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Estrogen therapy is widely used as a supplementary treatment after hysteroscopy for
female infertility patients owing to its protective function that improves endometrial
regeneration and menstruation, inhibits recurrent adhesions, and improves subsequent
conception rate. The endometrial protective function of such estrogen administration pre-
surgery is still controversial. In the current study, 12 infertility patients were enrolled, who
were treated with estrogen before hysteroscopy surgery. Using cutting-edge
metabolomic analysis, we observed alterations in the pentose phosphate pathway
(PPP) intermediates of the patient’s endometrial tissues. Furthermore, using Ishikawa
endometrial cells, we validated our clinical discovery and identified estrogen–ESR–G6PD–
PPP axial function, which promotes estrogen-induced cell proliferation.
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INTRODUCTION

Infertility is defined as a failure to fall pregnant despite a couple having regular unprotected sexual
intercourse for over 1 year (1). Although infertility has multiple causes, regular screening, including
semen analysis (morphology and motility, etc.), assessment of tubal patency, and detection of
ovulation over a period of 1 year of regular unprotected sexual intercourse is normally sufficient to
identify the problem. In a few cases where patients cannot be assessed, a diagnosis of unexplained
infertility (UI) would be given (2). There are five factors that are commonly identified in the female
reproductive system that could cause clinical infertility; (1) diminished ovarian reserve or ovulatory
dysfunction (25%–30%); (2) tubal disease or blockage (20%–25%); (3) endometriosis (10%–20%);
(4) uterine abnormalities such as cervical polyps, submucous uterine myoma, intrauterine adhesion,
endometrial hyperplasia, and uterine malformation (0%–5%); and (5) unexplained infertility (25%–
30%) (3–8). Fallopian tubes and uterine abnormalities are the main causes of female infertility, and
hysteroscopy is able to diagnose the pathological factors and treat such disorders effectively (9).
Furthermore, hysteroscopy can help to identify the real cause of UI. Owing to the advantages of
limited trauma, high accuracy, direct visualization, and low misdiagnosis rate, hysteroscopy is the
“gold standard” for diagnosing and treating macroscopic intrauterine disease (9, 10), infertility,
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recurrent pregnancy loss, and presurgical evaluation (11).
Although the beneficial therapeutic effects of hysteroscopic
surgery have been demonstrated by Longfa et al., some
complications such as the formation of intrauterine adhesions
post-operatively cannot be ignored (12).

Estrogen therapy is widely performed as a supplementary
treatment following hysteroscopy. A previous study reports that
estrogen treatment before hysteroscopy could promote blood
supply, accelerate endometrial basal layer proliferation, and
probe the normal endometrium during surgery (13). The latter
authors discovered that preoperative estrogen can also reduce
surgical times and effectively avoid re-adhesion (14–16). Most
importantly, estrogen administration can normalize the menstrual
cycle so that surgery can take place in the proliferative phase
rather than waiting for the required phase (17, 18). Post-
operatively administered estrogen can improve endometrial
regeneration and menstruation, inhibit recurrent adhesions,
and improve conception rate of UI patients (12, 19). However,
it is still controversial whether estrogen should be given before
hysteroscopy for prognosis improvement. Estrogen therapy is
normally given in doses of 2 mg/day to 12 mg/day prior to
surgery (12, 20–22). However, Songshu et al. believe that an oral
dose of 9 mg/day can achieve the best result with minimal side
effects (14). Moreover, Auclair et al. observed that continuous
stimulation of large doses of estrogen without progesterone
resistance could lead to endometrial lesions (23). Thus, we
aimed to investigate the effect of estrogen administration
before hysteroscopy on the endometrium and UI treatment.
In this study, infertility patients were recruited who were
subsequently treated with estrogen before hysteroscopic
surgery, and the effects of estrogen on endometrial
metabolism in the proliferative phase were investigated. A
cutting-edge metabolomic approach was then used to identify
the metabolic alterations occurring in such treatment. Using this
approach, alterations in the pentose phosphate pathway (PPP)
with pre-operative estrogen treatment were observed.
Intervention in this PPP metabolism can reduce the risk of
endometrial hyperplasia.
MATERIALS AND METHODS

Chemicals and Reagents
Dimethyl sulfoxide (DMSO), 6-aminonicotinamide (6-AN), and
17b-estradiol were purchased from Sigma-Aldrich (St Louis, MO,
USA). High-glucose Dulbecco’s Modified Eagle Medium (high-
glucose DMEM), penicillin–streptomycin, trypsin-EDTA (0.25%),
and fetal bovine serum were purchased from Thermo Fisher
Scientific (Gibco, USA). Cell Counting Kit-8 (CCK-8) was
purchased from Yeasen (China). Water (HPLC Grade),
acetonitrile (HPLC Grade, 99.95%), 2-propanol (HPLC Grade,
99.9%), methanol (HPLC Grade, 99.9%), ammonium hydroxide
(LC–MS grade), and acetic acid (HPLC Grade, 99.7%) were
ordered from Fisher Chemical. MTBE (HPLC Grade, 99.9%)
was ordered from Sigma-Aldrich. Formic acid (LC-MS Grade)
was ordered from Fisher Scientific.
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Patient Recruitment
Twelve infertility patients were recruited before undergoing
hysteroscopy combined with laparoscopy. Six patients were
treated with estrogen (Estrogen Group) and the remainder
were not (Control Group) before they all underwent
hysteroscopy combined with laparoscopy. Patients in the
Estrogen Group were given estradiol valerate (Progynova) at
an oral dose of 2 mg daily for 7 days before hysteroscopy and this
was continued for 21 days. Endometrial tissue of both estrogen-
treated and control groups were collected during surgery and
frozen at −80°C until metabolite extraction. The use of
endometrial tissue was approved by the Obstetrics and
Gynecology Hospital of Fudan University’s ethics board (the
hospital’s ethics board (NO.2021-132), Shanghai, China and
consent was obtained from each patient.

Cell Culturing
The Ishikawa cells maintained in our laboratory are immortal
endometrial tumor cells that can perfectly mimic the in vitro
behavior of endometrial epithelium cells (24). Ishikawa cells are
derived from a well-differentiated adenocarcinoma of human
endometrial epithelium that expresses functional steroid
receptors for estradiol (E2) and progesterone (P4) (25). The
cell line represents an ideal model of normal endometrial
epithelium cells owing to its phenotypic similarity and
response to steroids, similar to physiological conditions (26).
The Ishikawa cells were seeded at a density of 2,000 cells/well for
24 h until they were attached to the 96-well plate for cell
proliferation measurement. For the metabolomics analysis,
Ishikawa cells were seeded at a density of 2 × 105 cells/well for
24 h until they were attached to the 24-well plate. After serum
fasting for 24 h, the cells were treated with 100 nM estrogen or
DMSO (vehicle control) for 48 h until their metabolites
were extracted.

Cell Proliferation Measurement
For the Ishikawa cells cultured in the 96-well plate, cell culture
media were replaced by serum free DMEM and “fasting” for 24 h
before drug treatments. Two cell proliferation assays were
processed: (1) the fasted cells were treated with 5 µM of the
PPP metabolism inhibitor 6-aminonicotinamide (6-AN); or 100
nM estrogen; or 100 nM estrogen along with 5 µM 6-AN; or
DMSO (vehicle) for 0 h, 24 h, 48 h, 72 h, or 96 h, and subsequent
cell proliferation was measured using a CCK8 kit (Yeasen); (2)
the fasted cells were treated with 10 µM 6-AN; or 100 nM
estrogen; or 100 nM estrogen along with 10 µM 6-AN; or DMSO
(vehicle) for 0 h, 24 h, 48 h, and 72 h; cell proliferation was also
measured using a CCK8 kit (Yeasen).

Metabolite Extraction
Metabolites were extracted from endometrial tissue samples and
Ishikawa cell samples following a published protocol (27).
Briefly: tissue samples (2 mg) were placed in microcentrifuge
tubes and smashed with stainless steel beads at 4°C for 30 min.
The homogenous samples were then transferred to 15-ml
centrifuge tubes and 4.5 ml ice-cold 80% methanol was added.
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The Ishikawa cell samples were placed in 15-ml centrifuge tubes
with 4.5 ml of ice-cold 80% methanol added. The mixture (either
homogenous tissue or cells) was incubated at −80°C for 2 h and
centrifuged 14,000 × g for 10 min at 4°C. The supernatant was
collected into three 1.5-ml microcentrifuge tubes while the
pellets were discarded. The supernatant was dried in a
SpeedVac at room temperature, and the metabolites were
stored at −80°C until analyzed by UHPLC-MS.

UHPLC-MS Metabolomic Analysis
Metabolites extracted from endometrial tissue samples and
Ishikawa cells were reconstituted with 100 µl of acetonitrile:
water (v:v 50:50), and 5-µl sample solutions were injected into
the UHPLC-MS. The metabolites were acquired using a targeted
metabolomics method that was modified from a published
protocol (28). The UHPLC was equipped with an HILIC
column (XBridge Amide 3.5 µm, 4.6 × 100 mm) and samples
were eluted with a gradient. Two buffers, buffer A (95% water
and 5% acetonitrile with 20 mM ammonium hydroxide and 20
mM ammonium acetate, pH 9.0) and buffer B (acetonitrile), were
used in the gradient. The total flow of the gradient was 0.25 ml/
min, which started from 0 to 0.1 min, 85% B; 3.5 min, 32% B; 12
min, 2% B; 16.5 min, 2% B; and 16–17 min, 85% B. Metabolites
in the samples were acquired by a QTRAP 5500+ (AB Sciex)
mass spectrometer using targeted MRMmethods containing 297
transitions. All transition peaks were integrated on a MultiQuant
(AB Sciex) to obtain a metabolomics peak list.

Statistical Analyses
The metabolomics data were analyzed using MetaboAnalyst 5.0
(29) and GraphPad (Prism 8). Heatmap, PCA score plot, and
VIP score were analyzed using MetaboAnalyst. Student’s t-test
was performed to evaluate significant metabolite differences
between E2 and the control group (*p < 0.05, **p < 0.01, n.s.,
not significant) using GraphPad (Prism 8). The metabolic
pathway analysis referred to the KEGG (https://www.kegg.jp/)
metabolic pathway map (30).
RESULTS AND DISCUSSION

Endometrial hyperplasia enlarges the glandular architecture of the
human uterus and can lead to a series of unexpected consequences
(31, 32) including cancerous proliferation. The overproduction of
estrogen from adipose tissue in obese patients greatly contributes
to endometrial hyperplasia and even endometrial cancer. For most
cases of infertility treatment, oral intake of estrogen before
hysteroscopy combined with laparoscopy can protect from
intrauterine adhesion, as well as preparing the endometrium for
embryo transplantation. There is a risk that estrogen treatment
during the endometrial proliferative phase may induce side effects,
including endometrial hyperplasia and endometrial cancer;
therefore, it is necessary to investigate biological signaling,
especially metabolomic alteration after estrogen treatment in
infertility patients.
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Metabolomic Profiling of
Endometrial Tissues
Metabolomics based on cutting-edge UHPLC-MS techniques
have been widely used in the discovery of multiple clinical
mechanisms and biomarkers in recent years. We used these
advanced tools to analyze metabolome alterations in the
endometrial tissue of infertility patients who were treated with
estrogen (Figure 1A). We collected endometrial tissue from 12
infertility patients; half of them were treated with E2 and the
remainder were not. All the tissues were processed using the same
metabolite extraction procedure and injected into the UHPLC-
MS. The metabolomic results indicated that estrogen can indeed
affect metabolic changes in patient’s endometrial tissues
(Figure 1B), and most of them are associated with PPP
metabolism. We then checked the metabolic intermediates
correlated with the PPP and glycolysis (Figure 1C). Both the
glycolysis metabolites (pyruvate, fructose-6-phosphate, fructose-
1,6-phosphate, 1,3-diphosphateglycerate, phosphoenolpyruvate,
and glyceraldehyde-3-phosphate) and PPP intermediates
(sedoheptulose-1,7-phosphate, erythrose-4-phosphate, and
ribose-phosphate) were upregulated after estrogen treatment
(Figure 1C). This implies that the oral intake of estrogen can
affect glucose usage in infertility patients and that glucose
catabolism is promoted in general. However, we did not observe
an increase in glucose aerobic oxidation (Supplemental Figure 1).
Levels of NAD+ and NADH fell in the estrogen-treated tissues;
this indicated that glucose may flux to glycolysis and the PPP
instead of aerobic oxidation catabolism.

The PPP Is Promoted After
Estrogen Treatment
Although we observed that glucose fluxes to glycolysis and the
PPP in the endometrial tissues of infertility patients following
estrogen treatment, it is still unclear if the endometrial
epithelium can be directly affected by estrogen. To evaluate the
effects of estrogen on endometrial epithelium cells, we treated the
Ishikawa cell line with 100 nM estrogen and profiled
the metabolic alterations. In vitro cell metabolomics results
indicated that estrogen can extensively alter the metabolites of
endometrial epithelium cells (Figure 2A). Most of the
metabolites were elevated by 2 mg/day estrogen treatment
(Figure 2B). This implies that estrogen could promote the
metabolism of Ishikawa cells to generate more substrates for
cell proliferation. To take a close look at the altered metabolites,
we preformed metabolite set enrichment analysis (MSEA) using
MetaboAnalyst 5.0 (29). The metabolite ontology results
indicated that 12 metabolic pathways were significantly
changed, and the top one was the PPP (Figure 2C), which was
consistent with the findings in estrogen-treated endometrial
tissue from infertility patients (Figure 1C). We then profiled
the metabolic intermediates correlated to the PPP, which were all
elevated with estrogen treatment as we expected (Figure 2D). It
is interesting that 5-phosphoribosyl-1-pyrophosphate (PRPP)
was also upregulated by estrogen. PRPP is one of the key
metabolites that link glucose metabolism to nucleotide
synthesis (Figure 2E); therefore, increased PRPP could imply
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that de novo nucleotide biosynthesis is stimulated by estrogen in
endometrial epithelium cells. This result is consistent with
Oliver’s discovery in 1972, who observed that the rate of
purine de novo synthesis in an immature rat uterus was
doubled at 6 h after 17b-estradiol administration (33).

Estrogen Affects Cell Proliferation via PPP
Metabolically, the de novo biosynthesis of nucleotides is normally
linked to promote cell proliferation, especially in cancerous cells
Frontiers in Endocrinology | www.frontiersin.org 4
(34, 35). As we found that estrogen may affect endometrial
epithelium cell glucose metabolism via the PPP, we set out to
determine whether estrogen affects cell proliferation through
such glucose catabolism. First, Ishikawa cells were treated with
two different doses of 6-aminonicotinamide (5 µM and 10 µM 6-
AN) and no significant cell proliferation changes were observed
(Figures 3A, B, orange line vs. black line). 6-AN is a 6-
phosphogluconate dehydrogenase inhibitor that turns glucose-
6-phosphate into 6-phosphogluconate, and it inhibits glucose
A B

C

FIGURE 1 | Metabolomic profiling of endometrial tissues. (A)Metabolomic profiling was used to analyze alterations to the metabolome in endometrial tissue of female infertility
patients who were treated with estrogen. (B) Heat map showing metabolic changes in endometrial tissue samples. (C) The ratio of metabolic intermediates correlated to the
PPP and glycolysis from endometrial tissue samples.
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fluxing to PPP while it does not perturb glycolysis and aerobic
respiration. Such results indicate that merely blocking the flux of
glucose to the PPP is unlikely to affect endometrial epithelium
cell proliferation. We then treated endometrial epithelium cells
with both estrogen and 6-AN, and surprisingly noted a
decelerated growth of endometrial epithelium cells to be even
Frontiers in Endocrinology | www.frontiersin.org 5
slower than the vehicle-treated cells, regardless of the volume of
6-AN that was added to the cell culture (Figures 3A, B, blue line
vs. black line). The cells treated with only estrogen achieved an
accelerated growth as we expected (Figures 3A, B red line vs.
black line). Such results imply that the estrogen-promoted
endometrial epithelium proliferation might be a pentose
A B

D

E

C

FIGURE 2 | The pentose phosphate pathway is promoted after estrogen treatment. (A) PCA score plot of Ishikawa cells with or without estrogen treatment.
(B) Heat map showing metabolic changes in Ishikawa cells with or without estrogen treatment. (C) KEGG pathway enrichment analysis of the two groups.
(D) The ratio of metabolic intermediates correlated to the PPP and glycolysis from Ishikawa cells with or without estrogen treatment (*p-value < 0.05). (E) Model
depicting the action of PRPP between glucose metabolism and the nucleotide synthesis.
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phosphate metabolism-dependent mechanism; meanwhile,
turning off PPP metabolism, the endometrial epithelium cell
growth would be slowed by estrogen.

Estrogen May Stimulate PPP
It is known that estrogen can induce cell proliferation and
stimulate cell growth (36–40), but there is still little evidence
indicating that estrogen can alter such biological processes
through metabolic pathways (41). Sun et al. showed that E2 can
promote breast cancer and lymphangioleiomyomatosis tumor
addiction to the PPP with upregulated G6PD enzyme activity
(42). Salama et al. proposed that an E2-induced hESC
proliferation would be closely linked to fluxes of glucose
metabolism that upregulate aerobic glycolysis leading to such
proliferation associated with PKM2 (43). Imbert-Fernandez
et al. showed that E2 might also upregulate multiple glycolytic
enzyme expressions and activities such as PFKFB3, resulting in
increased glucose uptake and fructose 2,6-bisphosphate (F2,6BP)
Frontiers in Endocrinology | www.frontiersin.org 6
concentration (44). All of this evidence indicates that E2 can
manipulate cellular metabolism to alter cell proliferation and other
biological processes. Profiling the metabolome of estrogen-treated
endometrial tissues, we believe that such hormones can alter
glucose-associated metabolism in infertility patients. Glucose
catabolism is one of the essential biochemical processes
occurring in cells as glycolysis and the tricarboxylic acid cycle
(TCA) provide energy for cell survival (Supplemental Figure 1A),
while the PPP offers the substrates (such as nucleotides) for cell
proliferation (45). As we observed that several PPP intermediates
were upregulated in endometrial tissues after estrogen treatment,
it can be hypothesized that estrogen stimulates the activation of
pentose phosphate metabolism to promote endometrial cell
proliferation. Using an endometrial epithelium immortal cell
line (Ishikawa cells), we validated the promotion of cell growth
function of estrogen as Ishikawa cells grew significantly faster than
the vehicle-treated cells. Meanwhile, after blocking metabolism of
the PPP with a chemical inhibitor (6-AN), the growth of Ishikawa
cells was not affected. Surprisingly, when the endometrial
epithelium cells were treated with both estrogen and 6-AN at
the same time, the growth rate was slower than the vehicle
controls. Such unexpected results imply that the cell growth
promotion function of estrogen not only is highly dependent on
activation of the PPP, but also can be regulated by the inhibition of
pentose phosphate metabolism. Sun et al. proposed that the
survival of estradiol-treated lymphangioleiomyomatosis
xenograft mice was attenuated by the depletion of G6PD (42);
Forbes et al. also observed the increased metabolic flux of the PPP
inMCF-7 cells undergoing treatment with estradiol (46). Once the
PPP is inhibited and glucose cannot flux to ribose and nucleotide
synthesis, the estrogen treatment on endometrial epithelium
diverts to preserving energy and nutrients rather than
undergoing cell proliferation. Such high-dosage-induced E2-
associated cell proliferation inhibition was also observed decades
ago by Lewis-Wambi and Jordan in breast cancer. They found that
high-dose estrogen-induced tumor regression is linked to extrinsic
(Fas/FasL) and intrinsic (mitochondria) pathways (47). Srivastava
et al. found that a high dosage of E2 can inhibit the differentiation
of murine bone marrow monocytes and RAW 264.7 cells into
mature osteoclasts (48). Researchers also found an inducible
apoptosis effection of long-term high-dose E2 in cancer cells
(49, 50). All this evidence implies a detrimental side to high-
dosage E2 treatment.

Normally, estrogen can enter cells and bind to estrogen
receptors (ESR) so that it can be delivered to the nucleus as a
complex to stimulate a cascade of biochemical reactions
(Figure 4). It is widely known that ESR complexes can
promote the expression of G6pd and the translation of glucose
6 phosphate dehydrogenase (G6PD) (51–53). G6PD is a critical
enzyme in the conversion of glucose 6-phosphate to yield 6-
phosphogluconate, and this biochemical reaction is also
associated with one molecule of NADP+ being transformed to
NADPH. Once the PPP is activated, de novo biosynthesis of
nucleotides can largely supply the materials (deoxyribonucleic
acid for DNA and ribonucleic acid for RNA) for cell proliferation
(Figure 4A). However, when G6PD activity is inhibited with
A

B

FIGURE 3 | Estrogen affects cell proliferation via the pentose phosphate
pathway. (A) Ishikawa cells were treated with 5 µM 6-AN; or 100 nM estrogen;
or 100 nM estrogen along with 5 µM 6-AN; or DMSO for 0 h, 24 h, 48 h, 72 h,
or 96 h, and cell proliferation was measured using a CCK8 kit. (B) Ishikawa
cells were treated with 10 µM 6-AN; or 100 nM estrogen; or 100 nM estrogen
along with 10 µM 6-AN; or DMSO for 0 h, 24 h, 48 h, or 72 h, and cell
proliferation was measured using a CCK8 kit, *p-value < 0.05, **p-value < 0.01,
n.s., not significant.
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6-AN, E2-ESR can promote the expression of G6PD without
stimulating de novo biosynthesis of nucleotides. Cells might sense
this signal of proliferation at an early time point, but without
sufficient DNA and RNA, the cell cannot proliferate, or may even
slow down the growth rate to preserve energy for cell survival
(Figure 4B). Thus, we observed a decline in cell proliferation when
6-AN was added to the E2-treated cells (Figure 3).

In our research, the Ishikawa cells we used are cancer cells;
this was because it is difficult to obtain normal cells for
experiments. Although they can perfectly mimic the in vitro
Frontiers in Endocrinology | www.frontiersin.org 7
behavior of endometrial epithelium cells (24), the experimental
data obtained may have certain limitations and therefore need
to be further verified by systems such as organoids in
future work.
CONCLUSION

In this study, we recruited 12 female infertility patients to
investigate metabolome alteration of endometrial epithelium
A

B

FIGURE 4 | Estrogen may stimulate the pentose phosphate pathway. Estrogen can enter cells and bind to estrogen receptors (ESR) so that it can be delivered to
the nucleus as a complex to stimulate a cascade biochemical reactions. (A) Once the pentose phosphate pathway is activated, the de novo biosynthesis of
nucleotides can largely supply the materials (DNA and RNA) for cell proliferation. (B) When G6PD activity is inhibited with 6-AN, E2-ESR can promote the expression
of G6PD without stimulating the de novo biosynthesis of nucleotides; the cells cannot proliferate, or may even reduce their growth rate to preserve sufficient energy
for cell survival.
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treated with estrogen. Using a cutting-edge UHPLC-MS
metabolomics technique, we observed that the PPP is
perturbed by estrogen; it alters cell proliferation by promoting
pentose phosphate pathway metabolism. We believe that such a
cutting-edge metabolomics approach can lead to the discovery of
pathological mechanisms in clinical infertility research.
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