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Abstract

Traumatic brain injury (TBI) is a frequent and clinically highly heterogeneous neurological disorder with large socioeconomic conse-
quences. TBI severity classification, based on the hospital admission Glasgow Coma Scale (GCS) score, ranges from mild (GCS 13–15)
and moderate (GCS 9–12) to severe (GCS � 8). The GCS reflects the risk of dying from TBI, which is low after mild (~1%), intermediate
after moderate (up to 15%) and high (up to 40%) after severe TBI. Intracranial damage can be focal, such as epidural and subdural
haematomas and parenchymal contusions, or diffuse, for example traumatic axonal injury and diffuse cerebral oedema, although this
distinction is somewhat arbitrary. Study of the cellular and molecular post-traumatic processes is essential for the understanding of TBI
pathophysiology but even more to find therapeutic targets for the development of neuroprotective drugs to be eventually used in human
beings. To date, studies in vitro and in vivo, mainly in animals but also in human beings, are unravelling the pathological TBI mecha-
nisms at high pace. Nevertheless, TBI pathophysiology is all but completely elucidated. Neuroprotective treatment studies in human
beings have been disappointing thus far and have not resulted in commonly accepted drugs. This review presents an overview on the
clinical aspects and the pathophysiology of focal and diffuse TBI, and it highlights several acknowledged important events that occur on
molecular and cellular level after TBI.
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Introduction

With an incidence of 235–556/100,000, traumatic brain injury
(TBI) is among the most frequent neurological disorders world-
wide [1, 2]. Traffic accidents, falls and assaults are the main
causes of TBI [3].

In severe TBI case fatality rates mount up to 40% and in sur-
vivors the disability rate is as high as 55–77% [3–5], leading to
reduced quality of life and vast socioeconomic costs. Given the
high incidence and impact of TBI on society, interest is directed

towards the development of neuroprotective therapies.
Unfortunately, results of approximately 30 randomized controlled
clinical trials in human beings have been disappointing [6, 7],
underlining the complex and heterogeneous pathogenesis of TBI.

In vitro and in vivo research in different cell lines and in animal
and human beings, has increased knowledge on the pathophysio-
logical processes arising from TBI. TBI is a dynamic process
resulting in alterations in function and structure of virtually all
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elements of the brain that may continue up to years after the injury
is sustained, introducing new possible windows for therapeutic
intervention.

In this review we aim to provide an overview of the clinical con-
sequences of TBI and current concepts of the pathological
processes underlying damage of nerve cells and their axons.
Although not all cellular and molecular post-traumatic processes
are evaluated exhaustively, this overview can be a starting point
for readers with additional interest in TBI pathophysiology.

Classifying TBI

Clinical injury severity

For almost four decades the Glasgow Coma Scale (GCS) score, which
measures level of consciousness at the trauma scene or at emer-
gency department admission, has been the primary clinical variable to
grade initial brain injury severity in mild (GCS 13–15), moderate (GCS

9–12) or severe (GCS � 8) [8]. In terms of survival the GCS score,
especially the GCS motor score, remains one of the strongest predic-
tors [9] (Table 1). However, from the GCS the underlying cerebral
pathology cannot be inferred and different structural abnormalities
may result in a similar clinical picture (Table 2). Therefore, at present
more attention is paid to the pathological features of injury such as
the moment of onset (primary or secondary) and distribution of
structural damage (focal or diffuse) [10–12] (Fig. 1).

Primary injury consists of the initial damage directly resulting
from the mechanical forces affecting the cerebral tissues.
Secondary injury refers to the cascade of cellular and molecular
processes initiated by the primary injury. In addition, secondary
injury consists of the cerebral damage due to hypoglycaemia,
hypotensive or hypoxic events, and raised intracranial pressure
resulting in cerebral ischemia.

Focal injury or diffuse injury

Focal brain damage is produced by collision forces acting on the
skull and resulting in compression of the tissue underneath the 
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Table 1 TBI classification, mortality, CT-abnormalities and neurosurgical interventions

TBI category N Mortality CT-abnormalities
Neurosurgical 
intervention*

Refs.

Mild (GCS 13–15)†,‡ 

GCS = 15 24249 0.1% 7.8% 0.9%# [132]

GCS = 13–15 3181 0.7% 7.6% 0.5% [133]

GCS = 13–14 1483 5.8% - - [134]

Moderate (GCS 9–12)†

GCS � 9–12 309 3.9% 64.7% 16.5% [135]

GCS � 9–12 1422 12.7% - - [134]

GCS � 9–12, no other recordings of GCS � 9 
at acute phase*

128 9% - - [3]

Severe (GCS � 8)†

GCS � 8; admission � 8 hrs 1914 42.2% - - [134]

GCS � 8 or deterioration � 48 hrs 746 32.5% 92.8% 36.3% [136]

GCS � 8; death � 24 hrs or obey commands within
24 hrs excluded

304 40% 98% 21% [4]

GSC � 8 at admission or at least one GCS at acute
phase � 8 and none � 8

583 40% - 37% [3]

*Variability exists between studies in what is defined as neurosurgical intervention and may include one or more of the following: craniotomy, 
elevation of skull fracture, intracranial pressure monitoring and ventricular drainage.
†There is variability between definitions depending on the moment on which the GCS should be obtained (e.g. at accident scene, at emergency
department, after resuscitation, after 24 hrs).
‡Variability exists in (duration of) additional criteria that should be present upon diagnosing MTBI (i.e. loss of consciousness, PTA).
#In addition to neurosurgical intervention this number also includes medical treatment for brain oedema and transfer to more intensive care.
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cranium at the site of impact (coup) or of tissue oppositely to the
impact (contre-coup) [13]. The location and severity of impact to the
skull ultimately determine the cerebral pathology and neurological
deficits. Focal injury constitutes subdural and epidural haematomas,
intraparenchymal haematomas and (haemorrhagic) contusions
(Fig. 1). Traumatic subarachnoid haemorrhage can be a result of
focal damage but is also often seen in more diffuse vascular injury.

Diffuse brain injury entails widely distributed damage to axons,
diffuse vascular injury, hypoxic-ischemic injury and brain swelling
(oedema). The main injury mechanism responsible for diffuse
injury is rapid acceleration–deceleration of the head, as seen, for
example in high-speed motor-vehicle accidents [14, 15]. Brain
structures are heterogeneous both in terms of degree of fixation
to other parts of the brain and skull(base) and in terms of tissue
consistency. As a result, during movement of the head, certain
segments of the brain move at a slower rate than others, causing
shear, tensile and compressive forces within the brain tissue [16].

Axonal injury is the most common consequence of diffuse TBI
first described in 1956 by the pathologist Strich as a devastating
clinicopathological syndrome with extensive damage to the white
matter [17]. Later the term ‘diffuse axonal injury’ (DAI), was sug-
gested by Adams and colleagues, referring to prolonged coma
(more than 6 hrs) and widespread injuries to white matter regions
[18] that can be pathoanatomically graded into three stages of
increasing severity based on the depth of the lesions with grade 1
representing a pattern of lesions confined to the lobar white mat-
ter at the grey-and-white matter interface, grade 2 revealing addi-

tional lesions to the corpus callosum and grade 3 further depict-
ing lesions to the rostral lateral–dorsal brainstem [18, 19].

During normal head movement, strain deformation manifested
among axons is not harmful: due to their viscoelastic nature axons
return to their normal shape and structure [20]. However, under
more extreme circumstances the threshold of maximum elasticity
is exceeded, resulting in changes in the axonal integrity [21]. Both
the degree of the force applied to the axon and the length of time
over which the force is applied influence the magnitude of axonal
damage [22, 23].

An essential factor in the development of shear strain is the
direction of the head movement: lateral head movement (Fig. 3A)
is associated with more severe diffuse damage than sagittal head
movement [14]. Furthermore, recent studies indicate that head
contact has an important additive effect on the development of
shear strain levels [24, 25]: findings that raise interest in the pro-
tective potential of lateral side airbags [26].

Clinical characteristics

Coma, confusion and subacute impairments

As a consequence of the variety of TBI pathologies, clinical fea-
tures may be equally heterogeneous in terms of mortality, the time
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Table 2 How focal and diffuse traumatic brain injuries can lead to similar clinical pictures

Focal injury Diffuse injury Refs.

Decreased consciousness,
coma

Lesions with localized mass effect to 
diencephalon or brainstem

DAI to diencephalon or brainstem [137, 138]

Primary or secondary brain stem lesions
Diffuse oedema with compression of 
mesencephalic or diencephalic structures

Temporary functional inactivation 
(i.e. hypometabolism, excitotoxic effects)

PTA Focal medial temporal lobe lesions DAI affecting the memory network [139]

Focal compression of the medial temporal lobe
Temporary functional inactivation 
(i.e. hypometabolism, excitotoxic effects)

Dysexecutive syndrome /
Memory dysfunctions

Frontal and temporal lobe contusions (lobes are
vulnerable to mechanical deformation due to their
location within the skull)

Axonal injury to fibre bundles such as 
the uncinate fasciculus and corona radiate

[28, 140]

Widespread Wallerian degeneration resulting
from loss of trophic input (after focal 
or diffuse injury)

Motor weakness
Focal lesions with mass affect comprising the
motor pathways

DAI affecting the corticospinal tract [31]

Basal ganglia haemorrhage Hypoxic-ischemic injury
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course of recovery and the functions that are affected. In general,
recovery after TBI follows a certain pattern of stages [12]. The 
first stage consists of loss of consciousness or coma, which can
vary from seconds up to weeks. Following the comatose phase,
severe TBI patients may go through a stage of vegetative state
characterized by a day–night cycle, with eye opening, not obeying
commands and without speech production. The second phase of
the recovery process is characterized by a period of disorientation,
memory disorders and behavioural disturbances, also referred 
to as post-traumatic amnesia (PTA). Again, this period can vary
from minutes to months. Both diffuse and focal injuries may result
in coma, vegetative state and PTA (Table 2) though the pattern of
recovery appears to be less predictable after focal injury than 
after diffuse TBI. This is emphasized by the finding that after dif-
fuse injury but not after focal injury, duration of unconsciousness

and PTA strongly correlated with functional outcome at 6 and 
12 months [27].

The third phase of recovery is characterized by a diversity of
cognitive, behavioural, mood and sensorimotor disturbances. The
frontal and temporal lobes in general are the most frequently
affected brain regions. Sudden movement against the skull base
renders the frontal-temporal regions especially vulnerable to cor-
tical contusions and therefore not surprisingly impairments in
attention, concentration, memory and executive functioning are
the most frequent deficits after TBI [28]. However, also after 
diffuse (axonal) injury, impairments in memory and executive
functioning are common [29, 30]. Compared to cognitive or
behaviour problems, persisting motor weakness after TBI has a
relatively low incidence [31]. In a study by Katz et al., the time
course of recovery of arm function in patients with diffuse TBI was
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Fig. 1 Focal and diffuse TBI. Examples of focal
and diffuse TBI on CT (rows 1 and 2) and MRI
(row 3). Focal injury: (A) Left frontal contusion
with midline shift to the right and compression
of the lateral ventricles. (B) Right frontal epidural
haematoma with midline shift to the left and
compression of the anterior part of the lateral
ventricle. (C) Right frontotemporoparietal sub-
dural haematoma with a midline shift to the left.
Diffuse injury: (D) Punctate haemorrhage within
the right posterior limb of the internal capsule, a
sign of DAI; (E) Diffuse subarachnoid haemor-
rhage; (F) Diffuse swelling with bilateral com-
pression of the basal cisterns. DAI on MRI:
Susceptibility weighted images of one patient
revealing punctate haemorrhages (hypo-intense
foci) within (G) the right frontal hemisphere, (H)
Splenium of the corpus callosum, and (I) mes-
encephalon, corresponding to grade 3 DAI.
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slower compared to the time course seen in patients with focal
injuries [32]. This difference in recovery time between injury
mechanisms however was not present when recovery of ambula-
tion was considered [33].

Imaging TBI

Visualization of the full extent of damage after TBI is complex. In the
acute phase work-up, the fast and easy to obtain CT is favoured due
to its high sensitivity for (focal) injuries that may require interven-
tion (Fig. 1). In the subacute and chronic phase of TBI, MRI tech-
niques like T2-weighted imaging or fluid attenuated inversion recovery
are preferred, because of their superior detection of lesions such as
non-haemorrhagic contusions and oedema [34, 35].

Because of its microscopic nature, DAI is commonly unde-
tected with conventional neuroimaging techniques like CT or MR.
Due to simultaneous shear injury affecting neighbouring micro
vascular structures, DAI is frequently accompanied by small punc-
tate haemorrhages, visible at the DAI predilection sites. MR imag-
ing techniques that are highly susceptible to blood products, such
as T2* gradient echo and susceptibility weighted imaging, are now
increasingly used within the clinical setting to enable diagnosis of
DAI [36, 37] (Fig. 1).

Diffusion tensor imaging is a relatively new MRI modality that
produces in vivo information of brain tissue integrity by yielding

an image on the basis of the diffusion of water molecules [38].
Because of this property the technique offers great potential in the
detection and delineation of (diffuse) traumatic lesions [36].

Focal and diffuse TBI: separate entities?

Though described in this paper as separate entities, it should be
noted that focal and diffuse injuries may both arise and interact
within a single individual. A recent MRI study in moderate 
and severe TBI, revealed both focal lesions (contusions or
haematomas) and DAI in 50% of the patients [39]. The coexis-
tence of multiple injury types provides a further difficulty and it
has been suggested that for effective treatment multi-therapy
strategies should be applied.

In this review, pathological processes at the neuronal cell
body are described under the header of focal injuries whereas
traumatic axonal pathology is placed under diffuse brain injury.
Neuronal cell death has indeed mostly been studied in focal
contusional or pericontusional regions whereas axonal injury is
considered a consequence of diffuse TBI. However, the distinc-
tion between focal and diffuse injuries is artificial. Diffuse neu-
ronal cell death remote from or unrelated to focal injuries is
commonly reported after TBI [40] whereas in animal models,
axonal injury is often induced at specific locations instead of
diffusely distributed [41].
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Fig. 2 Simplified pathophysiological molecular
and cellular processes after focal TBI. The fig-
ure accompanies the transcript given in the
main text. In short, increases in extracellular
glutamate result in a supraphysiological Ca2�

influx that, subsequently, initiates several in
parallel operating intracellular cascades (four
are shown). Left upper corner: Increased activity
of the calcium-dependent enzymes nNOS and
eNOS enhances nitric oxide production leading
to lipid peroxidation and eventually cellular
necrosis. Left middle part: Calpain (a cystein
protease) activity is also augmented due to an
intracellular calcium increase, ultimately result-
ing in cellular necrosis pathways. Lysosomal
membrane rupture and cathepsin release play
an important role in this process. Right upper
corner: Increases in intracellular calcium caus-
ing mitochondrial calcium overload result in
increased mitochondrial membrane permeabil-
ity. As a result ROS causing oxidative stress
and the protein cytochrome-c are released into
the cytoplasm. Cytochrome-c binds to the
apoptosis activating protein-1 (apaf-1) activat-
ing the apoptotis inducing caspase pathway.
Glu: Glutamate; [Glu]e: extracellular glutamate
concentration; NMDA: N-methyl-D-aspartate aspartic acid; E.R.: endoplasmatic reticulum; [Ca2�]i: intracellular Ca2� concentration; nNOS: neuronal NOS;
eNOS: endothelial NOS; MPT: membrane permeability transition; ATP: adenosine triphosphate; ADP: adenosine diphosphate; ROS: reactive oxygen
species; apaf-1: apoptosis activating protein-1; . O2: oxygen radical.
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Pathophysiological mechanisms 
of focal injury

The essentials: glutamate and Ca2�

A key feature of focal TBI is impact to the head and the sequential
energy transfer to the cerebral tissues, causing depolarization of
nerve cells which results in uncontrolled excessive release of exci-
tatory neurotransmitters leading to a cascade of pathological
events called excitotoxicity. The main excitatory neurotransmitter
in brain injury pathophysiology is glutamate and extracellular con-
centrations become significantly increased after injury. In human
beings up to 50-fold increased glutamate levels have been found,
especially in focal parenchymal contusions [42, 43]. The potency
of glutamate as neurotoxin has been appreciated since several
decades, and in vitro studies have suggested a dose–response
relationship [44]. Human microdialysis studies demonstrate that
raised extracellular glutamate levels are associated with worse
outcome [42, 45, 46]. Glutamate is released by pre-synaptic vesi-
cles after depolarization but also leaks through damaged cell
membranes (Fig. 2). In addition, the normal glutamate re-uptake
by astrocytes, via an ATP-dependent sodium-cotransport system,
decreases or is abolished due to destruction and energy depletion
of neighbouring astrocytes.

Excessive extracellular glutamate, initiates a massive influx of
Ca2� and Na� influx into neurons and glial cells [47]. Glutamate
binds the N-methyl-D-aspartate aspartic acid and �-amino-3-
hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors
resulting in an over activation of the ion channels responsible for
Na� and Ca2� influxes [48]. More Ca2� is sequentially released
from intracellular stores like the endoplasmatic reticulum further
raising intracellular Ca2� levels causing depolarization of the neu-
ronal membrane activating voltage-dependent Ca2� channels
(VGCC) which also results in an additional increase of Ca2� influx
[47]. Experimental blocking of the VGCC’s improves behavioural
outcome in rats after TBI suggesting a neuroprotective therapeu-
tic target [49]. Passive water movement as a consequence of the
Na�/Ca2� influx produces sequential neuronal swelling. On the
one hand, high cytosolic Ca2� disrupts protein phosphorylation,
microtubule construction and protease formation causing los of
neuronal function. On the other hand, calcium-dependent
enzymes are activated, especially calpain-1 and -2 that in turn
results in protein and enzyme destruction (see below) [50].

Furthermore, nitric oxide generation by nitric oxide synthase
(NOS) is partially calcium dependent (isoforms: neuronal NOS
[nNOS] and endothelial NOS [eNOS]) and consequently nitric
oxide production becomes increased [51, 52]. Besides a function
as signalling molecule nitric oxide is a free radical with detrimen-
tal effects when it reacts with oxygen radicals to form peroxynitrite
that will result in lipid peroxidation, cell membrane lysis and DNA
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Fig. 3 Mechanical and pathophysiological mech-
anisms of TAI. Sudden lateral acceleration–
deceleration of the head (A) is the main injury
mechanism causing TAI. (B) and (C) are
schematic representations of the brain during
rest and movement, respectively. Deformation of
the brain during sudden head movement causes
shear, tensile and compressive strains within the
brain tissue. Predilection sites of axonal injury
are the grey and white matter interface, the cor-
pus callosum and the brain stem (C). Sufficiently
high strains, as occur, for example in motor-
vehicle accidents, cause a cascade of pathologi-
cal changes within the axon that may finally lead
to axonal disconnection (D). It is suggested that
two different processes of axonal injury exist
[110]. The first is characterized by altered focal
axolemma permeability (D1.I) whereby ionic

homeostasis leads to local Ca2� influx and mitochondrial swelling. Both local calcium dysregulation and release of cytochrome-c from damaged mito-
chondria result in activation of cysteine proteases and breakdown of essential axonal cytoskeleton products including loss of microtubules, neurofilament
side-arm cleavage and neurofilament compaction impending normal axonal transport. In contrast to previous suggestions there is no termination of
axonal transport or axonal swelling. Rather, it is suggested that there is a conversion of anterograde into retrograde axonal transport that prevents the
axon from swelling. The second type of axonal injury (D1.II) is characterized by a combination of local axonal swelling and altered axonal transport but
no overtly altered axolemma permeability. It is suggested that with this injury type there may be subtle alterations of membrane permeability triggering
the activation of calcineurin. Calcineurin in turn alters the microtubular network, causing a disruption in axonal transport, with accumulation of organelles
and swelling. After axonal disconnection, which may occur after both injury types, the axon undergoes a process of Wallerian degeneration (D2) consist-
ing of a breakdown of the myelin sheath and the axon cylinder. The target site has now lost its input from the disconnected axon (D3) and may undergo
synaptic reorganization, for example through axonal sprouting of neighbouring intact fibres. This process of synaptic reorganization may by adaptive or
maladaptive.
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fragmentation [53, 54]. Nitric oxide synthetase inhibitors 
given early after trauma reduce the neurological deficits in 
mice after closed head injury [55] and specific blockage of nNOS
significantly reduced contusion volume in moderate TBI in 
rats [56]. In its turn membrane disruption may result in an 
additive calcium influx caused by an increased non-specific 
permeability to ions.

Mitochondria

The imperative role of mitochondrial dysfunction in the eventual
cascade to cell death renders mitochondria as a potential neuro-
protective therapeutic target [57]. To maintain cytoplasmic Ca2�

homeostasis the raised intracellular Ca2� concentration results in
calcium sequestration within mitochondria [58]. However, mito-
chondrial Ca2� overload directly impairs oxidative phosphorylation
(OXPHOS) processes [59], leading to membrane depolarization
with increased mitochondrial permeability by formation and open-
ing of mitochondrial membrane permeability transition (MPT)
pores [60–63]. Subsequently, passive water entry into the 
mitochondrion results in osmotic swelling [64, 65] and eventually
loss of mitochondrial function [59, 65]. With mitochondrial dys-
function the energy production of the cell, i.e. OXPHOS and ATP
production, is compromised [64] as has been demonstrated in
human mitochondria after focal TBI [66]. Since energy demands
are high shortly after TBI, the decreased ATP levels are extra
harmful [67]. In patients with severe TBI, the severity of mitochon-
drial impairment assessed using high-resolution proton magnetic
resonance spectroscopy, correlates with outcome [68].

Following the increased membrane permeability oxygen radi-
cals (reactive oxygen species [ROS]), a by-product of the regular
OXPHOS process, and the pro-apoptotic protein cytochrome-c,
located between the inner and outer membranes of the mitochon-
dria, are released into the cytoplasm [69–71]. The release of ROC
into the cytosol leads to oxidative stress and ROS generation is
further enhanced after the initial mitochondrial calcium uptake
[72]. Within the mitochondrion itself ROS cause lipid and protein
damage [65]. Cardiolipin (CL) is one of the mitochondria-specific
phospholipids. Peroxidation of CL, a process propagated by
cytochrome-c [73, 74], is found after TBI but before peroxidation
of other phospholipids and it has been proposed that CL oxidation
products play an important role in apoptotic signalling pathways
[75, 76]. Additionally, oxidative stress products have been found
in cerebrospinal fluid (CSF) of paediatric patients suffering from
severe TBI [77].

In experimental TBI in rats the application of cyclosporin-A
(CsA), a known inhibitor of the MPT pore, showed lower levels of
intramitochondrial Ca2� and decreased ROS production com-
pared to untreated animals, implying a neuroprotective property of
CsA [78]. This has resulted in a phase II trial in human beings.
Cytochrome-c binds to the apoptosis activating protein-1 (Apaf-1)
subsequently activating the caspase cascade: First caspase-9 is
activated followed by caspase-3, eventually resulting in apoptotic
cell death [70, 79–82]. This is considered the ‘intrinsic’ caspase

activation pathway. Nevertheless, mitochondrial involvement is
seen in both apoptosis and necrosis [83] and other parallel
extramitochondrial apoptotic pathways are proposed [84].
Moreover, cytochrome-c release and caspase-3 activation have
been shown in traumatic axonal injury (TAI) [69].

Caspase and calpain

Both the caspase and the calpain proteins belong to the cysteine
protease family and are key regulatory enzymes in the molecular
processes of cellular necrosis and apoptosis [85–87]. Caspases
play a central role in apoptotic cell death [83]. Next to the ‘intrin-
sic’ caspase activation pathway, as described above, there is also
an ‘extrinsic’ pathway mediated through the cell surface death
receptors like the tumour necrosis factor � receptor 1 and cas-
pase-8 [87, 88] – in this review not elaborated further.

Calpain activity is calcium-mediated and results ultimately in
cellular necrosis, although apoptosis has also been associated
with calpain activation [50]. After TBI especially calpain-1 (cal-
pain-�) and calpain-2 (calpain-m) are activated. Active calpain
cleaves several enzymes and structural proteins [89], a process
that is also found in TAI. The elevation of spectrin breakdown
products, i.e. breakdown products resulting from cleavage of the
cytoskeletal protein �II-spectrin by calpain [90, 91] and to a
lesser extent by caspase [92], has been demonstrated in CSF of
rats after experimental TBI [93] and of severe TBI patients [94].
Furthermore, it has been suggested that calpain activation is
associated with lysosomal membrane disruption leading to leak-
age of hydrolytic lysosomal enzymes, like cathepsin, that in turn
will cause severe damage to the cytoplasm and eventually cellu-
lar necrosis [95–97]. Also, intracellular activation of calpains may
lead to the inactivation of the caspase activation pathway [89,
98]. Finally, a calpain inhibitor administrated to rats following
brain injury has been shown to the attenuate motor and cognitive
deficits compared to control animals [99].

Necrosis versus apoptosis

Both necrosis and apoptosis simultaneously occur in traumatic
injured brain tissues [100, 101]. Whereas brain cell necrosis is
energy independent, apoptosis occurs only in the presence of
ATP, i.e. in the presence of functional mitochondria [82, 102].
Therefore, in tissue with extensive mitochondrial destruction and
energy depletion mainly cellular necrosis will be found. In apop-
tosis, also referred to as programmed cell death, cell mem-
branes do not rupture and no inflammatory response is elicited.
An increasing portion of neurons succumbed to cellular necrosis
when exposed to higher extracellular concentrations of gluta-
mate [102]. Furthermore, it has been suggested that the occur-
rence of apoptosis or necrosis is associated with the intracellu-
lar Ca2� levels [103, 104]. Relatively low intracellular Ca2�

might favour apoptosis and high intracellular Ca2� would pro-
mote necrosis.
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Pathophysiological mechanisms 
of diffuse injury

A heterogeneous cascade of changes

As indicated above, axonal injury is the most common conse-
quence of diffuse TBI. Confusion can arise from the variable ter-
minology used to describe this type of injury. The term ‘diffuse
axonal injury’ was originally intended to describe a devastating
clinical and pathological syndrome [18] suggesting that DAI may
be interpreted as solely occurring at the severe end of the injury
spectrum. In the following text we will use the term traumatic
axonal injury (TAI), which is better suited to describe the whole
spectrum of axonal injury severity in both human beings and ani-
mal models [105].

Axonal bulbs, grossly swollen axons detected upon micro-
scopic investigation, are a pathological hallmark of TAI [106].
Initial suggestions that these axonal bulbs are the result of imme-
diate mechanical tearing of the axon, followed by axonal retraction
and axoplasmic leakage [17, 107], proved to be unsatisfactory for
the larger part of the injured axon population. Rather, trauma
evokes a cascade of changes to the axon that may ultimately result
in secondary disconnection [108, 109].

These changes have long been thought to consist of a single
pathological process but the important work of Povlishock and
colleagues has now led to the hypothesis that two distinct forms
of axonal injury exist [110] (Fig. 3D). The first process is charac-
terized by altered axolemma permeability [111], mitochondrial
swelling [69] and cytoskeleton breakdown consisting of a loss of
microtubules, neurofilament side-arm cleavage and neurofilament
compaction [112–114]. In contrast to what was previously posed,
axonal disconnection resulting from this first type of axonal dam-
age is not preceded by a termination of axonal transport and no
axonal swelling occurs [115]. Rather, it is suggested that a con-
version of anterograde into retrograde axonal transport occurs
that prevents the axon from swelling [116] (Fig. 3D).

The second type of axonal injury is characterized by a combi-
nation of terminated axonal transport and local axonal swelling
but not by overtly altered axolemma permeability [116] or neuro-
filament compaction [110, 117–120]. What in this latter
processes leads to terminated axonal transport is unclear but
possibly more subtle alterations of membrane permeability are
involved, activating micromolar calpains and triggering the 
activation of calcineurin [110, 116]. In rats with experimental TAI,
administration of a calcineurin antagonist, resulted in an attenua-
tion of axons showing terminated axonal transport [121]. As a
result of the activation of calcineurin, the microtubular network
may be altered, which in turn disrupts local axonal transport
kinetics, eliciting swelling, accumulation of organelles and finally
disconnection (Fig. 3D).

Although unmyelinated fibres comprise a great part of the
axonal population, current research has focused on the effects of
traumatic impact to long myelinated axons [12]. A recent study of

compound action potentials in the rat corpus callosum revealed
that fine-calibre fibres were more vulnerable to traumatic impact
than long myelinated fibres [122, 123]. This suggests that to 
date, the extent of traumatic axonal damage has probably been
underestimated.

After axonal disconnection

After disconnection, the downstream segments of the axons
undergo Wallerian degeneration consisting of breakdown of the
myelin sheath and the axon cylinder. The time course of this
process is highly variable with degeneration initiating as early as 1
to 3 hrs after injury but potentially proceeding up to several
months after the impact [113, 124].

In diffuse brain injury, data on the processes following the
deafferentation of target sites, now failing to receive input from the
detached axon, is sparse. In an experimental model of TAI in a cat,
in the dorsal lateral vestibular nucleus a diffuse pattern of deaf-
ferentation and nerve terminal loss was followed by a process of
terminal recovery. The source of the return of the terminals is
unknown though it is suggested that sprouting of adjacent intact
nerve fibres leads to the recovery of synaptic input [125]. The
quality of synaptic reorganization differs across the spectrum of
TBI with maladaptive changes potentially consisting of inapt fibre
ingrowth or abnormal alterations of the cytoarchitecture [126].
One factor that appears to be of influence is the presence of mul-
tiple injury types within in a single patient. In a series of in vivo
experiments, interaction between TBI neuroexcitation and diffuse
deafferentation was shown to be related to abnormal synaptic
reorganization [127–129].

Upstream, axonal disconnection triggers temporary changes
within the soma. Interestingly, contrary to what happens in 
models of primary axotomy produced by transaction of axons,
cell-soma dysfunction does not necessarily lead to neuronal cell
death. [130]. A possible explanation for this finding is that the
process leading to secondary axonal disconnection is slower
compared to immediate axotomy allowing the neuronal cell body
time to reorganize and survive. However, opposed findings exist
indicating that even ultrarapid disconnection of axons (occurring
within 30 min. after traumatic impact), do not trigger rapid 
cell-soma death [124].

Conclusions

Following TBI both focal injury and TAI show multifaceted com-
plex pathophysiological processes that are anything but com-
pletely elucidated. Nevertheless, the cellular and molecular
processes after TBI are more and more unravelled resulting in an
increasing number of possible therapeutic targets [131]. Although
several in vitro and animal studies have consistently demonstrated
beneficial effects of drug interventions (like VGCC blockers, nitric
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oxide synthetase inhibitors, cyclosporine-A or calcineurin antago-
nists) this has not led to effective treatments for human beings.
One explanation might be that these studies focused on single
events rather than taking the heterogeneous TBI pathology into
account. Probably neuroprotective treatment in TBI must target
several coexistent pathological mechanisms in single patients.

To enlarge the neuroprotective and therapeutic arsenal, future
research on the post-traumatic molecular and cellular mecha-
nisms is essential but also trials in animals and subsequent 
randomized control trials in human beings are mandatory. A pre-
requisite for successful TBI research in human beings seems the
application of new diagnostic techniques that enable the study
TBI pathology at an increasingly detailed level. For example,
Diffusion tensor MRI to quantify  post-traumatic axonal alter-
ations at different stages post-injury, and CSF microdialysis and
MR spectroscopy to follow the  metabolic changes of focal injury

may be helpful to disentangle the heterogeneity of the specific
pathological processes.
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