class (Table 2), it was identified with good
sensitivity of 92.95% because the sum of false negatives was
low. About specificity and precision, their values were rea-
sonable 89.62% and 82.62%, and this means that sum of
true negatives was relatively high, and the sum of false posi-
tives was relatively low respectively. For accuracy, it is equal
to 32.23%.

Regarding Coronavirus class (Table 2), it was distinguished
well since precision and specificity were good (90.33%, and
96.10%) and reasonable sensitivity (75.14%). These values
can be explained by the fact that the sum of false positives
was low, the sum of true negatives was high, and the sum
of false negatives was low respectively. The accuracy value is
equal to 24.54% which is a third of the model’s accuracy.

4.3.2. Inception_resnet_V2
For Inception_Resnet_V2 table (Table 3), we see that Normal
class was classified with good precision, sensitivity, and spe-
cificity. The value of precision is 94.40% means that sum of
false positives was low. For sensitivity, the value is 97.75%

Table 5. Evaluation metric for Mobilenet_V2.

Class TP TN FN FP Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 Score (%)

Normal 512 1061 23 42 31.25 95.70 96.19 92.41 94.03
Bacteria 463 987 105 83 28.26 81.51 92.24 84.79 83.12
Coronavirus 425 990 110 113 25.94 79.43 89.75 78.99 79.21

Figure 6. Confusion matrix of Mobilenet_V2.

TP(Bacteria) : Pbb TN(Bacteria) : PccþPncþPcnþPnn
TP(Coronavirus) : Pcc TN(Coronavirus) : PbbþPnbþPbnþPnn
TP(Normal) : Pnn TN(Normal) : PbbþPcbþPbcþPcc

TN(Bacteria) : PbcþPbn TN(Bacteria) : PcbþPnb
TN(Coronavirus) : PcbþPcn TN(Coronavirus) : PbcþPnc
TN(Normal) : PnbþPnc TN(Normal) : PbnþPcn
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because the sum of false negatives was low while the specifi-
city is of value 97.18% which is by reason of the sum of true
negatives was high. Finally, the value of accuracy is 31.92%
(Figure 4).

Bacteria class (Table 3) was detected with good specificity
and sensitivity (93.64% and 95.77%) and with reasonable pre-
cision of 88.88%. The values obtained are due to the fact
that the sum of true negatives was high, the sum of false
negatives was low, and the sum of false positives was rela-
tively low. Whereas the accuracy is equivalent to 33.21%.

For the Coronavirus class (Table 3), we observe that it was
identified with good specificity and precision (97.37% and
93.85%) and likewise with a moderate value of sensitivity
82.80%. We can explain those values by the fact the sum of
true negatives was high, and the sum of false positives was
low (specificity and precision) and also the sum of false neg-
atives was practical low (sensitivity). We notice that the value
of accuracy is 27.04%.

4.3.3. Inception_V3
The table of Inception_V3 model (Table 4) depicts that the
Normal class was distinguished well since precision, sensitiv-
ity, and specificity reached good value (93.76%, 95.51%, and
96.91%). This can be explained by the sum of false positives
and false negatives were low (precision and sensitivity), and
the sum of true negatives was high. Furthermore, accuracy
has a value of 31.19%.

Concerning Bacteria class (Table 4), it was detected well
since sensitivity and specificity were equivalent to 92.42%
and 90.00% and also with tolerable precision (83.06%). These
values can be interpreted by the sum of false negatives was
low and the sum of true negatives was high (sensitivity and
specificity). On the other hand, the value of precision
(83.06%) is due to the sum of true negatives was low.
Moreover, it can be observed that the value of accuracy
is 32.05%.

Coronavirus class (Table 4) was identified relatively well
because precision and sensitivity were reasonable and also
with good specificity. Their values were 88.06%, 75.88% and
95.01% respectively. We can explain these values like this:
the sum of false positives was relatively low for the precision;
the sum of false negatives was practically low for the sensi-
tivity and the sum of true negatives was high for the specifi-
city. While the value of accuracy is equal to 24.78%
(Figure 5).

4.3.4. Mobilenet_V2
The obtained results by Mobilenet_V2 (Table 5) tell us that
Normal class was detected with good values of precision,
sensitivity, and specificity (92.41%, 95.70%, and 96.19%).
These achieved values are due to the fact that the false posi-
tives and sum of false positives were low for precision and
sensitivity respectively and also the sum of true negatives
was high. We can see that the value of the accuracy
is 31.25%.

Acceptable precision and sensitivity where the values are
84.79% and 81.51% and also good specificity of value
92.24% were identified Bacteria class (Table 5). This means
that sum of false positives and the sum of false negatives
were low (precision and sensitivity). Likewise, the value of
specificity is explained by the sum of true negatives was
high. As we can see the value of accuracy is 28.26%
(Figure 6).

About Coronavirus class (Table 5), it was detected rela-
tively well since precision, sensitivity, and specificity were
reasonable. The values are 78.99%, 79.43% and 89.75%
respectively. The obtained results can be explained by the
sum of false positives and false negatives were practically
low for the precision and sensitivity as well as the sum of
true negatives was acceptable high for the specificity. While
the value of the accuracy is 25.94%.

4.3.5. Resnet50
Concerning the Resnet50 results (Table 6), we may notice
that Normal class was detected with good precision, sensitiv-
ity, and specificity (95.22%, 93.27%, and 97.73%). This can be
explained by the sum of false positives and false negatives
were low (precision and sensitivity). Besides, the value of
specificity is due to the fact of the sum of true negatives
that was high. As noticed, the value of accuracy is 30.46%.

For the Bacteria class (Table 6), the good value of specifi-
city (91.77%) is obtained because the sum of true negatives
was high. In addition, the value of sensitivity and precision
(89.08% and 85.18%) were reasonable since the sum of false
negatives and false positives were low. For accuracy, the
value is equal to 30.89%.

Table 6. Evaluation metric for Resnet50.

Class TP TN FN FP Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 Score (%)

Normal 499 1078 36 25 30.46 93.27 97.73 95.22 94.23
Bacteria 506 982 62 88 30.89 89.08 91.77 85.18 87.09
Coronavirus 429 1012 106 91 26.19 80.18 91.74 82.50 81.32

Figure 7. Confusion matrix of Resnet50.
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Regarding Coronavirus class (Table 6), we can see that it
was distinguished relatively well because precision and sensitiv-
ity were reasonable with values: 82.50% and 80.18% respect-
ively and also with good value of specificity (91.74%). This
means that the sum of false positives and false negatives were
acceptable low and also the sum of true negatives was high.
The value of accuracy is equal to 26.19% (Figure 7).

4.3.6. VGG16
The results given by VGG16 (Table 7) show that Normal class
was detected with good sensitivity (92.71%) that is caused
by the low sum of false negatives. Likewise, it distinguished
with reasonable precision and specificity (77.01% and
86.58%) which is caused by the low sum of false positives
and the high sum of true negatives. We can see that the
value of accuracy is 30.28%.

Bacteria class (Table 7) was identified with acceptable val-
ues of precision, sensitivity, and specificity (71.11%, 78.87%,
and 82.99%). These values are produced by the low sum of
false positives and sum of false negatives and by the high
sum of true negatives. The value of accuracy is 27.35%.

Coronavirus class (Table 7) was determined with good
specificity (92.56%) given by the high sum of true negatives
and with reasonable precision (77.47%) caused by the low
sum of false positives. In addition, it is distinguished with
wicked sensitivity (52.71%) which is a result of the poor sum
of false negatives. As it is observed, the accuracy value is
17.21% (Figure 8).

4.3.7. VGG19
Regarding VGG19 results (Table 8), we observe that Normal
class was classified with good specificity (90.29%) and

reasonable sensitivity and precision (85.23% and 80.99%).
These values are obtained by the fact that the sum of true
negatives was high (specificity) and the sum of false positives
and the false negatives were low (precision and sensitivity).
We can see that the value of accuracy is 27.83%.

For Bacteria class (Table 8), it was identified relatively well
since precision, sensitivity, and specificity were reasonable
(63.58%, 83.62%, and 74.57%). This means that the sum of
false positives was low for precision. In addition, the values
of sensitivity and specificity are caused by the sum of false
negatives that were low and the sum of true negatives that
were high respectively. The value of the accuracy is equal
to 28.99%.

Analogous, Coronavirus class (Table 8) was detected with
good specificity (93.56%) caused by the high sum of true
negatives and with acceptable precision (78.35%) caused by
the reasonable low sum of false positives. Likewise, it is iden-
tified with wicked sensitivity (48.03%) which is a result of the
low sum of false negatives. For accuracy, its value is 15.68%
(Figure 9).

4.4. Experimental comparisons

This subsection compares the experimental results of classify-
ing X-ray images using the different networks. The experi-
mental results will be compared in terms of training and
testing time and metrics defined in Equation (1).

Table 9 is a summary of the confusion matrix performance
of all used models. Thereby, as we can read, the highest per-
formance values have been yielded an accuracy of 92.18%, sen-
sitivity of 92.11%, specificity of 96.06%, precision of 92.38% and
F1 score value of 92.07% for Inception_Resnet_V2 pre-trained
model. Furthermore, good metrics values (accuracy 88.09%, sen-
sitivity 87.99%, specificity 94.00%, precision 88.52% and F1
score 87.91%) were obtained by DensNet201.The same thing
can be said for Inception_V3, the acquired performances were
good (accuracy 88.03%, sensitivity 87.94%, specificity 93.97%,
precision 88.30%, and F1 score 87.88%). Regarding
Mobilenet_V2, the values attained can be described as follows:
accuracy of 85.47%, sensitivity 85.55%, specificity 92.73%, preci-
sion 85.40%, and F1 score value of 85.45%. We can notice that
good performance values were accomplished for Resnet50
(accuracy 87.54%, sensitivity 87.51%, specificity 93.75%, preci-
sion 87.63%, and F1 score 87.55%). About VGG16, the model
produced low-performance values as the accuracy of 74.84%,
the sensitivity of 74.76%, the specificity of 87.37%, the precision

Table 8. Evaluation metric for VGG19.

Class TP TN FN FP Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 Score (%)

Normal 456 996 79 107 27.83 85.23 90.29 80.99 83.06
Bacteria 475 798 93 272 28.99 83.62 74.57 63.58 72.24
Coronavirus 257 1032 278 71 15.68 48.03 93.56 78.35 59.55

Table 7. Evaluation metric for VGG16.

Class TP TN FN FP Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 Score (%)

Normal 496 955 39 148 30.28 92.71 86.58 77.01 84.13
Bacteria 448 888 120 182 27.35 78.87 82.99 71.11 74.79
Coronavirus 282 1021 253 82 17.21 52.71 92.56 77.47 62.73

Figure 8. Confusion matrix of VGG16.
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of 75.20%, and the F1 Score value of 73.88%. Moreover, the
table shows us that VGG19 model achieved the lowest perform-
ance as the accuracy of 72.52%, the sensitivity of 72.29%, the
specificity of 86.14%, the precision of 74.31%, and F1 score
value of 71.62%. As a conclusion, the Inception_Resnet_V2
architecture furnished superiority up the other architectures
both training and testing steps followed by Densnet201.

Furthermore, Table 10 depicts the comparative computa-
tional times in second for different models tested during this
study. For inception_ResNet_V2, the elapsed time for training
and testing stages was 79 184.28 s and 262 s. DensNet201
has required 68 859.73 and 225 s for training and testing
steps. Likewise, for Resnet50, 58 069.93 and 194 s were
required to finish training and testing steps. Similarly, for
Mobilenet_V2, the elapsed time for training and testing were
58 693.21 and 196 s. For Inception_V3, it was necessary to
have 58 485.06 and 193 s to achieve training and testing
steps respectively. Regarding VGG16, it has required 53
621.49 and 181 s while VGG19 has required 53 493.08 and
181 s for training and testing steps respectively.

5. Discussion

In the present work, we conducted a comparative study of
the most known deep learning architectures to detect and
classify of coronavirus pneumonia using CT and X-
ray images.

From different tables above (Tables 2–8), we notice that
the coronavirus class reaches low values in terms of accur-
acy, sensitivity, specificity, precision, and F1 score. Thereby,
the main problem of the present work is the limited number
of coronavirus X-ray images used for the training of different
proposed deep learning models. In order to overcome this
issue, we used deep transfer learning techniques. Moreover,
Covid Chest X-ray Dataset (Cohen et al., 2020) contains a

melange of brain and chest images that can decrease the
accuracy and other metrics. The images of other classes are
only images of chest. In the coming days, we are planning
to improve this study with different models, if we reach
more data.

We compared the different pre-trained models according
to accuracy, sensitivity, specificity, precision, F1 score, and
training and testing times. As tabulated by Table 9, the
obtained results showed that the Incpetion_Resnet_V2 gave
good classification performance (92.18% of accuracy) fol-
lowed by Densnet201 with 88.09% of accuracy. Contrariwise,
VGG19 and VGG16 are the lowest compared with other DL
architectures, since these last models help to obtain respect-
ively 74.84% and 72.52% of accuracy.

Moreover, Table 10 illustrates a comparison between the
different deep learning models used in the experiments in
terms of computational times. From this table, we observe
that Incpetion_Resnet_V2 even it gives a good result it is not
fast because it takes 79 184.28 and 262 in training and test-
ing steps respectively followed by Densnet201. In addition,
we notice that Inception_V3 is fast and provides good results
(88.03% of accuracy). We can conclude that the scientist has
the choice to choose between the accuracy and the compu-
tation time to finally select the DL technique to use, but
since we are in the medical field, the accuracy of the DL
techniques stays major selection criteria.

Consequently, we recommend the Incpetion_Resnet_V2
(92.18% of accuracy, 92.11% of sensitivity, 96.06% of specifi-
city, 92.38% of precision, and 92.07% of F1 score) model
based on X-ray and CT images to be used to identify the
health status of patients against the coronavirus. We hope
that the results obtained during this study may serve as an
initial step towards developing from X-ray and CT images a
sophisticated coronavirus detection to save as many lives
as possible.

6. Conclusion and future work

We investigated in this work automated methods used to
classify the chest X-ray & CT images into bacterial

Figure 9. Confusion matrix of VGG19.

Table 9. Evaluation metric for different models.

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) F1 Score (%)

Inception_Resnet_V2 92.18 92.11 96.06 92.38 92.07
DensNet201 88.09 87.99 94.00 88.52 87.91
Resnet50 87.54 87.51 93.75 87.63 87.55
Mobilenet_V2 85.47 85.55 92.73 85.40 85.45
Inception_V3 88.03 87.94 93.97 88.30 87.88
VGG16 74.84 74.76 87.37 75.20 73.88
VGG19 72.52 72.29 86.14 74.31 71.62

Table 10. Comparative computational time in seconds.

Model Training (s) Testing (s)

Inception_Resnet_V2 79 184.28 262
DensNet201 68 859.73 225
Resnet50 58 069.93 194
Mobilenet_V2 58 693.21 196
Inception_V3 58 485.06 193
VGG16 53 621.49 181
VGG19 53 493.08 181
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pneumonia, coronavirus, and normal classes using seven
deep learning architectures (VGG16, VGG19, DenseNet201,
Inception_ResNet_V2, Inception_V3, Resnet50, and
MobileNet_V2). The main goal is to answer the following
research questions: RQ1). Is there any DL technique that dis-
tinctly outperforms other DL techniques? RQ2). Can DL use
to early screen coronavirus from CT and X-ray images? RQ3).
What is the diagnostic accuracy that DL can be attained
based on CT and X-ray images? RQ4). Can DL assist in the
efforts to accurately detect and track the progression or reso-
lution of the coronavirus? Toward this end, the experiments
were conducted using chest X-ray & CT dataset. Moreover,
the performances of these experiments were evaluated using
various performance metrics. Furthermore, the obtained
results show that Inception_Resnet_V2 provides better results
compared to other architectures cited in this work (accuracy
is higher than 92%). Due to the high performance achieved
by this model, we believe that these results help doctors to
make decisions in clinical practice.

Ongoing work intends to develop a full system for cor-
onavirus using deep learning detection, segmentation, and
classification. In addition, the performance may be improved
using more datasets, more sophisticated feature extraction
techniques based on deep learning such as You-Only-Look-
Once (YOLO) (Al-Masni et al., 2018), and U-Net (Ronneberger
et al., 2015) that was developed for biomedical image
segmentation.
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