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intRoDuction
There is currently considerable enthusiasm for Artificial 
Intelligence (AI) in healthcare, including in radiation 
oncology. AI is an umbrella term covering all approaches 
to imitating human intelligence through the use of 
machines. However, the predominant technical approach 
currently generating interest in AI for healthcare is best 
categorized as machine learning (ML): the development 
of data-driven algorithms that learn to mimic human 
behaviour on the basis of prior example or experience. 
As a consequence, this paper focuses on the applications 
of ML in radiation oncology. The burgeoning interest in 
healthcare is evidenced by the rapid increase in clinical 
publications in this area, illustrated in Figure 1. Perhaps 
inevitably, one consequence of such enthusiasm in the 
evolving field is the risk of overblown expectations. 
Several reviews have surveyed the use of AI or ML in 
radiation oncology,1–5 or more broadly in healthcare.6,7 
In order to calibrate our expectations, this paper first 
considers what the current clinical challenges are in radi-
ation oncology and then assesses how, or whether ML, 

is addressing these challenges. With this clinical orien-
tation, we do not describe algorithmic innovations in 
detail, and instead refer the interested reader to the more 
technically focused survey paper of Meyer et al4 or the 
book by El Naqa et al.8

The clinical workflow for external beam radiation therapy 
(EBRT) is considered to provide focus on how ML is 
addressing clinical challenges in radiation oncology, 
although many of the challenges faced will also apply in 
other areas of radiation oncology such as brachytherapy. 
A generalized representation of this workflow is shown in 
Figure 2; the precise details may vary between institutions. 
The workflow can be split into three conceptual domains: 
(1) diagnosis and decision support, (2) treatment planning, 
and (3) treatment delivery. The process of diagnosis and 
treatment decision-making can be considered part of the 
broader oncology workflow, and therefore this review only 
briefly touches on this aspect; instead, attention is focused 
on the more concrete applications of ML to treatment plan-
ning and delivery.
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AbStRAct

Machine learning approaches to problem-solving are growing rapidly within healthcare, and radiation oncology is no 
exception. With the burgeoning interest in machine learning comes the significant risk of misaligned expectations as to 
what it can and cannot accomplish. This paper evaluates the role of machine learning and the problems it solves within 
the context of current clinical challenges in radiation oncology. The role of learning algorithms within the workflow for 
external beam radiation therapy are surveyed, considering simulation imaging, multimodal fusion, image segmentation, 
treatment planning, quality assurance, and treatment delivery and adaptation. For each aspect, the clinical challenges 
faced, the learning algorithms proposed, and the successes and limitations of various approaches are analyzed. It is 
observed that machine learning has largely thrived on reproducibly mimicking conventional human-driven solutions 
with more efficiency and consistency. On the other hand, since algorithms are generally trained using expert opinion as 
ground truth, machine learning is of limited utility where problems or ground truths are not well-defined, or if suitable 
measures of correctness are not available. As a result, machines may excel at replicating, automating and standardizing 
human behaviour on manual chores, meanwhile the conceptual clinical challenges relating to definition, evaluation, and 
judgement remain in the realm of human intelligence and insight.
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MAchine leARninG in plAnninG
Simulation imaging
Simulation is typically based on either CT imaging, MRI, or 
both—in which case image fusion is used to combine the infor-
mation. CT imaging has been the predominant approach due to 
its cost-effectiveness, speed of acquisition, high spatial resolu-
tion, and availability of machines.

CT simulation
CT simulation imaging has been standard practice in external 
beam radiation therapy since the 1980s.9 It might be assumed there-
fore that many of the challenges have been overcome. However, a 
number of areas for clinical improvement remain. For example; 
a CT image only provides a single snapshot of the tumour, intro-
ducing location uncertainty right at the beginning of the planning 
process10; increasing the number and types of images used for 
planning, such as four-dimensional CT, and treatment monitoring 
may introduce additional risks to the patient with respect to radi-
ation dose.11 Furthermore, uncertainty also stems from gauging 
the extent of the tumour10; this is discussed in more detail in the 
section on contouring.

Broadly speaking, there is a trade-off between dose reduction 
and image quality enhancement, and the achievable balance 
depends on the specific reconstruction algorithm. Improve-
ments in image reconstruction aim to push the frontier of 
this trade-off, so that similar quality images can be acquired 
with a lower dose, or better quality images for the same dose. 

Research on ML for reconstruction follows on from improve-
ments in iterative reconstruction,12 and many incorporate 
the use of neural networks (NNs). The majority of work has 
a focused on low-dose CT imaging for diagnosis, where dose 
reduction is the goal, rather than radiotherapy planning or 
delivery, where improving image quality is of greater impor-
tance, with the 2016 AAPM Low-dose CT grand challenge 
being a driver for several publications.13–15 ML techniques can 
be broadly classified by how the learning algorithm fits into 
the reconstruction pipeline. Image-to-image ML approaches 
aim to denoise the CT image after reconstruction has already 
taken place.13,15,16 Other approaches employ ML during the 
reconstruction process, to learn the prior information to guide 
iterative reconstruction from the raw imaging data,14,17,18 
a two-dimensional array containing raw X-ray projections 
through the patient known as a sinogram. In addition, some 
studies specifically focus on the challenge of reducing metal 
artefacts in CT reconstruction; similarly, these can be catego-
rized by whether artefact reduction occurs post-reconstruc-
tion,19 or directly by improving the sinogram.20

With their focus on diagnostic imaging, all of these studies 
utilize the peak signal-to-noise ratio (PSNR) and structural 
similarity index (SSIM) to assess visual image quality based 
on comparison with some putative “ground truth” image such 
as a higher dose CT image with a large number of views. On 
these counts, technical innovations often produce improve-
ments over standard filtered back-projection or iterative 

Figure 1. Number of search results by year for publications relating to “Radiation Oncology” and “Artificial Intelligence” or “Machine 
Learning”. Results from Google Scholar may represent a wider cross-section of publications than from PubMed. AI, Artificial Intel-
ligence; ML, machine learning.
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reconstruction algorithms. However, these are seldom eval-
uated within the context of the radiotherapy workflow. For 
instance, while Gjesteby et al19 motivate their work with the 
need for high image quality in proton therapy and show a 
26% increase in peak signal-to-noise ratio for metal artefact 
reduction compared to conventional approaches, no impact on 
the derived electron density, or the corresponding radiation 
dosimetry, of these methods have been considered.

MRI simulation
While CT imaging is ubiquitous due to its low cost and high 
speed, an inherent limitation of CT imaging is the uncertainty 
of tumour location due to poor soft-tissue contrast. In some 
cases, this makes MRI more attractive for simulation. While 
MRI is increasingly used for planning and treatment monitoring, 
progress has focused on how methods developed for CT can be 
adapted to work with MRI. However, the use of MRI for simula-
tion introduces a new obstacle: the electron density information 
is unavailable for calculation of the treatment plan—a chal-
lenge shared with the task of attenuation correction in PET/MR 
hybrid-imaging.21 Conventional algorithmic approaches have 
been developed to synthesize CT images from MRI,22 and more 
recently ML approaches have been considered. These learn from 
training sets of MR and CT images, and broadly fall into two 
categories: direct encoder–decoder networks that map an MRI 
to pseudo CT images,23,24 and generative adversarial networks 
(GANs) that pit image “generators” against “discriminators” to 
ensure that synthesised images are as realistic as possible.21,25,26 
While the majority of studies evaluate methods based on the 
similarity of pseudo CT images to known CT images, Maspero 

et al25 demonstrated that MR-based GAN approaches can 
achieve dosimetric deviations of as little as 0.5% under realistic 
conditions—a level of accuracy comparable to tissue classifica-
tion-based approaches.27

Multimodal fusion
Image registration is predominantly used in radiotherapy 
to align supporting imaging to the planning CT, such that 
additional information in the former can be used for target 
contouring.28 Typically, finding the best transformation 
between source and target images is posed as an optimization 
problem on a case-by-case basis. Specifically, they aim to maxi-
mize some measure of similarity between the images, subject 
to pre-specified physical constraints. However, conventional 
methods are limited clinically on two fronts. First, there is a 
clinical desire to accurately and automatically quantify spatial 
error throughout the image to inform treatment margins,29,30 
which is particularly challenging in homogenous regions.31 
Second, a significant conceptual challenge is the fact that image 
content may change between scans (i.e. before/after surgery or 
tumour growth), violating the assumption of a simple voxel-
wise correspondence. While a few example of ML have been 
applied in the context of radiotherapy to date,32,33 further 
studies have investigated this approach for other medical 
image registration tasks.

ML approaches to the registration problem have primarily 
focused on solving narrower technical issues related to the 
optimization problem: defining more sophisticated measures 

Figure 2. Schematic overview of the external beam radiation therapy workflow. Conceptually, we split this into (1) diagnosis and 
decision support, (2) treatment planning, and (3) treatment delivery. OAR, organ at risk.
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of similarity between images, as well as accelerating the compu-
tational procedure. Generally, it is difficult for handcrafted 
statistical similarity metrics to be simultaneously sophisticated 
enough to capture complex correlations between modalities, 
while remaining general enough to be robust to different tissues 
and noise levels without significant fine-tuning. One solu-
tion is to learn an appropriate similarity metric from training 
data. Building on earlier ML approaches,34,35 NNs have been 
trained as binary classifiers to learn patchwise correspon-
dences between images.36,37 In technical studies, these learned 
measures of similarity were found to outperform conventional 
metrics such as mutual information and cross-correlation—
both in terms of the correctness of the metric itself (in terms 
of prediction errors),37 as well as its effectiveness when used 
within the image registration workflow (in terms of overlap 
measures).36 Similarly, encoder–decoder networks that learn 
hierarchical features as a pre-processing step have been shown 
to be advantageous both in computational efficiency and 
robustness to noise.33 Alternatively, learning algorithms can 
also be employed to first construct shared latent representa-
tions of anatomical structures across different modalities,38 
or even to perform cross-modal image synthesis,26 effectively 
reducing the multimodal problem to a more tractable mono-
modal one, with promising improvements in performance.32 
Such promising technical advances still require further valida-
tion in a clinical setting.

ML strategies have also focused on accelerating the optimisa-
tion process. A recent approach attempts to predict deforma-
tion parameters directly from appearances of image patches, 
with a 35x speed up being reported for deformable registration 
of MRI brain imaging.39 In fact, learning the transformation 
function directly obviates the need for iterative optimization—
the procedure simply becomes a much more efficient matter 
of applying a function. Furthermore, the registration task has 
been cast in terms of reinforcement learning (RL), where an 
artificial agent is trained to choose sequences of actions that 
improve image alignment.40 It has also been formulated within 
a GAN framework, where the generator estimates transforma-
tion parameters while the discriminator evaluates the quality 
of those predictions.41

Currently, for the purpose of clinical use, ML methods have 
been trained and evaluated on the basis of historical registrations 
within clinical data sets. “Ground truth” registrations are there-
fore estimates of the underlying transformations, and depend on 
the specific protocols and algorithms used to produce them in 
the first place. An alternative approach to training would be to 
use digital phantoms, as has been proposed for commissioning of 
clinical systems.42 Such an approach enables the true registration 
to be known but would still requires the registration used to be 
clinically meaningful to train a registration method to generate 
clinically plausible registrations. Thus, while learning algorithms 
can be trained to imitate registration patterns from examples, 
they are limited by the clinical correctness and realism of those 
examples. Importantly, the open clinical challenges related to 
quantifying spatial errors or accounting for anatomical changes 
have not been addressed to date. Despite these limitations, there 

are considerable benefits to be had both in time- and memory-ef-
ficiency gains by using ML for image registration.

Contouring
In standard contouring workflows, the segmentation of tumour 
regions and normal tissue is manually performed by clinical 
staff, normally on a slice-by-slice basis. As a result, the proce-
dure is lengthy and subject to a high degree of interobserver 
variability—constituting one of the largest sources of uncertainty 
in treatment planning.43,44 45 The earliest attempts at automatic 
segmentation—such as edge- and region-based methods—relied 
purely on the informational content of each image in question. 
Later methods began to incorporate prior knowledge, such 
as relative anatomical locations or expected size variations of 
organs, into the process. The approach most commonly found 
in clinical use is Atlas-based segmentation.46,47 First, registra-
tion techniques are used to match target images to one or more 
selected reference images. Then, ground-truth segmentations on 
the references are mapped onto the target. However, atlas-based 
methods are highly sensitive to the atlas-selection strategy,48 as 
well as the robustness of the—often time-consuming—registra-
tion itself.

The ML approach is to learn the structure labelling of each 
image voxel directly, more flexibly incorporating prior knowl-
edge in the form of parameterised models. Successful techniques 
include the use of statistical and decision-learning classifiers,49,50 
and more recently deep learning. For segmentation of organs at 
risk (OARs), convolutional neural networks (CNNs) have shown 
competitive performance in the context of thoracic cancer,51 
head-and-neck cancer,52 prostate cancer,53 as well as more chal-
lenging organs such as the oesophagus.54 Although to date most 
research has focus on quantitative comparison against “ground 
truth”, Lustberg et al show an average time saving of 61% 
compared to existing clinical practice, and 22% compared to the 
use of atlas-based contouring.51 Figure  3 shows an example of 
unedited segmentation of OARs generated by a CNN. In addi-
tion, models have been shown to generalize successfully across 
imaging modalities without specific customisation or large 
volumes of data.55 The task of tumour volume segmentation is 
generally more challenging due to the varied shape, size, appear-
ance, and localisation of tumours, as well as the lack of clear 
boundaries, rendering the process more reliant on oncologist 
knowledge and experience. Nevertheless, various deep learning 
architectures have shown considerable progress, for instance 
in brain cancer,56 breast cancer,57 oropharyngeal cancer,58 and 
rectal cancer.59

Contouring is inherently subjective,44 and highly variable as to 
what a “correct” result should look like. Learning algorithms 
are simply trained to maximize measures of similarity between 
their output and the examples given to them. So, while they are 
increasingly adept at mimicking human-drawn contours, they 
are constrained—as is any data-driven method—by the nature 
and quality of training examples. Machines can be no more 
“correct” than the human input taken as clinical ground truth60; 
until more concrete consensus definitions for object boundaries 
can be specified, machine “accuracy” is only meaningful within 
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the context of individuals and institutional protocols. Ultimately, 
the fundamental challenge in generalizability lies in the stan-
dardization of existing clinical practices, without which it is 
difficult for any generic algorithm to perform equally well for 
different clinicians and centres. Nevertheless, the use of ML may 
assist in driving this standardization, enabling different institu-
tions to start from a common reference and encouraging confor-
mity to a standard.

Deep learning models have largely demonstrated superior 
quantitative performance relative to state-of-the-art algo-
rithms for both target and OAR contouring,52,56 significantly 
decreasing the manual editing required for contours to be 
acceptable for use.51 Therefore, deep learning contouring 
approaches offers considerable potential to enable the automa-
tion and standardisation of contouring in clinical practice.

Treatment planning
Radiation treatment planning is considered a problem of opti-
mization—i.e. determining the parameters for positioning, 
fractionation, distribution, and other machine settings to 
best manage a patient’s cancer. However, the notion of opti-
mality is often far from concrete in practice: in the presence 
of competing objectives for target coverage and organ sparing, 

the planning process requires multiple subjective trade-offs on 
the part of the oncologist and planner. As a result, conven-
tional human-driven iterative workflows are often time-con-
suming and labour-intensive, with a high degree of variability.

Several planning strategies have been developed to address these 
issues. Multicriteria optimization generates a broad range of plans 
on the Pareto surface enabling the user to explore the impact of the 
trade-offs to be made in real-time.61,62 Autoplanning approaches 
mimic the process of iterative evaluations and adjustments made 
by experienced operators. They automatically identify regions of 
interest, appropriately introducing additional objectives and prior-
ities within the traditional optimization procedure.63,64 Knowl-
edge-based planning methods develop fixed associations between 
geometric and dosimetric parameters from a selection of previous 
plans. Rather than starting a new for each patient, this method 
leverages prior experience in predicting feasible dose–volume 
histograms65 or voxel dose distributions,66 navigating dosimetric 
trade-offs,67 or initializing optimization parameters to serve as indi-
vidualized starting points for fine-tuning.68 Plans generated in this 
way have generally demonstrated similar coverage of target volume 
and superior OAR sparing compared to manually developed plans, 
as well as reduced planning time and interoperator variability in 
plan quality.69,70

Figure 3. Example of unedited segmentation of OARs. The use of automatic OAR segmentation based on deep learning methods 
has demonstrated time savings in the clinical workflow. OAR,organ at risk.
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Deep learning methods have recently been investigated for use 
in planning automation, predominantly focused on predicting a 
single solution as an input to knowledge-based or auto-planning 
or as a guide for the clinician/dosimetrist to predict achievable 
doses,71 rather than developing improved MCO methods. As 
a more dynamic and flexible incarnation of knowledge-based 
planning, NNs can be trained on prior plans to predict voxelwise 
dose values on the basis of contours and anatomy.72,73 In lieu of 
handcrafted features, CNNs are effective in automatic feature 
extraction, allowing models to learn contour-to-dose mappings 
directly.71,74,75 In the spirit of iterative autoplanning, GAN archi-
tectures have also been proposed to mimic the roles of dosim-
etrists (generators) and oncologists (discriminators).76 So far, 
deep learning methods have managed to produce highly accurate 
predictions of dose distributions,72 resulting in plans of equiva-
lent or superior quality relative to historical plans—both in terms 
of meeting clinical satisfaction criteria, where GAN-based KBP 
outperformed the original clinical plans in meeting acceptance 
criteria in 75% of cases compared 73%,76 and in qualitative eval-
uation by clinicians where KBP using NN was preferred to the 
clinical plan in 81% of cases.73

While learning-based models are adept at incorporating human 
knowledge in planning and quality control, they are—once again—
only as good as their training data. Importantly, there is a difference 
between generating an optimal plan, vs one that is simply preferred 
relative to its manual counterpart. Existing strategies have gener-
ally aimed—with much success—at the latter, broadly producing 
clinically acceptable and preferable results in head-to-head clin-
ical evaluations. Although, subjective decisions requiring human 
judgement remain in determining the “best” compromise when 
not all constraints can be met or understanding how to vary the 
plan appropriately from “standard” plans for medically compli-
cated cases, ML methods offer the potential to support this decision 
nevertheless, by accelerating the planning process and proposing 
high quality plans automatically.

Approval & QA
Key components for plan evaluation and quality assurance 
include the delineation of target volumes and OARs, field 
arrangement, collimation, target coverage, dose homogeneity, 
and normal tissue sparing. Due to the increasing sophistica-
tion of radiation techniques, the potential scope of assessment 
has become correspondingly complex. Conventional workflows 
involve manual reviews with checklists and treatment charts—a 
process that becomes challenging with limited staff availability. 
Despite rigorous human review procedures, errors can and 
do slip through.77 Learning algorithms have the potential to 
automate elements of the process, model complexities without 
exhaustive rules and definitions, as well as enabling individu-
alized assessments for more intelligent allocation of planning 
resources.

In terms of contour quality, ML algorithms can be trained to 
recognize and label anatomical structures within segmented 
images, using confidence measures to detect potential 
errors along the way.78 To validate physical parameters—
such as beam configurations, monitor units, energies, and 

fractions—anomaly detection methods with statistical classi-
fiers and clustering algorithms offer the ability to flag potential 
outliers for human intervention.79,80 As for dose distributions, 
knowledge-based approaches to predicting achievable doses 
have been effective for benchmarking the quality of planned 
dose distributions.81–83 In the same way as knowledge-based 
planning, libraries of historical plans are used to identify 
specific outliers for replanning, enabling a more targeted 
approach to improving suboptimal plans. Furthermore, ML 
algorithms can potentially be used to enhance the quality 
of delivery. For instance, it has been demonstrated that by 
predicting differentials between planned and delivered treat-
ments variables, discrepancies can be incorporated into dose 
calculations, increasing γ passing rates during QA delivery.84 
In addition, accurate a priori predictions of γ passing rates can 
be made on the basis of fluence maps and other plan details 
through probabilistic and deep learning techniques.85,86 
However caveats apply: an algorithm cannot transcend its data 
and objectives. For instance, while ML may predict γ passing 
rates with great accuracy, it offers no help if passing rates do 
not actually correlate meaningfully with clinical safety.87

Importantly, great care must be taken to ensure that planning and 
validation algorithms are sufficiently independent—for instance, 
in the case of knowledge-based planning methods being used 
for quality assurance as well as autoplanning. After all, no matter 
how sophisticated an algorithm is, it cannot detect its own errors. 
Nevertheless, compared to generic checklist-based approaches, 
ML has the clear potential to augment the scope and efficiency of 
QA procedures via benchmarks and criteria tailored to specific 
patients, physicians, and institutions.

Machine learning in treatment delivery
During the course of radiation therapy, treatment may need 
to be adjusted to ensure appropriate delivery of the plan. 
Adjustments may stem from both online factors such as the 
pre-treatment positioning of the patient, as well as longer term 
factors related to anatomical changes and treatment response. 
The technical challenges of aligning onboard imaging to the 
planning CT are similar to those discussed in the registration 
section—with the additional limitation that only restricted 
rigid adjustment can be performed, while the process of 
replanning requires additional imaging, contouring and treat-
ment planning. An additional wrinkle, however, lies in deter-
mining which patients will most benefit from replanning—a 
decision that greatly influences the allocation of imaging and 
planning resources.

In terms of dose calculation for daily treatment adaptation, 
recent work has demonstrated promising gains in both effi-
ciency and output quality by using NNs for directly mapping 
cone beam CT to planning CT images,88,89 where the use of 
GAN’s to correct CBCT values reduce mean intensity absolute 
errors compared to an original CT from 158HU to 57HU.89 
During treatment delivery, the precision of irradiation may be 
compromised by respiratory motion. Learning techniques are 
particularly suited to capturing the heterogeneous variations 
in breathing patterns without explicit biomechanical models. 
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Basic NNs have been shown to be effective in inferring and 
predicting tumour location from measurements of respiratory 
motion, thereby enabling adaptive beam realignment to occur 
in real time with minimal latency.90 In addition, learning 
frameworks combining individual predictors have been shown 
to significantly improve performance beyond the best existing 
methods.91

If the decision for plan adaptation is made during the course of 
treatment, knowledge-based methods can be adapted for auto-
matic replanning, by initializing the planning procedure with 
the existing plan for the same patient.92 Recently, reinforce-
ment learning (RL) approaches to automated dose-fractionation 
adaptation have been developed. In this framework, an artifi-
cial agent navigates a model of the radiotherapy environment, 
selecting sequences of planning decisions to maximise measures 
of reward—such as tumour control probability and normal tissue 
complication probability.93 More generally, RL algorithms can be 
flexibly trained to first learn representations of the radiotherapy 
state space, and then to optimize measures of treatment outcome 
on the basis of diagnostic, dosimetric, biological, and genetic 
features.94 By incorporating prior knowledge and clinical proto-
cols via appropriate reward functions, as well as augmenting 
historical plans with adversarially generated synthetic data, this 
technique has been shown to achieve results comparable to those 
chosen by clinicians.95

ML has also been developed to identify candidate patients for 
replanning intervention. Based on anatomical and dosimetric 
variations (such as those caused by tumour shrinkage, organ 
movement, or changes in setup), classifiers and clustering algo-
rithms have been developed to automatically predict patients 
who would most benefit from updated plans during fractionated 
radiotherapy treatment.96,97 However, since learning proceeds 
from data on historical patients, plans, and their adaptations, the 
limitation is—once again—that the algorithm is simply learning 
to mimic past prescriptions and protocols, instead of deter-
mining the truly ideal time for replanning intervention on the 
basis of outcomes.

Despite the caveats, the additional automation and efficiency 
that ML could bring to the radiotherapy workflow in registra-
tion, contouring and planning means that the cost associated 
with replanning is reduced. Thus, ML may allow the decision 
to replanning to be made with a greater focus on the clinical 
benefit, than on the cost of doing so.

DiScuSSion
For an ML algorithm to be effective, three ingredients are 
required: (1) a well-defined problem, (2) a well-defined ground 
truth for which there is sufficient data, and (3) a quantitative 
measure with which the algorithm is trained and evaluated. In 
the context of these requirements,

Table  1 summarizes the clinical challenges in radiotherapy, as 
well as the areas that ML research has focused on. The three 
requirements pose challenges to developing ML solutions at 
each step of the radiotherapy workflow and give insight into why 

some problems are readily addressed by ML, while others remain 
open problems.

First, is the problem well-defined? In other words, is there 
a correct answer in theory? For many clinical problems the 
answer is yes, but this is not always the case. In treatment 
planning, for instance, there is no clearly defined criterion for 
correctness. While a “good” plan can be conceived of as one on 
the Pareto optimal surface, there are no established guidelines 
regarding the choice of a single “best” point on that surface—
especially since the “best” clinical outcome is analogously 
poorly defined.

Second, if there is a correct answer, do we have practical access 
to this ground truth? Once the problem is clearly defined, the 
next requirement is for training data. While the radiotherapy 
workflow can provide a lot of data, not all of it has a well-defined 
ground truth. For example, in image registration there is ambi-
guity regarding the correct displacement field within homoge-
neous image regions.

Finally, can we define a concrete measure to optimize? ML 
techniques are often trained by optimizing one or more 
performance metrics. This may pose a problem, since an 
appropriate measure is not always definable. For example, 
an ideal registration approach, whether through AI or tradi-
tional algorithms, would minimize the real clinical/anatom-
ical error. However, this error is largely unknown (although 
it can be approximated for specific locations if they are 
marked-up). As a result, optimization is performed on surro-
gate measures, which may not accurately reflect clinical/
anatomical correctness.

Table  1 summarizes current research in applications of ML to 
the radiotherapy pathway. As a consequence of the challenges 
faced in defining the problem, the ground truth, or the measure. 
ML research in radiotherapy currently does not address some 
of the greater clinical challenges, since the challenges are not 
necessarily always in the technical details of data analysis, but 
in defining either the question, the type of answer, or the way to 
measure how well we are doing. What is the correct registration 
for dose summation where tissues have changed? What is the 
clinical extent of the tumour on this CT scan? Which plan will 
deliver the best clinical outcome for this patient? How should 
we go about measuring this? These are problems that cannot be 
addressed by ML, but rather require the real intelligence and 
insight of humans.

Nevertheless, ML has seen considerable success in providing 
fast and parallelizable technical implementations to automate 
conventional workflows. While ML is not able to provide 
better definitions of the problem, application of ML in radio-
therapy can bring efficiency and consistency to any solution to 
a problem. Increasing efficiency offers the opportunity to free 
time to consider the open clinical challenges, while increasing 
consistency has the potential to allow better assessment of 
the impact of intentional changes to treatment practice. By 
mimicking the current state-of-the-art reliably, ML could 
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facilitate both transfer of best-practice between clinics and 
greater process automation.
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