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Abstract: Reported here is the direct synthesis of naphthofurans and benzofurans from readily
available phenols and α-haloketones promoted by titanium tetrachloride which combines
Friedel–Crafts-like alkylation and intramolecular cyclodehydration into one step. This simple
protocol allows for the formation of a variety of high value naphthofurans and benzofurans within
which a series of cyclic and acyclic groups are readily incorporated. This process demonstrates the
advantages of high levels of regioselectivity, broad substrate scope, and moderate to excellent yields.
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1. Introduction

Benzofuran derivatives, especially naphthofurans, constitute a valuable class of heterocyclic
compounds due to their natural occurrence and remarkable biological activities [1,2]. Currently,
more than 30 drugs bearing a benzofuran moiety have been approved by the United States Food
and Drug Administration (USFDA) [3,4]. Furthermore, naphthofurans have attracted significant
attention in recent years owing to their powerful paradigm in the development and design of potential
anticancer drugs [5], dual inhibitors of Alzheimer’s disease [6,7], inhibitors of human protein kinase [8],
and regulators of the nuclear receptor [9], as well as other bioactivities [10,11]. Several representative
bioactive compounds possessing a naphthofuran or benzofuran skeleton are listed in Figure 1 [12,13].
Therefore, the development of novel synthetic methods for their direct preparation from readily
accessible materials is very important.
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than 30 drugs bearing a benzofuran moiety have been approved by the United States Food and Drug 
Administration (USFDA) [3,4]. Furthermore, naphthofurans have attracted significant attention in 
recent years owing to their powerful paradigm in the development and design of potential anticancer 
drugs [5], dual inhibitors of Alzheimer’s disease [6,7], inhibitors of human protein kinase [8], and 
regulators of the nuclear receptor [9], as well as other bioactivities [10,11]. Several representative 
bioactive compounds possessing a naphthofuran or benzofuran skeleton are listed in Figure 1 [12,13]. 
Therefore, the development of novel synthetic methods for their direct preparation from readily 
accessible materials is very important. 
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Figure 1. Representative drugs containing benzofuran core. Figure 1. Representative drugs containing benzofuran core.
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Because of the aforementioned importance, numerous approaches have been reported for the
preparation of these scaffolds through transition-metal catalysis, Lewis or Brønsted acid catalyzed,
or base-promoted cyclizations [14,15]. Many of these methods rely on harsh conditions, expensive
transition metals, or substrates that are difficult to obtain. The strategy using phenols andα-haloketones
as starting materials to obtain benzofurans is one of the most convenient routes. 3-Substituted
benzo[b]furan 4 can be easily synthesized by a stepwise [16–18] or a one-step method [19,20] which
involves o-alkylation of simple phenols with α-haloketone followed by intramolecular cyclization
(Scheme 1a). However, there are seldom reports concerned with the synthesis of 2-substituted
benzo[b]furans using α-haloketone and phenols as starting materials [21]. Recently, Arias et al. have
reported that 2-aryl benzo[b]furan 5 can be obtained with excellent regioselectivity under refluxing
temperature using neutral alumina as a promoter and xylene as a solvent [22]. Nevertheless, the scope
of α-haloketone is limited to only aryl ketone, without any alkyl ketone being employed (Scheme 1b).
To continue our research [18], we report here that 2-alkyl benzo[b]furan 6 can be regioselectively
formed directly from α-haloketones and phenols in the presence of titanium tetrachloride (Scheme 1c).
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2. Results and Discussion

In order to develop a concise approach to naphthofuran, 2-naphthol (1a) and 2-chloroacetone
(2a) were selected as model substrates (Table 1). To our delight, the reaction took place smoothly
and proceeded to completion in ten hours when titanium tetrachloride was used in the presence of
trifluoroethanol (TFE). The desired product 6a (Table 1) was formed regioselectively, without any other
isomer being detected (entry 8).

As a matter of fact, no conversion to the desired product was observed when commonly used
Brønsted acids or other Lewis acids were tested (Table 1, entries 1–4). When TMSOTf or BF3.Et2O was
used, the reaction produced numerous by-products and finally provided only a few furan products
(Table 1, entries 5 and 6). Using reaction conditions reported in the literature [22], the reaction did take
place but produced an inseparable mixture of 4a and 6a (Table 1, entry 7). Moreover, it was discovered
that increasing or decreasing the amount of titanium tetrachloride led to lower reaction efficiency
(Table 1, entries 9–11). Note that slightly higher reaction temperature is beneficial to both reaction rate
and efficiency. Actually, only a trace amount of 6a was detected by TLC when the reaction mixture was
stirred at room temperature overnight, and the reaction turned out to be complex if prolonging the
reaction time (Table 1, entry 13). The reaction could be carried out in several conventional solvents
(CH2Cl2 and toluene) in addition to TFE, although resulting in significantly diminished conversions
and a longer reaction time (Table 1, entries 14 and 15). Other solvents (CH3CN, Et2O and THF) were
also screened at their refluxing temperatures, but no new product could be detected after stirring
overnight (Table 1, entry 16). The effect of catalyst amount and reaction temperature in this reaction
was then investigated.



Molecules 2019, 24, 2187 3 of 15

Table 1. Model reaction optimization a.
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With an optimal set of catalysis conditions selected, we were then poised to test the one-pot
process and evaluate the substrate scope of this reaction. When the reaction was conducted in refluxing
TFE in the presence of titanium tetrachloride, we were delighted to find that both 1- and 2-naphthols
functioned efficiently in the reaction with 2-chloroacetone, with nearly single isomer being isolated
(Table 2, 6a–6d, 99:1 rr). The yields and reaction rates for 1-naphthol, in general, were a little better
than those of 2-naphthol. Bromo-substituted naphthols were also highly effective regardless of the
position of the bromo group on the phenyl ring (Table 2, 6c and 6d, 89% and 66% yields, respectively).
Additionally, simple 3-chloro-2-butanone was also highly effective in the current protocol (Table 2,
6e and 6f, 74% and 76% yields, respectively).

Regioisomers were obtained in the reactions of other acyclic α-haloketones (Table 2, 6g–6l).
The phenomenon of isomerization was particularly obvious for the reaction of 2-chloro-3-pentanone
stirred at room temperature (Table 2, 6g, 2:1 rr). However, the problem caused by isomerization was
readily overcome by slightly raising the reaction temperature and dropping α-haloketones into the
reaction mixture. By employing the above-mentioned procedures, the desired products were afforded
with high regioselectivity and good yields (Table 2, 6g, 9:1 rr; 6h, 10:1 rr).

Table 2. Reaction of naphthols with different acyclic α-haloketones a, b, c.
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was determined by crude 1H NMR (see Supplementary Materials). d The products were inseparable when purified
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We next examined the scope of cyclic α-chloroketone which finally produced furans with four
cycles (Table 3). It was gratifying to find that these reactions were completed in 3–10 h to afford the
corresponding tetracyclic products with moderate to excellent yields. Importantly, the transformation
is not limited to six-membered cyclic α-chloroketone, as five-, seven-, and eight-membered cyclic
α-chloroketones are competent substrates. Interestingly, both reaction rate and yield for six-membered
cyclic α-chloroketone (Table 3, 7b, 7e, 7i, and 7m) were better than those of other cyclic α-chloroketones.
Intriguingly, all the reactions of 1-naphthol with cyclic α-chloroketones proceeded to completion in 3 h,
offering products with excellent yields (Table 3, 7e–7g). However, the reactions of bromo-substituted
naphthols, such as 6-bromo or 7-bromo-2-naphthol, required longer reaction times (10–24 h) and
offered only moderate yields of naphthofurans 7h, 7j–7l, and 7n–7o (Table 3).
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Table 3. Reaction of naphthols with different cyclic α-haloketones a, b.
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chlorocyclohexanone to examine the reactivity of various substituted phenols. Gratifyingly, all alkyl- 
or alkoxy-substituted phenols reacted successfully with 2-chlorocyclohexanone to produce the 
desired benzofurans 9a–9h (Table 4) with excellent yields. Additionally, it was found that the 
substituent patterns (ortho-, meta- and para-) on the benzene ring showed no observed effects on the 
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To further extend the reaction scope, we carried out the reaction with phenols. First, we used
2-chlorocyclohexanone to examine the reactivity of various substituted phenols. Gratifyingly, all alkyl-
or alkoxy-substituted phenols reacted successfully with 2-chlorocyclohexanone to produce the desired
benzofurans 9a–9h (Table 4) with excellent yields. Additionally, it was found that the substituent
patterns (ortho-, meta- and para-) on the benzene ring showed no observed effects on the reaction
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outcomes (Table 4, 9b–9d). Note that the reaction exhibits sensitivity to steric constraints on the phenol
substrate, that is, the Friedel–Crafts-like alkylation occurs preferentially at the less hindered position,
which can be demonstrated by the formation of a single isomer (Table 4, 9c). Unfortunately, phenols
incorporating an electron-withdrawing group did not react under these conditions. For example, no
new spot was detected by TLC when 4-nitrophenol was employed to react with 2-chlorocyclohexane
for 24 h. Moreover, phenols bearing a strong electron-donating substituent, such as methoxyl, failed to
give better yields (Table 4, 9e and 9f, 72% and 73% yields, respectively), although the reaction rates
were faster than that of non-substituted phenol. On the other hand, the reactions of phenols with
acyclic α-haloketones were also examined, which proceeded smoothly (Table 4, 9i–9k, 77–81% yields).

Table 4. Reaction of phenols with different α-haloketones a, b.
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It is reported that azepinium ions can be generated by the ether cleavage reaction of
2-methoxy-2H-azepine derivatives with titanium tetrachloride as a Lewis acid [23,24]. Furthermore,
titanium tetrachloride is also a powerful dehydrating agent and demonstrates a prominent effect in
the condensation reaction of triketones to yield furans [25]. Apart from the reaction paths reported
in the literature (Scheme 1a,b) [22], another reaction route for the one-pot synthesis of benzofuran
was proposed in Scheme 3 [26,27]. First, oxy-allyl cation I, evolved from 2m with the aid of titanium
tetrachloride, reacts with 1b to produce Friedel–Crafts type intermediate II or III (Scheme 3). Then,
due to the powerful dehydration ability of titanium tetrachloride, intramolecular cyclodehydration of
the intermediate II or III easily takes place to obtain benzofuran 6m or 6f (Scheme 3).Molecules 2019, 24, x FOR PEER REVIEW 7 of 14 
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3. Experimental Section

3.1. General Information

Nuclear magnetic resonance spectra (1H and 13C) were recorded on 400 and 600 MHz spectrometers
(Bruker, Karlsruhe, Germany) with tetramethylsilane (TMS) as an internal standard.The splitting
patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q), dd (doublet of doublets),
m (multiplets), etc. All first-order splitting patterns were assigned on the basis of the appearance
of the multiplet. Splitting patterns that could not be easily interpreted were designated as
multiplet (m) or broad (br). High resolution mass spectral analysis (HRMS) was performed on
an ESI-QTOP mass spectrometer (Bruker Solari XFT-ICR-MS system). Purification was done by
column chromatography and preparative TLC using silica gel. TLC analyses were performed on
commercial glass plates (Qingdao Haiyang Chemical Co., Ltd, Qingdao, China) bearing a 0.25-mmlayer
of silica gel GF254.Visualization was performed using a UV lampor chemical stains like KMnO4 and I2.
Commercially available materials were used as received.

All reactions were carried out under nitrogen atmosphere. Dehydrated solvents were purchased
from commercial suppliers (Alfa Aesar, Ward Hill, MA, USA; Adamas, Shanghai, China) and stored
under nitrogen atmosphere. Unless otherwise noted, materials were obtained from commercial
suppliers and used without further purification. Some of the α-chloroketones and bromoketones were
prepared using literature methods [28,29].

3.2. General Procedure for the Reaction between Phenol and α-Haloketone

To a 25 mL two-necked flask equipped with a reflux condenser, fresh distilled 2,2,2-trifluoroethanol
(1.0 mL), phenol (1.0 mmol), and titanium tetrachloride (1.0 mmol) were added under nitrogen
atmosphere. Then, a mixture of α-haloketone (1.2 mmol) in 2,2,2-trifluoroethanol (1.0 mL) was dropped
into the reaction mixture under refluxing temperature. After completion of the reaction (monitored by
TLC), the mixture was quenched with a saturated aqueous solution of NH4Cl (20 mL). After filtration of
the mixture, the water layer was extracted by dichloromethane (3 × 10 mL) and dried with anhydrous
sodium sulphate. The organic mixture was concentrated under reduced pressure, and separated by
silica-gel column chromatography using ethyl acetate−hexane as eluent in increasing polarity to yield
the desired furan compound.
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3.2.1. Characterizations of Naphthofuran 6 (Table 2)

2-Methylnaphtho[2,1-b]furan (6a) [30]. The title compound was obtained as white solid (76%),
mp: 39–40 ◦C, and the analytical data are consistent with those in the literature. 1H NMR (600 MHz,
CDCl3) δ 8.07 (d, J = 8.2 Hz, 1H), 7.93 (d, J = 8.1 Hz, 1H), 7.65 (d, J = 8.8 Hz, 1H), 7.60 (d, J = 8.9 Hz,
1H), 7.55 (t, J = 7.5 Hz, 1H), 7.46 (t, J = 7.5 Hz, 1H), 6.87 (s, 1H), 2.56 (s, 3H); 13C NMR (150 MHz,
CDCl3) δ 154.7, 151.9, 130.3, 128.7, 127.4, 125.9, 124.2, 124.2, 123.8, 123.4, 112.1, 101.7, 14.3; GC-MS (m/z):
182.1 [M]+.

2-Methylnaphtho[1–b]furan (6b) [31]. The title compound was obtained as colorless oil (80%), and the
analytical data are consistent with those in the literature. 1H NMR (600 MHz, CDCl3) δ 8.27
(d, J = 8.2 Hz, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.74–7.51 (m, 3H), 7.45 (d, J = 7.6 Hz, 1H), 6.51 (s, 1H), 2.58
(s, 3H); 13C NMR (150 MHz, CDCl3) δ 154.6, 149.9, 130.8, 128.3, 126.1, 124.6, 124.4, 123.0, 121.2, 119.7,
119.3, 103.7, 14.2.

7-Bromo-2-methylnaphtho[2,1-b]furan (6c) [32]. The title compound was obtained as white solid (89%),
mp: 91–92 ◦C, and the analytical data are consistent with those in the literature. 1H NMR (600 MHz,
CDCl3) δ 8.06 (d, J = 1.8 Hz, 1H), 7.90 (d, J = 8.7 Hz, 1H), 7.60 (dd, J = 8.8, 1.8 Hz, 2H), 7.53 (d, J = 8.9 Hz,
1H), 6.81 (s, 1H), 2.55 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 155.3, 151.9, 131.4, 130.6, 129.0, 125.8, 125.2,
124.3, 122.7, 117.8, 113.1, 101.6, 14.2.

8-Bromo-2-methylnaphtho[2,1-b]furan (6d). The title compound was obtained as white solid (66%), mp:
93–94 ◦C. 1H NMR (600 MHz, CDCl3) δ 8.20 (d, J = 1.9 Hz, 1H), 7.77 (d, J = 8.7 Hz, 1H), 7.59 (s, 2H), 7.52
(dd, J = 8.7, 2.0 Hz, 1H), 6.80 (s, 1H), 2.55 (d, J = 0.8 Hz, 3H); 13C NMR (150 MHz, CDCl3) δ 155.2, 152.3,
130.3, 128.6, 128.5, 127.5, 125.9, 123.6, 123.5, 120.0, 112.5, 101.6, 14.2; HRMS (ESI) calcd for C13H10BrO
(M + H)+: 260.9910. Found: 260.9909.

1,2-Dimethylnaphtho[2,1-b]furan (6e) [33]. The title compound was obtained as yellowish oil (74%),
and the analytical data are consistent with those in the literature. 1H NMR (600 MHz, CDCl3) δ 8.40 (d,
J = 8.3 Hz, 1H), 7.96 (d, J = 8.1 Hz, 1H), 7.65 (d, J = 8.8 Hz, 1H), 7.63–7.53 (m, 2H), 7.53–7.38 (m, 1H),
2.57 (s, 3H), 2.49 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 151.3, 149.9, 130.7, 128.9, 128.7, 125.8, 124.0,
123.8, 123.2, 123.0, 112.1, 111.7, 11.8, 11.4.

2,3-Dimethylnaphtho[1,2-b]furan (6f) [30]. The title compound was obtained as yellowish solid (71%),
mp: 201–202 ◦C, and the analytical data are consistent with those in the literature. 1H NMR (400 MHz,
CDCl3) δ 8.26 (d, J = 8.3 Hz, 1H), 7.92 (d, J = 8.2 Hz, 1H), 7.64 (d, J = 8.5 Hz, 1H), 7.61–7.51 (m, 2H),
7.51–7.36 (m, 1H), 2.50 (s, 3H), 2.24 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 149.8, 148.9, 130.9, 128.3,
126.0, 125.7, 124.3, 122.5, 121.1, 119.7, 117.9, 110.9, 12.00, 8.1.

2-Ethyl-3-methylnaphtho[1,2-b]furan (6g). The title compound was obtained as yellowish oil (88%). 1H
NMR (600 MHz, CDCl3) δ 8.27 (d, J = 8.2 Hz, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.63 (d, J = 8.4 Hz, 1H), 7.54
(t, J = 7.5 Hz, 2H), 7.43 (t, J = 7.5 Hz, 1H), 2.86 (q, J = 7.6 Hz, 2H), 2.25 (s, 3H), 1.36 (t, J = 7.6 Hz, 3H);
13C NMR (150 MHz, CDCl3) δ 154.9, 148.9, 130.9, 128.3, 126.0, 125.7, 124.3, 122.5, 121.2, 119.8, 118.0,
109.9, 19.9, 13.1, 8.0; HRMS (ESI) calcd for C15H15O (M + H)+: 211.1117. Found: 211.1118.

2-Ethyl-1-methylnaphtho[2,1-b]furan (6h) [26]. The title compound was obtained as yellowish oil (80%),
and the analytical data are consistent with those in the literature. 1H NMR (400 MHz, CDCl3) δ 8.41 (d,
J = 8.3 Hz, 1H), 7.96 (d, J = 8.1 Hz, 1H), 7.74–7.53 (m, 3H), 7.53–7.41 (m, 1H), 2.87 (q, J = 7.6 Hz, 2H),
2.59 (s, 3H), 1.36 (t, J = 7.6 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 155.0, 151.3, 130.7, 129.0, 128.9, 125.8,
124.0, 123.7, 123.3, 123.1, 112.2, 110.8, 19.6, 13.2, 11.3.
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2-Benzyl-1-phenylnaphtho[2,1-b]furan (6i) [34]. The title compound was obtained as yellow oil (70%),
and the analytical data are consistent with those in the literature. 1H NMR (400 MHz, CDCl3) δ 7.90
(d, J = 8.2 Hz, 1H), 7.71 (dd, J = 12.8, 8.7 Hz, 2H), 7.63 (d, J = 8.9 Hz, 1H), 7.58–7.44 (m, 5H), 7.38 (t,
J = 7.5 Hz, 1H), 7.35–7.20 (m, 6H), 4.08 (s, 2H); 13C NMR (100 MHz, CDCl3) δ 152.7, 151.7, 138.2, 133.9,
130.7, 130.6, 128.8, 128.7, 128.6, 128.6, 127.8, 126.5, 125.8, 125.0, 124.1, 123.2, 122.2, 120.0, 112.3, 32.6.

2-Benzyl-3-phenylnaphtho[1,2-b]furan (6j) [35]. The title compound was obtained as yellow oil (74%),
and the analytical data are consistent with those in the literature. 1H NMR (400 MHz, CDCl3) δ 8.29 (d,
J = 8.2 Hz, 1H), 7.92 (d, J = 8.1 Hz, 1H), 7.67 (s, 2H), 7.56 (ddd, J = 8.1, 5.1, 2.1 Hz, 3H), 7.53–7.45 (m,
3H), 7.45–7.19 (m, 6H), 4.32 (s, 2H); LCMS (ESI) calcd for C25H19O (M + H)+: 335.1. Found: 335.0.

2-Butyl-1-propylnaphtho[2,1-b]furan (6k). The title compound was obtained as yellowish oil (83%).
1H NMR (400 MHz, CDCl3) δ 8.24 (d, J = 8.1 Hz, 1H), 7.92 (d, J = 8.2 Hz, 1H), 7.63 (d, J = 8.9 Hz, 1H),
7.62–7.50 (m, 2H), 7.44 (dd, J = 11.1, 4.0 Hz, 1H), 3.03–2.87 (m, 2H), 2.88–2.69 (m, 2H), 1.87–1.67 (m,
4H), 1.42 (dd, J = 15.0, 7.5 Hz, 2H), 1.06 (t, J = 7.4 Hz, 3H), 0.96 (t, J = 7.4 Hz, 3H); 13C NMR (100 MHz,
CDCl3) δ 154.4, 151.6, 130.7, 129.1, 128.4, 125.9, 124.1, 123.7, 123.2, 122.5, 116.2, 112.3, 30.9, 27.3, 26.0,
23.4, 22.5, 14.1, 14.0; HRMS (ESI) calcd for C19H23O (M + H)+: 267.1743. Found: 267.1741.

2-Butyl-3-propylnaphtho[1,2-b]furan (6l). The title compound was obtained as yellowish oil (84%).
1H NMR (400 MHz, CDCl3) δ 8.26 (d, J = 8.3 Hz, 1H), 7.90 (d, J = 8.2 Hz, 1H), 7.57 (ddd, J = 17.6, 16.0,
8.2 Hz, 3H), 7.50–7.36 (m, 1H), 2.82 (dt, J = 9.9, 7.5 Hz, 2H), 2.68 (dd, J = 15.8, 7.9 Hz, 2H), 1.91–1.72 (m,
2H), 1.67 (dd, J = 15.7, 7.6 Hz, 2H), 1.51–1.33 (m, 2H), 0.98 (ddt, J = 16.3, 8.9, 7.4 Hz, 6H); 13C NMR (100
MHz, CDCl3) δ 154.1, 149.1, 130.8, 128.3, 125.9, 125.0, 124.3, 122.3, 121.2, 119.8, 118.3, 115.8, 23.5, 23.4,
22.6, 22.5, 22.1, 14.1, 13.9; HRMS (ESI) calcd for C19H23O (M + H)+: 267.1743. Found: 267.1744.

2-Ethylnaphtho[1,2-b]furan (6m) [36].The title compound was obtained as yellowish oil (40%). 1H NMR
(600 MHz, CDCl3) δ 8.27 (d, J = 8.3 Hz, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.65–7.51 (m, 3H), 7.50–7.38 (m,
1H), 6.51 (d, J = 0.9 Hz, 1H), 2.92 (qd, J = 7.5, 0.9 Hz, 2H), 1.40 (t, J = 7.6 Hz, 3H). 13C NMR (150 MHz,
CDCl3) δ 160.3, 149.8, 130.9, 128.3, 126.1, 124.4, 124.4, 122.9, 121.2, 119.7, 119.4, 102.1, 21.9, 12.2.

3.2.2. Characterizations of Naphthofuran7 (Table 3)

9,10-Dihydro-8H-cyclopenta[b]naphtho[1,2-d]furan (7a). The title compound was obtained as white solid
(72%), mp: 125–126 ◦C. 1H NMR (400 MHz, CDCl3) δ 8.05 (d, J = 8.1 Hz, 1H), 7.90 (d, J = 8.1 Hz, 1H),
7.59 (s, 2H), 7.51 (t, J = 7.4 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H), 3.16–2.99 (m, 2H), 2.91 (t, J = 7.2 Hz, 2H),
2.73–2.52 (m, 2H); 13C NMR (100 MHz„ CDCl3) δ 162.0, 157.3, 130.4, 128.5, 127.5, 125.8, 124.2, 124.1,
123.1, 122.2, 121.7, 113.0, 27.9, 25.0, 23.9; HRMS (ESI) calcd for C15H13O (M + H)+: 209.0961. Found:
209.0960.

8,9,10,11-Tetrahydronaphtho[2,1-b]benzofuran (7b) [37]. The title compound was obtained as yellowish
oil (86%), and the analytical data are consistent with those in the literature. 1H NMR (400 MHz, CDCl3)
δ 8.25 (d, J = 8.2 Hz, 1H), 7.94 (d, J = 8.1 Hz, 1H), 7.75–7.60 (m, 2H), 7.60–7.50 (m, 1H), 7.50–7.37 (m,
1H), 3.21–3.03 (m, 2H), 2.85 (t, J = 4.8 Hz, 2H), 2.14–1.86 (m, 4H); 13C NMR (150 MHz, CDCl3) δ 153.3,
151.5, 130.6, 129.5, 128.7, 125.7, 123.8, 123.7, 123.5, 122.5, 114.3, 112.3, 23.8, 23.2, 23.1, 22.6.

9,10,11,12-Tetrahydro-8H-cyclohepta[b]naphtho[1,2-d]furan (7c). The title compound was obtained as
yellowish oil (78%). 1H NMR (400 MHz, CDCl3) δ 8.46 (d, J = 8.4 Hz, 1H), 7.94 (d, J = 8.1 Hz, 1H), 7.63
(d, J = 8.8 Hz, 1H), 7.61–7.52 (m, 2H), 7.45 (t, J = 7.5 Hz, 1H), 3.37–3.17 (m, 2H), 3.03 (d, J = 5.9 Hz, 2H),
2.13–1.77 (m, 6H); 13C NMR (100 MHz, CDCl3) δ 155.8, 150.7, 130.8, 129.1, 128.8, 125.6, 124.1, 123.7,
123.1, 123.0, 118.3, 112.2, 29.6, 28.5, 28.0, 26.1, 25.8;HRMS (ESI) calcd for C17H17O (M + H)+: 237.1274.
Found: 237.1276.



Molecules 2019, 24, 2187 10 of 15

8,9,10,11,12,13-Hexahydrocycloocta[b]naphtho[1,2-d]furan (7d). The title compound was obtained as white
solid (71%).1H NMR (400 MHz, CDCl3) δ 8.37 (d, J = 8.3 Hz, 1H), 7.95 (d, J = 8.1 Hz, 1H), 7.62 (q,
J = 8.8 Hz, 2H), 7.58–7.52 (m, 1H), 7.50–7.42 (m, 1H), 3.30–3.12 (m, 2H), 3.12–2.88 (m, 2H), 1.96 (dt,
J = 12.6, 6.3 Hz, 2H), 1.89–1.73 (m, 2H), 1.68–1.53 (m, 2H), 1.46 (dd, J = 11.2, 5.5 Hz, 2H);13C NMR
(100 MHz, CDCl3) δ 155.0, 151.3, 130.6, 129.0, 128.6, 125.8, 123.8, 123.8, 123.0, 122.6, 115.6, 112.4, 29.6,
28.1, 26.7, 26.0, 25.8, 23.3;HRMS (ESI) calcd for C18H19O (M + H)+: 251.1430. Found: 251.1435.

7,8,9,10-Tetrahydronaphtho[1,2-b]benzofuran (7e) [36].The title compound was obtained as yellowish oil
(92%), and the analytical data are consistent with those in the literature. 1H NMR (400 MHz, CDCl3) δ
8.29 (d, J = 8.3 Hz, 1H), 7.93 (d, J = 8.2 Hz, 1H), 7.65 (d, J = 8.4 Hz, 1H), 7.61–7.50 (m, 2H), 7.51–7.37 (m,
1H), 2.99–2.81 (m, 2H), 2.81–2.61 (m, 2H), 2.14–1.96 (m, 2H), 1.96–1.80 (m, 2H); LCMS (ESI) calcd for
C16H15O (M + H)+: 223.1. Found: 223.3.

8,9,10,11-Tetrahydro-7H-cyclohepta[b]naphtho[2,1-d]furan (7f) [38]. The title compound was obtained as
white solid (84%), mp: 38–39 ◦C, and the analytical data are consistent with those in the literature.
1H NMR (400 MHz, CDCl3)δ 8.25 (d, J = 8.3 Hz, 1H), 7.91 (d, J = 8.2 Hz, 1H), 7.63 (d, J = 8.5 Hz, 1H),
7.54 (ddd, J = 8.5, 5.5, 2.0 Hz, 2H), 7.43 (ddd, J = 8.1, 6.9, 1.2 Hz, 1H), 3.14–2.97 (m, 2H), 2.89–2.71 (m,
2H), 2.00–1.75 (m, 6H); 13C NMR (100 MHz, CDCl3) δ 155.8, 148.2, 130.8, 128.3, 126.0, 125.7, 124.2, 122.5,
121.22, 119.8, 117.7, 117.2, 30.8, 29.4, 28.4, 26.5, 23.5.

7,8,9,10,11,12-Hexahydrocycloocta[b]naphtho[2,1-d]furan (7g) [38]. The title compound was obtained
as colorless oil (87%), and the analytical data are consistent with those in the literature. 1H NMR
(400 MHz, CDCl3) δ 8.29 (d, J = 8.3 Hz, 1H), 7.93 (d, J = 8.2 Hz, 1H), 7.65 (d, J = 8.5 Hz, 1H), 7.57 (t,
J = 8.1 Hz, 2H), 7.45 (t, J = 7.4 Hz, 1H), 3.18–2.99 (m, 2H), 2.99–2.82 (m, 2H), 2.03–1.72 (m, 4H), 1.68–1.44
(m, 4H); 13C NMR (100 MHz, CDCl3) δ 154.3, 148.8, 130.8, 128.4, 126.0, 125.2, 124.3, 122.5, 121.3, 119.8,
117.7, 115.0, 28.3, 27.6, 26.5, 26.1, 25.6, 21.6.

3-Bromo-9,10-dihydro-8H-cyclopenta[b]naphtho[1,2-d]furan (7h). The title compound was obtained as
white solid (61%), mp: 36–37 ◦C. 1H NMR (600 MHz, CDCl3) δ 8.06 (s, 1H), 7.93 (d, J = 8.7 Hz, 1H), 7.60
(dd, J = 18.5, 8.8 Hz, 2H), 7.51 (d, J = 8.9 Hz, 1H), 3.06 (t, J = 6.8 Hz, 2H), 3.00–2.89 (m, 2H), 2.77–2.56
(m, 2H); 13C NMR (150 MHz, CDCl3) δ 162.7, 157.3, 131.5, 130.4, 128.9, 125.9, 125.8, 122.1, 122.0, 121.8,
117.9, 114.0, 27.9, 25.0, 23.8; HRMS (ESI) calcd for C15H12BrO (M + H)+: 287.0066. Found: 287.0068.

3-Bromo-8,9,10,11-tetrahydronaphtho[2,1-b]benzofuran (7i). The title compound was obtained as white
solid (77%). 1H NMR (400 MHz, CDCl3) δ 8.04 (dd, J = 9.2, 5.4 Hz, 2H), 7.68–7.53 (m, 2H), 7.49 (d,
J = 8.9 Hz, 1H), 3.00 (t, J = 4.8 Hz, 2H), 2.83 (t, J = 5.0 Hz, 2H), 2.04–1.84 (m, 4H); 13C NMR (100 MHz,
CDCl3) δ 153.9, 151.5, 131.8, 130.7, 128.8, 126.8, 125.2, 122.7, 122.6, 117.5, 114.1, 113.3, 23.7, 23.0, 23.0,
22.5; HRMS (ESI) calcd for C16H14BrO (M + H)+: 301.0223. Found: 301.0220.

3-Bromo-9,10,11,12-tetrahydro-8H-cyclohepta[b]naphtho[1,2-d]furan (7j). The title compound was obtained
as yellowish oil (65%). 1H NMR (400 MHz, CDCl3) δ 8.29 (d, J = 9.0 Hz, 1H), 8.06 (d, J = 2.0 Hz, 1H),
7.56 (ddd, J = 25.1, 13.7, 5.5 Hz, 3H), 3.34–3.09 (m, 2H), 3.01 (d, J = 6.1 Hz, 2H), 2.06–1.76 (m, 6H); 13C
NMR (100 MHz, CDCl3) δ 156.4, 150.7, 132.1, 131.0, 128.7, 127.2, 124.8, 123.2, 123.0, 118.1, 117.2, 113.2,
29.5, 28.5, 27.9, 26.0, 25.7; HRMS (ESI) calcd for C17H16BrO (M + H)+: 315.0379. Found: 315.0381.

3-Bromo-8,9,10,11,12,13-hexahydrocycloocta[b]naphtho[1,2-d]furan (7k). The title compound was obtained
as white solid (68%), mp: 36–37 ◦C. 1H NMR (600 MHz, CDCl3) δ 8.20 (s, 1H), 8.07 (s, 1H), 7.60 (s,
2H), 7.52 (s, 1H), 3.13 (s, 2H), 2.98 (s, 2H), 1.93 (s, 2H), 1.78 (s, 2H), 1.58 (s, 2H), 1.45 (s, 2H); 13C NMR
(150 MHz, CDCl3) δ 155.5, 151.4, 132.0, 130.9, 128.9, 127.0, 124.7, 122.8, 122.7, 117.4, 115.5, 113.4, 29.5,
28.0, 26.6, 26.0, 25.7, 23.3; HRMS (ESI) calcd for C18H18BrO (M + H)+: 329.0536. Found: 329.0534.
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2-Bromo-9,10-dihydro-8H-cyclopenta[b]naphtho[1,2-d]furan (7l). The title compound was obtained as
white solid (62%), mp: 35–36 ◦C 1H NMR (600 MHz, CDCl3) δ 8.18 (d, J = 1.9 Hz, 1H), 7.78 (d, J = 8.7 Hz,
1H), 7.59 (dd, J = 22.5, 8.9 Hz, 2H), 7.52 (dd, J = 8.7, 2.0 Hz, 1H), 3.15–3.02 (m, 2H), 3.02–2.84 (m, 2H),
2.68 (dd, J = 14.2, 7.4 Hz, 2H); HRMS (ESI) calcd for C15H12BrO (M + H)+: 287.0066. Found: 287.0069.

2-Bromo-8,9,10,11-tetrahydronaphtho[2,1-b]benzofuran (7m). The title compound was obtained as white
solid (81%). 1H NMR (400 MHz, CDCl3) δ 8.31 (d, J = 1.8 Hz, 1H), 7.76 (d, J = 8.7 Hz, 1H), 7.64–7.53 (m,
2H), 7.50 (dd, J = 8.7, 1.9 Hz, 1H), 3.04 (t, J = 4.7 Hz, 2H), 2.83 (t, J = 4.9 Hz, 2H), 1.96 (dd, J = 6.7, 3.9 Hz,
4H); 13C NMR (100 MHz, CDCl3) δ 153.8, 151.9, 130.3, 129.5, 128.9, 127.1, 125.8, 123.4, 121.8, 119.8, 114.1,
112.7, 23.7, 22.97, 22.92, 22.5; HRMS (ESI) calcd for C16H14BrO (M + H)+: 301.0223. Found: 301.0220.

2-Bromo-9,10,11,12-tetrahydro-8H-cyclohepta[b]naphtho[1,2-d]furan (7n). The title compound was obtained
as yellowish oil (68%). 1H NMR (400 MHz, CDCl3) δ 8.54 (d, J = 1.7 Hz, 1H), 7.78 (d, J = 8.7 Hz, 1H),
7.66–7.45 (m, 3H), 3.31–3.10 (m, 2H), 3.01 (d, J = 6.2 Hz, 2H), 2.10–1.73 (m, 6H); 13C NMR (100 MHz,
CDCl3) δ 156.3, 151.1, 130.6, 129.8, 129.2, 126.9, 125.5, 123.8, 122.4, 119.9, 118.1, 112.6, 29.5, 28.5, 27.9,
25.97, 25.58; HRMS (ESI) calcd for C17H16BrO (M + H)+: 315.0379. Found: 315.0377.

2-Bromo-8,9,10,11,12,13-hexahydrocycloocta[b]naphtho[1,2-d]furan (7o). The title compound was obtained
as colorless oil (70%). 1H NMR (600 MHz, CDCl3) δ 8.45 (d, J = 1.8 Hz, 1H), 7.78 (d, J = 8.7 Hz, 1H),
7.58 (d, J = 1.9 Hz, 2H), 7.51 (dd, J = 8.7, 1.9 Hz, 1H), 3.22–3.09 (m, 2H), 3.09–2.86 (m, 2H), 2.07–1.90 (m,
2H), 1.88–1.73 (m, 2H), 1.58 (d, J = 6.3 Hz, 2H), 1.52–1.40 (m, 2H);13C NMR (150 MHz, CDCl3) δ 155.3,
151.7, 130.5, 129.7, 129.1, 127.1, 125.4, 123.6, 121.9, 120.0, 115.5, 112.8, 29.4, 27.9, 26.7, 26.0, 25.6, 23.2;
HRMS (ESI) calcd for C18H18BrO (M + H)+: 329.0536. Found: 329.0538.

3.2.3. Characterizations of Benzofuran 9 (Table 4)

1,2,3,4-Tetrahydrodibenzo[b,d]furan (9a) [39]. The title compound was obtained as colorless oil (68%),
and the analytical data are consistent with those in the literature. 1H NMR (600 MHz, CDCl3) δ 7.42
(ddd, J = 5.7, 3.3, 1.1 Hz, 2H), 7.21 (pd, J = 7.2, 3.8 Hz, 2H), 2.76 (tt, J = 6.3, 1.8 Hz, 2H), 2.64 (tt, J = 6.0,
1.9 Hz, 2H), 2.04–1.92 (m, 2H), 1.92–1.79 (m, 2H); 13C NMR (150 MHz, CDCl3) δ 154.3, 154.0, 128.9,
123.0, 122.1, 118.4, 112.9, 110.8, 23.46, 23.0, 22.7, 20.5.

6-Methyl-1,2,3,4-tetrahydrodibenzo[b,d]furan (9b). The title compound was obtained as colorless oil (76%).
1H NMR (600 MHz, CDCl3) δ 7.25 (d, J = 7.6 Hz, 1H), 7.10 (t, J = 7.5 Hz, 1H), 7.01 (d, J = 7.3 Hz, 1H),
2.76 (ddd, J = 8.1, 4.1, 1.9 Hz, 2H), 2.62 (tt, J = 5.9, 1.8 Hz, 2H), 2.51 (s, 3H), 2.02–1.91 (m, 2H), 1.91–1.78
(m, 2H); 13C NMR (150 MHz, CDCl3) δ 152.6, 152.2, 127.3, 123.0, 121.1, 119.9, 114.8, 112.0, 22.5, 22.0,
21.7, 19.5, 14.0; HRMS (ESI) calcd for C13H15O (M + H)+: 187.1117. Found: 187.1121.

7-Methyl-1,2,3,4-tetrahydrodibenzo[b,d]furan (9c) [40]. The title compound was obtained as yellowish oil
(82%), and the analytical data are consistent with those in the literature. 1H NMR (600 MHz, CDCl3)
δ 7.28 (d, J = 7.8 Hz, 1H), 7.21 (d, J = 0.5 Hz, 1H), 7.01 (d, J = 7.8 Hz, 1H), 2.81–2.68 (m, 2H), 2.61 (tt,
J = 5.9, 1.8 Hz, 2H), 2.46 (s, 3H), 2.01–1.90 (m, 2H), 1.90–1.77 (m, 2H); 13C NMR (150 MHz, CDCl3) δ
153.7, 152.3, 131.9, 125.3, 122.3, 116.8, 111.6, 110.1, 22.4, 21.9, 21.7, 20.6, 19.5.

8-Methyl-1,2,3,4-tetrahydrodibenzo[b,d]furan (9d) [40]. The title compound was obtained as colorless oil
(72%), and the analytical data are consistent with those in the literature. 1H NMR (600 MHz, CDCl3) δ
7.30 (d, J = 8.3 Hz, 1H), 7.22 (s, 1H), 7.03 (dd, J = 8.2, 1.2 Hz, 1H), 2.75 (ddd, J = 8.0, 4.1, 1.8 Hz, 2H), 2.62
(tt, J = 5.9, 1.8 Hz, 2H), 2.46 (s, 3H), 2.03–1.92 (m, 2H), 1.91–1.79 (m, 2H);13C NMR (150 MHz, CDCl3) δ
154.1, 152.7, 131.5, 129.0, 124.0, 118.4, 112.6, 110.2, 23.5, 23.0, 22.8, 21.4, 20.5.
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6-Methoxy-1,2,3,4-tetrahydrodibenzo[b,d]furan (9e). The title compound was obtained as yellow oil (70%).
1H NMR (600 MHz, CDCl3) δ 7.11 (t, J = 7.8 Hz, 1H), 7.02 (dd, J = 7.7, 0.9 Hz, 1H), 6.74 (dd, J = 7.9,
0.5 Hz, 1H), 4.00 (s, 3H), 2.84–2.69 (m, 2H), 2.69–2.52 (m, 2H), 1.99–1.89 (m, 2H), 1.89–1.78 (m, 3H);
13C NMR (150 MHz, CDCl3) δ 154.2, 145.0, 143.2, 130.5, 122.8, 113.2, 111.0, 105.5, 56.0, 23.4, 22.9, 22.7,
20.6; HRMS (ESI) calcd for C13H15O2 (M + H)+: 203.1067. Found: 203.1066.

8-Methoxy-1,2,3,4-tetrahydrodibenzo[b,d]furan (9f) [41]. The title compound was obtained as colorless oil
(71%), and the analytical data are consistent with those in the literature. 1H NMR (600 MHz, CDCl3) δ
7.27 (d, J = 8.8 Hz, 1H), 6.87 (d, J = 2.6 Hz, 1H), 6.79 (dd, J = 8.8, 2.6 Hz, 1H), 3.84 (s, 3H), 2.71 (ddd,
J = 6.2, 4.8, 1.7 Hz, 2H), 2.59 (tt, J = 5.8, 1.7 Hz, 2H), 2.00–1.89 (m, 2H), 1.89–1.77 (m, 2H); 13C NMR
(150 MHz, CDCl3) δ 154.6, 154.0, 148.2, 128.4, 112.0, 110.0, 109.9, 100.5, 54.9, 22.5, 21.9, 21.6, 19.5.

8-(tert-Butyl)-1,2,3,4-tetrahydrodibenzo[b,d]furan (9g). The title compound was obtained as colorless oil
(80%), and the analytical data are consistent with those in the literature. 1H NMR (600 MHz, CDCl3) δ
7.39 (d, J = 1.9 Hz, 1H), 7.31 (d, J = 8.6 Hz, 1H), 7.27–7.24 (m, 1H), 2.75–2.69 (m, 2H), 2.63 (ddd, J = 7.7,
4.0, 1.8 Hz, 2H), 1.98–1.90 (m, 2H), 1.89–1.78 (m, 2H), 1.37 (s, 9H); 13C NMR (150 MHz, CDCl3) δ 153.1,
151.4, 144.2, 127.4, 119.7, 113.5, 111.8, 109.0, 33.7, 30.9, 22.5, 22.0, 21.7, 19.5.

6-Benzyl-1,2,3,4-tetrahydrodibenzo[b,d]furan (9h). The title compound was obtained as yellowish oil
(85%). 1H NMR (600 MHz, CDCl3) δ 7.35–7.27 (m, 5H), 7.24–7.19 (m, 1H), 7.13 (t, J = 7.5 Hz, 1H), 6.98
(d, J = 7.3 Hz, 1H), 4.26 (s, 2H), 2.88–2.72 (m, 2H), 2.64 (tt, J = 5.8, 1.7 Hz, 2H), 2.06–1.92 (m, 2H), 1.87
(dtd, J = 9.0, 6.0, 2.8 Hz, 2H); 13C NMR (150 MHz, CDCl3) δ 153.9, 152.8, 140.5, 129.0, 128.7, 128.39,
126.0, 124.2, 123.6, 122.4, 116.4, 113.1, 77.3, 77.1, 76.9, 35.5, 23.6, 23.0, 22.7, 20.6; HRMS (ESI) calcd for
C19H19O (M + H)+: 263.1430. Found: 263.1433.

2,3-Dimethylbenzofuran (9i) [30]. The title compound was obtained as yellow oil (73%), and the analytical
data are consistent with those in the literature. 1H NMR (600 MHz, CDCl3) δ 7.48–7.39 (m, 1H),
7.39–7.32 (m, 1H), 7.23–7.15 (m, 2H), 2.38 (d, J = 0.6 Hz, 3H), 2.16 (d, J = 0.7 Hz, 3H); 13C NMR (150 MHz,
CDCl3) δ 152.8, 149.4, 129.4, 122.0, 120.9, 117.5, 109.4, 108.7, 10.8, 6.9.

2,3,5-Trimethylbenzofuran (9j) [30]. The title compound was obtained as colorless oil (81%), and the
analytical data are consistent with those in the literature. 1H NMR (600 MHz, CDCl3) δ 7.23 (d,
J = 8.3 Hz, 1H), 7.18 (s, 1H), 7.00 (dd, J = 8.2, 1.3 Hz, 1H), 2.43 (s, 3H), 2.36 (s, 3H), 2.12 (s, 3H); 13C
NMR (150 MHz, CDCl3) δ 152.2, 150.6, 131.3, 130.5, 124.1, 118.5, 109.9, 109.4, 21.7, 11.8, 7.9.

5-Methoxy-2,3-dimethylbenzofuran (9k). The title compound was obtained as yellow oil (77%). 1H NMR
(600 MHz, CDCl3) δ 7.25 (d, J = 8.8 Hz, 1H), 6.86 (d, J = 2.6 Hz, 1H), 6.79 (dd, J = 8.8, 2.6 Hz, 1H), 3.85
(s, 3H), 2.36 (s, 3H), 2.12 (s, 3H); 13C NMR (150 MHz, CDCl3) δ 154.5, 150.4, 147.7, 130.0, 110.0, 109.7,
108.8, 100.6, 54.9, 10.9, 7.0; HRMS (ESI) calcd for C11H13O2 (M + H)+: 177.0910. Found: 177.0909.

4. Conclusions

In conclusion, we have found that titanium tetrachloride can act as an efficient Lewis acid
catalyst and a strong dehydrating agent to promote the regioselective Friedel–Crafts-like alkylation
and subsequent intramolecular cyclodehydration. This process provides a general method for the
preparation of a wide range of naphthofurans and benzofurans from readily available phenols and
α-haloketones.

Supplementary Materials: The following are available online. The NMR spectra for all the synthesized
compounds.
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