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Meiosis is a specialized style of cell division conserved in eukaryotes, particularly
designed for the production of gametes. A huge number of studies to date have
demonstrated how chromosomes behave and how meiotic events are controlled.
Yeast substantially contributed to the understanding of the molecular mechanisms
of meiosis in the past decades. Recently, evidence began to accumulate to draw
a perspective landscape showing that chromosomes and microtubules are mutually
influenced: microtubules regulate chromosomes, whereas chromosomes also regulate
microtubule behaviors. Here we focus on lessons from recent advancement in genetical
and cytological studies of the fission yeast Schizosaccharomyces pombe, revealing how
chromosomes, cytoskeleton, and cell cycle progression are organized and particularly
how these are differentiated in mitosis and meiosis. These studies illuminate that
meiosis is strategically designed to fulfill two missions: faithful segregation of genetic
materials and production of genetic diversity in descendants through elaboration by
meiosis-specific factors in collaboration with general factors.

Keywords: mitosis, meiosis, microtubule, kinetochore, cell cycle, fission yeast (Schizosaccharomyces pombe),
chromosome

INTRODUCTION

Eukaryotic cells undergo two styles of cell division. Mitosis is a type of cell division for somatic cells
and for the asexual reproduction of unicellular eukaryotic cells. Meiosis is the type of cell division
for the production of gametes in sexual reproduction. How mitosis and meiosis are differentially
designed and conducted is a long-standing key question in the field of cell biology. Yeast cells
undergo both types of divisions that can be switched according to environmental conditions, and
therefore yeast cells have been studied to reveal underlying molecular mechanisms. In the last few
decades, a considerable number of studies revealed that cells exploit meiosis-specific factors to shift
the division style from the standard mitotic one to the specialized meiotic one. We, in this review,

Frontiers in Cell and Developmental Biology | www.frontiersin.org 1 April 2021 | Volume 9 | Article 660322

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2021.660322
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fcell.2021.660322
http://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2021.660322&domain=pdf&date_stamp=2021-04-08
https://www.frontiersin.org/articles/10.3389/fcell.2021.660322/full
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-660322 March 31, 2021 Time: 13:55 # 2

Sato et al. Difference Between Mitosis and Meiosis

focus on how such meiosis-specific factors dramatically modulate
the way of divisions, featuring fission yeast as an example.

OVERVIEW OF CHROMOSOME
CONFIGURATION IN MITOSIS AND
MEIOSIS

As one of the most evident and essential differences in
mitosis and meiosis is configuration of chromosomes, we
briefly give an overview on how chromosomes differ in those
divisions. In both divisions, chromosomes are duplicated in
the S phase of the cell cycle, resulting in forming a pair
of the replicated chromosomes defined as sister chromatids
(Figure 1A). During DNA replication, cohesion between sister
chromatids is established by the cohesin complex, which forms
a proteinaceous ring comprised of two coiled-coil components,
Psm1SMC1 and Psm3SMC3, kleisin/Rad21, and HEAT repeat
Psc3SCC3.

The molecular basis constituting meiosis-specific
chromosome configuration is largely attributed to meiotic
cohesin, in which kleisin subunit Rad21 is replaced by Rec8
(Parisi et al., 1999; Watanabe and Nurse, 1999). Rec8 is a cohesin
expressed specifically during meiosis, and both cohesins are
conserved in all eukaryotes from yeast to human [reviewed
in Ishiguro (2019)]. In meiosis, meiotic Rec8-cohesin, in
addition to mitotic Rad21-cohesin, decorates chromosomes to
connect sister chromatids as well as homologous chromosomes
which are linked by chiasmata. The difference of Rec8-
cohesin and Rad21-cohesin is their chromosomal localization.
Rec8-cohesin can localize at the core centromeric region but
Rad21-cohesin cannot in both mitosis and meiosis. Furthermore,
Rec8-cohesin forms two distinct complexes, one with Psc3
for centromeric cohesion and the other with arm cohesion
(Kitajima et al., 2003).

The kinetochore is assembled at the centromere of a
chromosome, which serves as a dock site for spindle microtubule
emanated from the spindle pole (Figure 1B). In mitosis,
homologous chromosomes (a pair of maternal and paternal
chromosomes) in diploid cells behave independently upon
segregation, whereas in meiosis, homologous chromosomes are
paired and a part of them are physically connected by chiasmata.

In mitosis, sister kinetochores built on core centromeres
of sister chromatids are oppositely oriented in a back-to-back
manner (bi-oriented; Figure 1B). On the other hand, the
orientation in meiosis is converted to mono-orientation, in which
the sister kinetochores are united in a side-by-side manner
(Figure 1B). The mono-orientation is constructed by Rec8-
cohesin and monopolin proteins (Moa1 in fission yeast; Spo13
and Mam1 in budding yeast) (Lee et al., 2002; Shonn et al., 2002;
Katis et al., 2004; Yokobayashi and Watanabe, 2005; Monje-Casas
et al., 2007; Kim et al., 2015; Galander et al., 2019).

Moa1 is a meiosis-specific kinetochore protein and is later
found to be a member of the Meikin family together with Spo13
in budding yeast (Kim et al., 2015). Moa1 together with the
Rec8-cohesin located at core centromeres ties up kinetochores of
sister chromatids facing toward the same direction so that the

sister kinetochores can be mono-oriented (meiosis, Figure 1B;
Yokobayashi and Watanabe, 2005; Kim et al., 2015). The mono-
orientation of sister kinetochores is maintained until anaphase
of meiosis I (anaphase I) to ensure reductional division but is
resolved to the mitotic bi-oriented style by the onset of meiosis
II (equational division).

In mutants lacking Rec8 or Moa1, sister kinetochores are split
and bi-oriented, and the division pattern of meiosis I results in
equational division, as is seen in wild-type mitosis and meiosis II.
Thus, mono-orientation of kinetochores mediated by Rec8 and
Moa1 is essential for the establishment of reductional division in
meiosis I (Figure 1B).

In the absence of Moa1 (or Meikin), localization of the
Shugoshin protein (Sgo1 in fission yeast meiosis and SGO2
or SGOL2 in mouse meiosis) diminished (Kim et al., 2015).
As shugoshin protein protects the cleavage of meiotic cohesin
Rec8 during meiosis I, moa11 (the moa1 deletion mutant)
cells lose Rec8 at centromeres as a result. Thus, meiotic
kinetochore protein Meikin constitutes the mono-orientation
of sister kinetochores as well as protects meiotic cohesin at
centromeres through the recruitment of shugoshin. Shugoshin
recruits PP2A to counteract the phosphorylation of the kleisin
subunit of the cohesin complex to prevent cleavage (Kitajima
et al., 2006; Riedel et al., 2006).

These two functions of Meikin are conducted via Polo kinase.
Polo kinase is one of the mitotic kinases which mainly localize to
spindle poles [reviewed in Nigg (2001) and Zitouni et al. (2014)].
Plo1, the Schizosaccharomyces pombe Polo kinase, also localizes
to SPBs during mitosis but localizes to meiotic kinetochores
using Moa1 as a platform (Figure 1A; Kakui et al., 2013; Kim
et al., 2015). Polo kinase at meiotic kinetochores with Moa1 thus
dictates the mono-orientation of sister kinetochores via Rec8
(or monopolin in budding yeast) as well as the protection of
centromeric cohesin via shugoshin. In addition to those dual
functions of Moa1–Plo1, we will later discuss additional roles
regarding interaction with microtubules.

ALTERATION OF CHROMOSOME
ARRANGEMENT IN THE NUCLEUS
UPON SEXUAL DIFFERENTIATION

A number of studies revealed that the geographical arrangement
of chromosomes in the nucleus affects the behaviors of
chromosomes essential to accomplish meiotic events. Most
importantly, the location of the chromosomes in the nucleus
directly affects the efficiency of meiotic recombination. A brief
schematic overview of chromosome allocation in the nucleus of
the fission yeast is summarized in Figures 1C–E.

In the interphase of mitotic cell cycles, the centromeres
of all chromosomes are clustered near SPBs (the centrosome
equivalent in yeast species) located at the nuclear periphery
(Rabl orientation, Figure 1C; Funabiki et al., 1993). S. pombe
cells undergo sexual differentiation when cells are starved under
nitrogen depletion and when the ploidy of cells is in a diploid state
originated from a pair of haploid cells with two distinct mating
types (Yamamoto et al., 1997). Zygotic meiosis occurs when a
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FIGURE 1 | Chromosomes in mitosis and in meiosis. (A) Chromosomes in mitosis and in meiosis. During mitotic cell cycles (left), homologous chromosomes behave
independently. Sister chromatids are connected by mitotic cohesin Rad21 (Scc1). In meiosis I (right), homologous chromosomes are paired and crossed via
chiasmata. Rad21 locates in the arm region of chromosomes in both divisions, whereas meiotic cohesin Rec8 (purple ring) locates in both the arm and centromeric
regions. Moa1 (Meikin) is a meiosis-specific kinetochore protein that protects centromeric Rec8 cohesin through the recruitment of shugoshin (Sgo1) to centromeres
and regulates attachment to microtubules through the recruitment of Polo kinase (Plo1). (B) Orientation of kinetochores. In mitosis (left), sister kinetochores are
bi-oriented in a back-to-back position. In meiosis I, sister kinetochores are oriented in a side-by-side position. Spindle microtubules, green. (C–E) Conversion of
chromosome arrangement upon sexual differentiation in fission yeast. In interphase (e.g., G1 phase) of mitotic cycles (C), centromeres (kinetochores; red) are
clustered at spindle pole bodies (SPBs; blue). In reaction to mating pheromone (D), telomeres get clustered to SPBs. Telomeres slide on the nuclear envelope toward
SPBs via interaction with meiosis-specific bouquet proteins (Bqt1 and Bqt2) and nuclear membrane proteins (Kms1/2–Sad1). Kinetochores are dissociated off SPBs.
A number of kinetochore and SPB components are dissociated in this stage (slim SPBs and kinetochores). During meiotic prophase (E), a cytoplasmic array of
microtubules is tethered by Hrs1 at SPBs, thereby shaking the nucleus. The SPB-led back-and-forth movement of the nucleus is called horse-tail nuclear movement.
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pair of haploid cells is fused through the mating process to form
a diploid cell right before entry into meiosis. In contrast, azygotic
meiosis occurs when proliferating cells in a diploid state start
meiosis without the mating process (Cipak et al., 2014).

Both in zygotic and azygotic meiosis the mating pheromones
are secreted and received on the cell surface to induce
differentiation via the MAP kinase cascade.

The mating pheromone–MAPK pathway affects chromosome
positioning at the initial stage of sexual differentiation. First, as
illustrated in Figure 1D, telomeres are clustered in reaction to
the mating pheromone. Then, centromeres are dissociated from
the SPBs after cell conjugation in the case of zygotic meiosis
(Chikashige et al., 1997; Jin et al., 1998). This means that the
chromosome arrangement in the nucleus becomes upside-down
from the original state (Rabl orientation): telomeres are clustered
at SPBs, whereas centromeres (kinetochores) are located far from
SPBs (Figure 1E). This state is called “bouquet” arrangement,
and the upside-down allocation of chromosomes hung from SPBs
is essential to promote pairing and meiotic recombination of
homologous chromosomes in meiotic prophase. The bouquet
configuration of chromosomes is highly conserved throughout
eukaryotes, which is essential to promote meiotic recombination
[reviewed in Scherthan (2001)].

A cytoplasmic array of microtubules is assembled particularly
during meiotic prophase, and the minus ends of such
microtubules are tethered at the SPBs. A meiosis-specific coiled-
coil protein, Hrs1 (also known as Mcp6), localizes to SPBs
and anchors the cytoplasmic array of microtubules at their
minus ends (Figure 1E), which serves as a fulcrum at the
SPBs that transmit the dynamic motion of microtubules to
the oscillatory nuclear movement (Saito et al., 2005; Tanaka
et al., 2005a; Funaya et al., 2012). The SPB-led microtubule
array is dynamically reformed to pull and push the SPBs and
the accompanying nucleus in the cytoplasm, by which the
nucleus repeats a back-and-forth movement in the cytoplasm
during meiotic prophase (Chikashige et al., 1994; Ding et al.,
1998; Yamamoto et al., 1999; Hiraoka et al., 2000). The
microtubule-driven “horse-tail nuclear movement” aligns the
upside-down chromosome bouquet and is thus essential for
promotion of pairing and recombination (Yamamoto et al., 1999;
Niwa et al., 2000).

The molecular mechanisms for clustering of telomeres have
been intensively studied, and meiosis-specific telomere proteins
Bqt1 and Bqt2 (bouquet proteins) play central roles for telomere
clustering. Bqt1–Bqt2 binds to the constitutive telomere protein
Rap1 and also associates nuclear membrane proteins Sad1–Kms1
(and Kms2) (Figure 1D; Chikashige et al., 2006). Sad1 is an inner
nuclear membrane protein containing the SUN domain, whereas
Kms1/2 are outer ones with the KASH domain, and both domains
are widely conserved among eukaryotes (Hagan and Yanagida,
1995; Shimanuki et al., 1997; Wälde and King, 2014).

The whole complex is called linker of nucleoskeleton
and cytoskeleton (LINC), and it brings all the telomeres
toward SPBs by sliding along the nuclear envelope using the
cytoplasmic microtubules tethered at SPBs. The LINC complex in
S. pombe includes the γ-tubulin complex, a base for microtubule
nucleation, and the dynein motor protein complex [composed of

heavy (Dhc1) and light (Dlc1) chains as well as dynactin (Ssm4)]
(Yamashita et al., 1997; Yamamoto et al., 1999; Miki et al., 2002;
Yoshida et al., 2013).

Systems to rearrange chromosome positions in eukaryotes
are generally conserved: cytoskeleton such as actin (in the
budding yeast Saccharomyces cerevisiae) or microtubule (in
S. pombe, Caenorhabditis elegans and mice, and partly in
Drosophila melanogaster) plays functions in the reorganization of
chromosome states into the telomere-led bouquet arrangement
(reviewed in Rubin et al., 2020). The function of the
LINC complex (SUN-KASH proteins) is also conserved in
eukaryotes. For instance, in mice germ cells, Majin serves
as a related function in the linkage of telomeres and the
nuclear envelope as a functional homolog of Bqt4, another
transmembrane bouquet protein connecting telomeres and inner
nuclear membrane (Chikashige et al., 2009). The transmembrane
protein Majin interacts with SUN1-KASH5 proteins as well
as with telomere-binding proteins TERB2-TERB1, thereby
enhancing the association of telomeres to the nuclear envelope
upon meiotic entry (Shibuya et al., 2015). Thus, SUN-
KASH proteins are widely employed among eukaryotes to
dynamically alter chromosome arrangement inside the nucleus
during meiosis [reviewed in Chikashige et al. (2007) and
Rubin et al. (2020)].

In addition, the telomere bouquet may regulate spindle
functions. The first report described that if the bouquet
formation is defective (e.g., in bqt11 or in taz11; Taz1 is a
telomere-binding protein), SPBs are fragmented, which results
in defective spindles such as monopolar and multipolar ones
(Tomita and Cooper, 2007). This is mostly due to the SPB-
led horse-tail nuclear movement: SPBs are often apart from
the main nuclear body after frequent shaking by cytoplasmic
microtubules because the spindle phenotype can be rescued by
interrupting the nuclear movement (Chikashige et al., 2014).
In mitosis and meiosis, the association of centromeres to
SPBs promote mitotic spindle formation (Fennell et al., 2015;
Fernández-Álvarez et al., 2016). Taking this knowledge together,
we can generalize that chromosome configuration controls
the spindle.

Another study reported that bouquet formation contributes
to the correct attachment of kinetochores and microtubules
in subsequent meiosis I. The bouquet-deficient strains (e.g.,
bqt11) tend to lose CENP-A (the centromere-specific variant
of histone H3) and Swi6 [the heterochromatin protein 1 (HP1)
ortholog] at centromeres, indicating that the telomere bouquet is
required for the maintenance of heterochromatin during meiosis
(Klutstein et al., 2015).

It is also reported that telomere bouquet is required to activate
the cyclin-dependent kinase-cyclin B (CDK-cyclin B) at SPBs
at the later stage of meiotic prophase (Moiseeva et al., 2017).
Bouquet-deficient cells also show defects in the detachment of
centromeres from SPBs (illustrated in Figure 1D), indicating that
the detachment of centromeres and the collection of telomeres
toward SPBs are linked to each other by the LINC complex and
microtubules (Katsumata et al., 2016).

Further investigation to address the biological meaning
of telomere bouquet, except for pairing of homologous
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chromosomes, will clarify how the conserved chromosomes’
behavior functions for the production of gametes.

COMPOSITION OF KINETOCHORES
AND SPINDLE POLES IS ALTERED IN
MEIOSIS

Another essential phenomenon seen during the initial stage
of meiotic events is reorganization of kinetochore and
SPB components.

In fission yeast, most of the kinetochore components,
including both inner and outer factors, stably constitute
kinetochores throughout the mitotic cell cycle. There are only few
exceptions: the Dam1 complex is a mitosis-specific kinetochore
component, while the Mis18 complex disappears in mitosis
(Hayashi et al., 2004, 2014; Liu et al., 2005; Hirai et al.,
2014; Subramanian et al., 2014). Components of fission yeast
tend to be constitutive in contrast to those of metazoans.
The modification of kinetochore proteins by mitotic kinases
might have been developed during the evolution from yeast
to metazoans. In meiotic prophase, however, most of the
outer kinetochore components dismiss, including the Ndc80
(also known as Hec1) complex, the Mis12/MIND complex
and Spc7 (KNL1), whereas inner factors remain intact (“slim”
kinetochores; Figure 1D; Goshima et al., 1999; Wigge and
Kilmartin, 2001; Kerres et al., 2004; Asakawa et al., 2005; Hayashi
et al., 2006; Meyer et al., 2015).

Signaling via the mating pheromone–MAPK pathway in the
early stage of meiosis is responsible for the disappearance of the
kinetochore components. A reason for making slim kinetochores
is for the detachment of centromeres from SPBs (Figure 1D),
through which chromosomes get inverted to promote pairing
and recombination.

In budding yeast meiosis, kinetochores detach from
the SPB as in fission yeast meiosis. Although kinetochore
detachment in fission yeast is mediated by the delocalization
of outer kinetochore complexes, that in budding yeast is
controlled through the degradation of Ndc80/Hec1 (Chen
et al., 2020). It is suggested that the dissociation of outer
kinetochore components may trigger the recruitment of Mam1
(monopolin) to kinetochores for mono-orientation at meiosis I
(Meyer et al., 2015).

It is intriguing to point out that many of SPB components
including Polo kinase alter its localization during meiotic
prophase as is observed for kinetochores (“slim SPB” in
Figure 1D; Ohta et al., 2012). SPB components are categorized
into three groups: (i) disappeared from SPBs during prophase:
Cut12, Pcp1, and Spo15. Although Plo1 is not a constitutive
component of SPBs (Ohkura et al., 1995; Mulvihill et al., 1999;
Tanaka et al., 2001), Plo1 predominantly localizes to SPBs during
mitosis, whereas not during meiotic prophase. Plo1 localizes
instead to kinetochores as mentioned above. It gets localized to
SPBs later, upon entry into meiosis I. Therefore, Plo1 can be
categorized to (i); (ii) reduced amount of proteins at SPBs: Sid4
and Cdc11 (Tomlin et al., 2002; Morrell et al., 2004); and (iii)
constantly localized to SPBs: Cdc31, Sfi1, Sad1, and Ppc89—those

mainly function for SPB duplication as SPB half-bridge factors
(Hagan and Yanagida, 1995; Kilmartin, 2003; Paoletti et al., 2003;
Rosenberg et al., 2006; Bouhlel et al., 2015).

The slimming down of SPB components shares similarities
with that of kinetochore components. For example, the timing
of dis/re-appearance of both factors is synchronized, and
particularly the disappearance of both factors is dependent on the
mating pheromone–MAPK pathway. One of the physiological
meanings of SPB reorganization is to avoid overduplication
of meiotic SPBs by temporarily reducing Plo1 from SPBs, as
enforced localization of Plo1 to meiotic SPBs results in an
excess of the SPB number (Ohta et al., 2012; Agarwal et al.,
2018). Slim SPB might uncouple SPB duplication with DNA
replication in meiosis, which potentially explains how cells secure
two rounds of SPB duplication with oscillation of CDK activity
in meiosis. Another advantage for dynamic SPB reorganization
is to temporarily deposit Plo1 to kinetochores at meiosis I
onset: reducing Plo1 at SPBs to get priority to depositing it at
kinetochores. The kinetochore localization of Plo1 plays crucial
roles in the collection of dispersed kinetochores before meiosis I
entry (see below).

The slimming down of SPBs is not evident in budding yeast
meiosis, although only a small number of SPB-associated proteins
fluctuate: for instance, a meiosis-specific S. cerevisiae protein
Ndj1 dissociates from SPBs in meiotic prophase (Li et al., 2015).
The discrepancy in yeast species might be due to SPB structures.
A budding yeast SPB is a three-layered structure and is embedded
to the nuclear envelope throughout the cell cycle, whereas a
fission yeast SPB has an amorphous structure and is inserted into
the nuclear envelope prior to M phase entry (Ding et al., 1997;
Jaspersen and Winey, 2004). It is possible that fission yeast SPB
is structurally flexible compared to that of budding yeast and that
the plasticity may allow a reorganization of the components.

Thus, in mitosis, the components of kinetochores and
SPBs are almost constitutive, whereas there are a number of
reorganizations taking place probably to streamline cellular
machineries to adapt for divisions specialized for the production
of gametes. Data remain elusive regarding molecular mechanisms
as to how slimmed kinetochores and SPBs are rebuilt right
before entry into meiosis I. Previous studies indicated the
requirement of activities of cell cycle kinases. Re-accumulation
of SPB components including Plo1 at meiosis I onset requires
elevation of the CDK activity (Ohta et al., 2012). In budding
yeast, the activity of the Aurora B kinase Ipl1 is required for
the reappearance of Ndc80 to kinetochores before meiosis I
(Kim et al., 2013; Meyer et al., 2015). It is possible that those
kinases phosphorylate some key components that are required
for further recruitment of other components to reconstitute SPBs
and kinetochores before entry into meiosis I.

ENTRY INTO MEIOSIS I: POSITION OF
CHROMOSOMES IS ALTERED BY
MEIOTIC MICROTUBULES

Next, we compare the chromosome arrangement in the nucleus
upon entry into mitosis and into meiosis I. As discussed
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above, centromeres (kinetochores) are located close to SPBs
in the interphase of the mitotic cell cycle (Figure 1C). This
allocation is suitable for easy connection between microtubules
and kinetochores upon entry into mitosis, as microtubules are
nucleated from two SPBs, where kinetochores have been clustered
even during interphase (Figure 2A).

The SPBs, duplicated in interphase, are separated from each
other on the surface of the nucleus, as microtubules emanated
from each of the SPBs start to overlap and interdigitate upon
mitotic entry (Figure 2B). Finally, those two SPBs are separated
to opposite sides so that the bipolar spindle can be assembled by
metaphase (Figure 2C).

On the contrary, in cells entering meiosis I, positioning
of chromosomes is completely upside-down as a result
of centromere dissociation and telomere clustering. In
addition, chromosomes are duplicated as sister chromatids,
and homologous chromosomes are paired with chiasmata as a
result of meiotic recombination during the horse-tail nuclear
movement, as illustrated in Figure 2D. The upside-down
positioning of chromosomes could be a potential risk for the
subsequent chromosome segregation in meiosis I because
kinetochores are located distal from the microtubule nucleation
site, unlike that in mitosis.

When cells enter meiosis I, the horse-tail nuclear movement
ceases, and microtubules are nucleated from SPBs toward
inside the nucleus as observed at mitotic entry. In contrast to
mitotic entry, meiotic cells, at this stage, start to nucleate an
extensive radial array of microtubules from SPBs (Figure 2D;
Kakui et al., 2013).

The extended microtubules then capture kinetochores
scattered in the nucleus and then shrink to retrieve the
attached kinetochores toward SPBs (Figure 2E). The retrieval of
kinetochores mostly relies on depolymerization of microtubules
rather than sliding of kinetochores on microtubules. First, a
kinetochore may attach to the lateral surface of a microtubule,
and this can then be converted to end-on pulling when the
plus end of the shrinking microtubule reaches the kinetochore.
End-on pulling motion in meiotic kinetochore retrieval relies
on the Dam1 complex, which forms oligomeric rings around
microtubules (Westermann et al., 2005). In contrast, budding
yeast kinetochores are mainly collected by sliding on the surface
of microtubules in mitosis (Tanaka et al., 2005b). Homologous
kinetochores are retrieved as a pair by microtubules, and
mathematical modeling indicated that the dynamic instability
of microtubules is essential for efficient retrieval and that paired
configuration of kinetochores accelerates the capture by pivoting
microtubules (Cojoc et al., 2016; Blackwell et al., 2017).

When homologous kinetochores are captured and pulled by
microtubules, the mode of attachment may be mostly monopolar,
the state in which both kinetochores are pulled by microtubules
emanated from the same spindle pole. This may be resolved by
Aurora B kinase, as budding yeast meiotic kinetochores retrieved
in a monopolar manner are converted to bipolar attachment
through phosphorylation by the Aurora B kinase Ipl1 (Meyer
et al., 2013). The kinetochore protein Dam1 is also shown to
promote chromosome bi-orientation through phosphorylation
by the Mps1 kinase (Meyer et al., 2018).

During retrieval of kinetochores by pivoting monopolar
microtubules, formation of the bipolar spindle (separation of
two SPBs) should be repressed, although the system that surveys
the completion of the scattered kinetochores does not appear
very strict, as occasionally bipolar spindle starts to assemble
even before the completion of kinetochore retrieval (Kakui et al.,
2013). At least in budding yeast meiosis, the Aurora B Ipl1
localizes to SPBs during meiotic prophase and is involved in
delaying the assembly of bipolar formation driven by S-CDK
(Kim et al., 2013; Newnham et al., 2013).

Regarding regulation of SPB separation, a meiosis-specific
telomere-associated protein, Ndj1, is known to localize to SPBs
together with Mps3 (a SUN-domain protein) in budding yeast
meiosis to suppress the premature separation of SPBs (Li
et al., 2015, 2017). Polo kinase Cdc5 removes Ndj1 from the
half-bridge structure connecting two SPBs, thereby promoting
SPB separation in meiosis I. As Ndj1, Mps3, and Csm4 are
also involved in telomere positioning and motility in meiotic
prophase, loss of Ndj1 in meiosis I brings two consequences: SPB
separation and telomere dissociation from the nuclear envelope
(Conrad et al., 2008; Kosaka et al., 2008; Wanat et al., 2008; Li
et al., 2015), indicating that these factors may play central roles to
coordinate mitotic progression and chromosome configuration.

In summary, the extensive microtubules are assembled to
relocate chromosomes to the original position as seen in mitotic
entry, thereby minimizing the potential risk of segregation
errors in meiosis I.

In addition to the assembly of radial microtubules, cells
at meiosis I onset take the second strategy, namely, cells
utilize Alp7 (also known as Mia1), the S. pombe ortholog of
the microtubule-associated protein transforming acidic coiled-
coil protein (TACC) for this purpose. Alp7 primarily localizes
to SPBs and microtubules. Alp7 also localizes to mitotic
kinetochores once captured by spindle microtubules, which
means that Alp7 is delivered to kinetochores by microtubules
and stabilizes kinetochore–microtubule attachment in mitosis
(Oliferenko and Balasubramanian, 2002; Sato et al., 2003, 2004;
Sato and Toda, 2007). Although Alp7 localizes also to meiotic
kinetochores, it is of note that Alp7 localizes there even
before microtubule attachment (Figure 2D). Alp7 precociously
localized to scattered kinetochores promotes capture by radial
microtubules (Kakui et al., 2013).

Thus, cells employ two machineries—extension of radial
microtubules and precious localization of Alp7 to kinetochores—
to synergistically promote relocation of chromosomes. Do these
machineries operate also during mitosis or only during meiosis?
The radial array of microtubules is not evident in cells at mitotic
onset, in which kinetochores are constantly located in the vicinity
of SPBs. When kinetochores are artificially detached from SPBs
upon entry into mitosis, for example, by the use of transient
exposure to microtubule poisons, similar long microtubules
are assembled after drug washout to capture and collect the
scattered kinetochores. Thus, the machinery utilizing extending
microtubules may also operate during mitosis as a backup system
to respond to the unexpected risk, although it has not been
clarified if the molecular mechanisms for microtubule extension
are identical in mitosis and in meiosis. Alternatively, either SPB
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FIGURE 2 | Chromosome arrangement changes upon sexual differentiation. Chromosome positioning upon entry into mitosis. At the onset of mitosis (A),
kinetochores (red) are clustered at spindle pole bodies (SPBs; blue), where microtubules (green) start to nucleate. The polarity of a microtubule is indicated (+, –).
SPBs start to separate as the microtubules grow (B), and in metaphase (C), kinetochore microtubules (MTs) and interpolar MTs comprise the nuclear spindle. (D–G)
Chromosomes are re-arranged upon entry into meiosis I right after the horse-tail nuclear movement is ceased (D). Microtubules are nucleated from SPBs, but
kinetochores are scattered in the nucleus. Kinetochores are mono-oriented by Moa1 (Meikin, purple), which recruits Polo kinase (Plo1). Plo1 then recruits Alp7
(TACC) to pre-attached kinetochores. A radial array of microtubules is formed from SPBs (E) and capture kinetochores and retrieve them toward SPBs. Telomeres
are dissociated from SPBs. At the timing when kinetochore retrieval is completed (F), SPBs start to separate to assemble the bipolar spindle (G). Note that
homologous chromosomes are independently attached to microtubules in mitosis (C), whereas they are paired in meiosis I (G).
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separation or maturation in meiosis I could be repressed by
slim SPBs during meiotic prophase to efficiently form a radial
microtubule array.

In meiosis, however, extension of microtubules is observed
in cells at the stage without exception, and the microtubules
complete kinetochore retrieval mostly by the time SPBs start
to separate (Figures 2F,G), suggesting that the scheme in
meiosis is programmed as a physiological system rather than
as a reflex action to the contingency. The second strategy,
namely, the precocious deposition of Alp7 to microtubule-
free kinetochores, is exclusively observed in this stage, and a
similar localization cannot be observed in mitotic cells. Thus,
deposition of Alp7 to pre-attached kinetochores is programmed
specifically for meiosis. This is indeed evidenced by the molecular
mechanism underlying the precocious localization of Alp7 to
meiotic kinetochores: the meiosis-specific localization of Alp7
is dependent on the Polo kinase Plo1, which is also located to
pre-attached kinetochores in meiosis (Figure 2D).

As mentioned above, Plo1 localizes to pre-attached
kinetochores using Moa1 (Meikin) as a platform; therefore,
Alp7 localization to the kinetochores is also a meiosis-specific
event. Taken together, we consider that Moa1–Plo1 plays the
third function in meiosis—at the onset of meiosis I, kinetochores
are highlighted as center for microtubule control: Moa1 (Meikin)
recruits Plo1 (Polo kinase), which deposits Alp7 (TACC) to stably
capture microtubules emanated radially from spindle poles.

Moa1–Plo1 has an additional role: Plo1 at meiotic
kinetochores also phosphorylates Spc7 (KNL1) of the outer
kinetochore components. This affects the localization of Bub1
kinase which is known as a checkpoint kinase and phosphorylates
histone H2A to recruit shugoshin at centromeres (Tang et al.,
2004; Kawashima et al., 2010). In mitosis, the kinetochore
localization of Bub1 is transient, whereas Bub1 in meiosis persists
at kinetochores until anaphase of meiosis I because Spc7, the
platform for Bub1, is phosphorylated by Plo1 specifically in
meiosis (Miyazaki et al., 2017).

Thus, Moa1–Plo1 plays a central role to dictate a number of
meiosis-specific events regarding the interaction of kinetochores
and microtubules, thereby differentiating meiosis from mitosis.

The progression of kinetochore–microtubule association is
monitored by the spindle assembly checkpoint (SAC) machinery
in mitosis and meiosis. Briefly, kinetochores unattached to
microtubules are recognized by the Mad1–Mad2 complex, the
main components of SAC. When chromosomes are repositioned
at the onset of meiosis I, the unattached kinetochores are not
recognized by Mad1–Mad2. This is probably due to a lack of
sufficient CDK activity, which is a prerequisite for the localization
of Mad1–Mad2 to unattached kinetochores (Aoi et al., 2014).

For an entire resolution of the bouquet arrangement,
telomeres that have been clustered around SPBs during meiotic
prophase are detached from SPBs upon entry (Figure 2E),
although the molecular mechanism remains elusive. Resolution
of telomere clustering occurs almost at the same timing
with kinetochore retrieval, albeit slightly later than the
retrieval. The resolution requires elevation of the cyclin-
dependent kinase activity by Cdc25 phosphatase, which is
transcriptionally activated by the meiosis-specific transcription

factor Mei4 (Murakami-Tonami et al., 2007; Kakui et al.,
2011, 2013). Cdc13 (cyclin B) predominantly accumulates at
bouquet telomeres for the resolution of telomere clustering
(Moiseeva et al., 2017).

POWER BALANCE FOR SPINDLE POLE
SEPARATION IN MITOSIS AND MEIOSIS

It has been recently shown that difference in chromosome
configuration in mitosis and meiosis affects bipolar spindle
organization using their kinetic properties.

The assembly of bipolar spindle is based on the elongation of
microtubules and their mutual and physical interaction. Spindle
microtubules are emanated from both of the two SPBs, and they
interact with each other to separate the SPBs outward, which is
the major driving force for bipolar spindle formation.

As illustrated in Figure 3A, a couple of kinesin motor proteins
are involved in the separation of two SPBs. Kinesin-5 is a
conserved subfamily of the kinesin superfamily motor proteins
that move to plus-ends and functions as a homo-tetramer (Hagan
and Yanagida, 1990, 1992; Kapoor et al., 2000). Cut7, the fission
yeast ortholog of kinesin-5 subfamily members, is an essential
protein required for outward SPB separation that functions
as a tetramer (Hagan and Yanagida, 1990, 1992; Akera et al.,
2015). Cut7 captures the lateral surface of a pair of interpolar
microtubules emanating from both SPBs, and it moves toward
their plus-ends along the microtubules. The motion consequently
pushes two SPBs outward (Figures 3A,B).

On the contrary, members belonging to another subfamily
kinesin-14 (Pkl1 and Klp2) are minus-end-directed and generate
inward forces for SPBs (Figure 3A). Pkl1 preferentially localizes
to SPBs and the spindle as well as the nucleoplasm during mitosis,
and Klp2 localizes to spindle microtubules (Pidoux et al., 1996;
Troxell et al., 2001; Simeonov et al., 2009).

The knock-out of Cut7 (cut71) is lethal with an adjacent pair
of SPBs, which extend the monopolar spindle therefrom. The
lethality of cut71 and cut7-ts (temperature sensitive) mutants is
suppressed by a simultaneous knock-out of pkl1 (Rodriguez et al.,
2008; Syrovatkina et al., 2013; Olmsted et al., 2014; Syrovatkina
and Tran, 2015). This can be explained in such a way that,
in the absence of Cut7, the major force operating between
two SPBs is inward force generated by Pkl1 and Klp2, which
hampers SPB separation (Figure 3B). In the absence of two
antagonistic kinesins Cut7 and Pkl1, the outward force wins again
to consequently separate the SPBs (mitosis, Figure 3C).

This also indicates that there are additional factors that
generate the outward force to separate SPBs other than Cut7.
One of such factors is the microtubule-associated protein
Ase1 (human PRC1), which is known to connect a pair of
interdigitating microtubules as an anti-parallel bundle (Pellman
et al., 1995; Loïodice et al., 2005; Yamashita et al., 2005). This
indicates that Ase1 connects interpolar microtubules in cut71
pkl11 mitosis (Figure 3C), and microtubule polymerization by
Alp14 (a member of the ch-TOG/XMAP215/Dis1 microtubule-
associated protein family) together with Alp7 (TACC) pushes the
SPB of the other side outward (Yukawa et al., 2017). Similarly,
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FIGURE 3 | Force balance affects spindle pole body (SPB) separation in mitosis and meiosis. (A) Schematics for functions of Cut7 (kinesin-5) and Pkl1 and Klp2
(kinesin-14) for the inter-SPB distance. A tetramer of Cut7 (red) captures two bundles of microtubules. When they are aligned in an anti-parallel manner, the
plus-end-directed Cut7 generates the outward force that consequently separates two SPBs. The polarity of microtubules (+, –) is indicated. Microtubules are tethered
to SPBs at their minus ends. Pkl1 localizes to SPBs and Klp2 to the microtubules. Those minus-end-directed motors generate the inward force. (B) SPB separation
in prometaphase of mitosis. In wild-type cells, the microtubules nucleated from two SPBs are linked by Cut7 and separate the SPBs. In the cut7 deletion (cut71)
mutant, SPBs fail to separate because of the inward force generated by Pkl1 and Klp2. (C) In mitotic cut71 pkl11 cell, SPBs are separated by repulsive forces
generated by sister kinetochores. (D) When Swi6 (HP1) is deleted, the structure of sister kinetochores is loosened, which does not generate a sufficient repulsive
force to separate SPBs. (E) In contrast to mitosis (C), cut71 pkl11 cells in meiosis I cannot generate a sufficient repulsive force to separate SPBs. (F) When
kinetochores are artificially bi-oriented by depleting Moa1 (cut71 pkl11 moa11), sister kinetochores generate a repulsive force that causes SPB separation.
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other microtubule-associated proteins promote outward force
generation in the absence of Cut7 (Yukawa et al., 2019).

In addition to microtubule-associated proteins, chromosome
is another factor that generates outward force for SPB
separation. In cut71 pkl11 mitosis (Figure 3C), a pair of
sister chromatids mediate pole-to-pole connection through
kinetochore–microtubule attachment (Shirasugi and Sato, 2019).
The microtubules use the sister kinetochores as the fulcrum to
generate the repulsive force which separates SPBs.

This is evidenced by genetic analyses; for instance, SPB
separation is inhibited when the mitotic cohesin Rad21 is
removed (i.e., in the cut71 pkl11 rad21-ts triple mutant).
Moreover, when the sister kinetochores are unfastened by
reduction of centromeric cohesion using deletion of Swi6 (HP1)
(Ekwall et al., 1995; Bernard et al., 2001; Nonaka et al.,
2002; Kitajima et al., 2003), the outward force is significantly
diminished (Figure 3D; Shirasugi and Sato, 2019). These results
altogether demonstrate that centromeric cohesion and functional
sister kinetochores are required for generation of the outward
force in the absence of Cut7 and Pkl1.

In contrast to mitosis, cut71 pkl11 cells are not able to
separate SPBs in meiosis I (Shirasugi and Sato, 2019). This is due
to the loosened connection between homologous kinetochores
instead of a tight sister kinetochore connection of mitotic cells
(Figure 3E). When mono-orientation of sister chromatids is
converted to bi-orientation by deletion of Moa1 (i.e., cut71
pkl11 moa11 cells), SPBs are separated (Figure 3F).

This provides us two concepts. First, the rigidity of the
kinetochore connection matters because it determines whether
an additional outward force for SPB separation is generated
in mitosis and in meiosis. Second, the kinetochore-mediated
outward force is weaker in meiosis I than in mitosis, owing
to meiotic kinetochore mono-orientation. This may lead to a
delay in SPB separation in meiosis I, unless the Cut7-mediated
force is somehow augmented or the opposing inward force by
kinesin-14 motors decreases. Alternatively, SPB separation may
be suspended until scattered kinetochores are retrieved near
SPBs. When kinetochores are retrieved to the close vicinity of
SPBs, it may be able to generate a rigid repulsive force by
short microtubules that is sufficient for SPB separation. This
may be reasonable for cells at this stage, as they need to earn
some additional time until all the scattered kinetochores are
collected to SPBs. Thus, the kinetochore-mediated repulsive force
may modulate the balance of mechanical forces, through which
meiosis-specific cell cycle progression and chromosomal events
may be timely coordinated.

In general, either in mitosis or meiosis, fission yeast
microtubules do not complete end-on attachment to
kinetochores by the timing of SPB separation. Therefore, the
kinetochore-mediated SPB separation may not rely on the end-
on attachment; rather, a pair of bi-oriented kinetochores serves
as a glue factor that connects two anti-parallel microtubules
through attachment to their lateral surfaces, similarly to the
microtubule-associated bundling factor Ase1.

Kinetochore-driven centrosome separation has also been
observed in HeLa cells. When a kinetochore protein, either
CENP-O (Mcm21) or CENP-L, is depleted, separation of

centrosomes is delayed albeit partially, and this is due to defects
in the formation of kinetochore microtubules (kinetochore fibers
or k-fibers) (Toso et al., 2009; McHedlishvili et al., 2012).

There are two major pathways for centrosome separation
in HeLa mitosis: the aurora A-dependent pathway, which is
presumably for centrosomal microtubule-mediated separation,
and the kinetochore-dependent pathway (Toso et al., 2009).
The kinetochore-mediated pathway does not exert a significant
influence on mitotic progression when centrosomes have already
been separated before nuclear envelope breakdown (∼50%
of total mitotic cells), suggesting that the kinetochore-driven
machinery is a backup for efficient centrosome separation
in HeLa mitosis.

When the nuclear envelope breakdown precedes centrosome
separation in prometaphase, lateral attachment and kinetochores
to microtubules and their lateral transport are promoted to form
a ring-like alignment of chromosomes, called prometaphase
rosette (Nagele et al., 1995; Bolzer et al., 2005). The prometaphase
rosette is gradually converted to metaphase congression through
the transport of laterally attached kinetochores by the kinesin-7
motor CENP-E and the chromokinesin Kid (Tokai et al.,
1996; Funabiki and Murray, 2000). Kinetochore-driven
centrosome separation may occur during the conversion
and establishment of the metaphase alignment. These
observations imply that the way of kinetochore-mediated
SPB separation is an analogous phenomenon to the similar
centrosome separation.

During acentrosomal meiosis I of mouse oocytes, the Ndc80
complex of outer kinetochores accumulate the microtubule
crosslinker Prc1 (yeast Ase1) to kinetochores, which becomes
a center for microtubule bundling to assemble the functional
bipolar spindle even without positional cues at spindle poles
(Yoshida et al., 2020). Thus, the kinetochore-mediated force
generation, as well as the Ase1/Prc1-dependent cross-linking
pathway in yeast mitosis, may be an evolutionary origin for
spindle organization in female acentrosomal meiosis. In line with
this, it is recently found that acentrosomal spindle microtubules
containing Ase1/Prc1 can be induced in fission yeast meiosis
(Pineda-Santaella and Fernández-Álvarez, 2019).

ANAPHASE EVENTS: SPINDLE
ELONGATION AND RESOLUTION OF
RECOMBINATION

As mentioned above, the SAC machinery monitors the state
of kinetochore–microtubule interaction, and in the case of
problems, SAC arrests cell cycle progression in metaphase.
SAC detects two types of erroneous interactions: an improper
attachment and a lack of tension between kinetochores (Nezi and
Musacchio, 2009). The overall functions of SAC are common in
mitosis and in meiosis, but tension is generated in a different
manner. In mitosis, tension by microtubules is generated between
sister kinetochores (left, Figure 1B), whereas it is generated
between homologous kinetochores (right).

In anaphase I, homologous chromosomes with chiasmata
are segregated; hence, chiasmata need to be resolved by
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anaphase onset. The resolution of meiotic recombination
intermediates is promoted by the Skp1–Cul1-F–box (SCF)
complex. SCF constitutes a conserved ubiquitin ligase family
and contributes a number of cellular phenomena, and the
fission yeast orthologs of the components are Skp1, Cul1, and
at least 18 F-box proteins [reviewed in Toda et al. (1999)].
In the temperature-sensitive mutant of SCF–Skp1 (skp1-ts), the
anaphase spindle becomes abnormally bent in the nucleus, both
in mitotic and meiotic anaphase (Lehmann and Toda, 2004;
Okamoto et al., 2012).

The bend spindle in anaphase I is due to unresolved meiotic
recombination intermediates that remained until anaphase
as evidenced by the prolonged foci of Rad51 (the RecA
homolog) indicating sites of meiotic recombination (Muris et al.,
1993; Shinohara et al., 1993). When meiotic cohesin Rec8 or
the meiotic endonuclease Spo11 (the fission yeast ortholog
is named Rec12) is deleted, the bent spindle phenotype is
suppressed, verifying that entangled chromosomes by prolonged
recombination intermediates attached to microtubules hamper
the full elongation of the anaphase spindle; therefore, the
spindle is bent.

In conclusion, Skp1 and the F-box helicase Fbh1 are required
for the resolution of meiotic recombination intermediates,
although it remains to be elucidated which protein is targeted
by SCF-Skp1–Fbh1 for degradation for the resolution (Okamoto
et al., 2012; Tsutsui et al., 2014).

The function of SCF–Skp1 in the resolution process appears
conserved in eukaryotes: theArabidopsis ask1mutant (Ask1 is the
Skp1 ortholog) has the spindle which displays an overall normal
structure but somewhat longer than that of WT cells during
meiosis I (Yang et al., 1999; Yang and Ma, 2001; Wang et al.,
2004). The difference in spindle morphology (bent or long) in
these two organisms could be simply due to whether the spindle
poles are embedded in the nuclear envelope and whether the
spindle is assembled in the compartmentalized nucleus in closed
mitosis (Figure 4A), and the function in resolution of meiotic
intermediates is likely to be conserved.

EXIT FROM MEIOSIS I AND ENTRY INTO
MEIOSIS II

One of the most enigmatic mechanisms of meiosis is two
consecutive rounds of cell division: meiosis I (MI) and
meiosis II (MII) without replicating DNAs, which is a clear
contrast to the single M phase per cell cycle in mitotically
growing cells. The interval between MI and MII is called the
interkinesis period.

After segregation of homologous chromosomes and spindle
elongation in anaphase I of fission yeast (Figure 4A), the spindle
is disorganized once, and after a while (∼30 min at 25◦C),
the spindle for meiosis II starts to assemble (prophase of MII,
Figure 4A; Sato et al., 2009). Specialized regulation of CDK is
essential for the interkinesis period, followed by the initiation
of meiosis II. Earlier genetic studies have demonstrated that the
CDK activity is essential to start meiosis II, as the cdc2/tws1
mutant cannot enter meiosis II, and terminates meiosis with the

formation of the spore wall (Nakaseko et al., 1984; Grallert and
Sipiczki, 1990; Iino et al., 1995).

The drug-sensitive mutant cdc2-as (analog-sensitive)
(Dischinger et al., 2008) contains a mutation in the gatekeeper
residue, which causes a reduction of the Cdc2 activity. The
cdc2-as mutant is deficient in meiosis II initiation and terminates
meiosis in a binucleate state even without exposure to the ATP
analog. The activity of the mutant protein can be regained by the
introduction of a suppressor mutation into the Cdc2-as protein.
The cdc2-asM17 mutant has additional mutations to improve
the Cdc2-as activity and proceeds meiosis normally to produce
normal spores (Aoi et al., 2014).

The mes1 mutant has been isolated as a mes (meiosis second)
mutant defective in meiosis II, although the mes1 mutant does
not display the spore wall unlike cdc2/tws1 (Bresch et al., 1968;
Shimoda et al., 1985). The mes1 gene is expressed specifically
during meiosis and encodes an inhibitor of the anaphase
promoting complex/cyclosome (APC/C) (Kishida et al., 1994;
Izawa et al., 2005; Kimata et al., 2008), the mega-complex serving
as a conserved E3 ubiquitin ligase [reviewed in Yamano (2019)].
In WT cells entering anaphase I, the CDK activity is maintained
by Mes1, which blocks the full activation of APC/C to a moderate
level that is sufficient to initiate anaphase I (top, Figure 4B).

The APC/C is, in general, activated by the coactivator
Cdc20 (Slp1 in fission yeast) both in mitosis and meiosis,
but in meiosis, Fzr1 (also known as Mfr1 and Sms1) also
assists the activation of APC/C (Asakawa et al., 2001; Blanco
et al., 2001; Kimata et al., 2011; Aoi et al., 2013). In
WT meiocytes, Slp1 is the main coactivator for anaphase
I onset, whereas Fzr1 is mainly for anaphase II onset and
completion of meiosis. Mes1 binds and initially inhibits Fzr1
and Slp1 as a competitive substrate to prevent premature APC/C
activation until anaphase I. Mes1 is a competitive substrate
but not a pseudosubstrate for Slp1; therefore, Slp1 eventually
overcomes the inhibition by Mes1 and triggers anaphase I onset
(Kimata et al., 2008).

On the contrary, Mes1 serves as a pseudosubstrate for
Fzr1; therefore, Fzr1 remains inactive possibly until Mes1 is
somehow diminished. In the absence of Mes1 (mes11), APC/C
is prematurely activated by Fzr1 in anaphase I, which terminates
meiosis early, right after anaphase I, without initiating meiosis
II (middle, Figure 4B). In line with this, the early termination
of mes11 can be substantially suppressed by the simultaneous
deletion of Fzr1: the mes11 fzr11 double mutant initiates
meiosis II and produces spores (Aoi et al., 2013).

The fzr11 single mutant can initiate anaphase I and anaphase
II, as Slp1 functions as the major APC/C coactivator for both
divisions, but for complete exit from meiosis II, Fzr1 is essential
in addition to Slp1, as fzr11 meiocytes do not exit from meiosis
even after anaphase II; cyclin B reaccumulates later instead
(bottom, Figure 4B). The fzr11 mutant thus initiates “meiosis
III”, although the division is incomplete in terms of insufficient
materials such as SPBs and chromosomes.

The checkpoint (SAC) functions twice, namely, at meiosis I
and II. The activity of SAC during two sequential divisions may
be regulated in a continuous manner. When the first division is
delayed by SAC, the anaphase onset of meiosis II is advanced,
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modified, and the globular forespore membrane (FSM) begins to grow to surround the nucleus. The leading edge of the FSM opening is decorated by leading edge
proteins. During anaphase II, the barrier function of the nuclear envelope is invalidated, which is an incident called virtual nuclear envelope breakdown. After
completion of MII, the rigid spore wall is assembled. (B) The kinetics of the CDK activity during meiosis. The horizontal axis (time) is shared with the time scale in (A).
In wild-type cells (top), the CDK activity elevates until metaphase I and drops at anaphase I onset, which is triggered by APC/C. The APC/C inhibitor Mes1
modulates the activity of APC/C to a moderate level so that cells can enter anaphase I and to restart meiosis II, which requires re-accumulation of the CDK activity. In
mes11 cells (middle), Fzr1, an APC/C coactivator, is prematurely activated to fully activate APC/C, and the cells cannot enter meiosis II, and terminates meiosis early
instead. In fzr11 cells (bottom), meiosis I proceeds almost normally, but CDK repression after anaphase II onset is not sufficient as APC/C cannot be fully activated in
the absence of Fzr1. The cells then start the aberrant third division albeit incomplete.
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which means that the SAC effect was reduced at meiosis II
to compensate the previous delay that occurred in meiosis I
(Yamamoto et al., 2008).

In conclusion, the number of meiotic divisions is exclusively
determined as two, neither one nor three. This biological
rule strictly conserved and complied among eukaryotes
is defined by the repetitive battles of the “CDK–APC/C
derby”, which is reinforced by meiosis-specific factors Mes1
and Fzr1.

Although the seesaw battle is commonly seen in meiocytes
of any species, the underlying molecular mechanisms may be
divergent. The functional homologs of S. pombe Mes1 are OSD1
in plants and Erp1/Emi2 in vertebrates (Liu et al., 2006; Ohe et al.,
2007; d’Erfurth et al., 2010; Cromer et al., 2012). In oocyte meiosis
of vertebrates, Erp1 functions as a cytostatic factor that arrests
the meiotic cell cycle in metaphase II (Masui and Markert, 1971;
Inoue et al., 2007; Nishiyama et al., 2007), although fission yeast
meiosis does not particularly arrest at metaphase II.

Arabidopsis OSD1 (OMISSION OF SECOND DIVISION 1)
is also an APC/C inhibitor, which ensures initiation of meiosis
II together with TAM (Cyclin A; TARDY ASYNCHRONOUS
MEIOSIS), and the tam osd1 double mutant cannot initiate
meiosis II (d’Erfurth et al., 2010). Arabidopsis TDM1/MS5
(THREE DIVISION MUTANT 1/MALE STERILE 5) is the
functional homolog of Fzr1 and is required for exit from meiosis.
The tdm1/ms5 mutant exhibits the aberrant third meiosis similar
to the S. pombe fzr11 mutant (Ross et al., 1997; Glover et al.,
1998). Although the players for the CDK–APC seesaw battle
appears conserved in fission yeast and plant cells, the way of
molecular regulation seems distinct. For meiotic exit, the active
level of fission yeast Fzr1 may be regulated transcriptionally,
but the plant TDM1 is post-translationally regulated through
phosphorylation (Cifuentes et al., 2016).

The other S. pombe mes mutant mes2 is allelic to the
spo5 mutant, and the spo5 gene encodes a meiosis-specific
RNA-binding protein (Bresch et al., 1968; Kasama et al.,
2006; Okuzaki et al., 2010). Spo5 promotes progression of
meiosis II through regulation of cyclin B (Arata et al., 2014;
Togashi et al., 2014). At the moment, the mes mutants isolated
to date are only two, and many things still remain to be
elucidated: e.g., how the mes1 expression is controlled. It is
reported that the mes1 gene is spliced only during meiosis
(Kishida et al., 1994; Shimoseki and Shimoda, 2001; Malapeira
et al., 2005). Although the mechanism remains unclear, this
may be dependent on the meiosis-specific splicing machinery
particularly driven by the promoter region and transcription
factors belonging to the forkhead family (Averbeck et al., 2005;
Moldón et al., 2008).

MEIOSIS II IS NOT JUST AN
ANALOGOUS EVENT TO MITOSIS

Forespore Membrane Formation
An S. pombe diploid meiocyte produces two nuclei after anaphase
I; each of the nuclei is next divided into two in meiosis II to
finally produce four haploid spores (Figure 4A). The second

division of meiosis is similar to mitosis regarding the pattern of
chromosome segregation (equational division), in which sister
chromatids are segregated. Besides that, meiosis II is generally
linked with gametogenesis, which corresponds to sporulation
in yeast species.

The detailed processes of sporulation and underlying
molecular mechanisms are comprehensively reviewed in
Shimoda (2004); therefore, here we briefly summarize the
general picture of sporulation events.

In pro-prometaphase of meiosis II, SPBs separate to form
the bipolar spindle. At the same time, SPBs get modified by
the SPB component Spo15 so that the forespore membrane
can be assembled from the modified SPBs (Ikemoto et al.,
2000; Figure 4A). The forespore membrane gradually grows
to surround and cover the nucleus from both SPBs, and the
edge of the opening region of the forespore membrane is
entirely decorated by the leading edge proteins (LEPs) including
Meu14 (Okuzaki et al., 2003; Figure 4A). Growth of the
forespore membrane is guided by LEPs and septins over the
anaphase nucleus, and the opening closes by contraction, thereby
completely surrounding the divided nuclei (Onishi et al., 2010;
Yang et al., 2020; Figure 4A). The hard spore wall is then formed
after completion of the forespore membrane.

Virtual NEBD in Meiosis II
Observations in the last decade revealed that the sporulation
events give some unexpected impacts on the progression of
meiosis II. Here we focus on an interesting behavior of the nuclear
envelope: virtual nuclear envelope breakdown (vNEBD). Both
S. pombe and the budding yeast S. cerevisiae undergo closed
mitosis in which the nuclear envelope persists in mitosis, in
contrast to open mitosis seen in higher eukaryotes (Boettcher
and Barral, 2013; Dey et al., 2020), but in meiosis II, this
“closed” rule seems to be obscure: the nuclear envelope in
anaphase II shows both aspects of open and close mitoses;
therefore, this phenomenon has been termed “virtual nuclear
envelope breakdown (vNEBD)” (Asakawa et al., 2016). In
anaphase II, nucleoplasmic proteins mostly dispersed, although
observation of the nuclear envelope and the nuclear pore complex
indicated that the nuclear envelope itself is not particularly
disrupted or fragmented at least in fluorescence microscopy
and in transmission electron microscopy (Arai et al., 2010;
Asakawa et al., 2010).

One of the triggers of vNEBD in anaphase II may be related
to the formation of the forespore membrane, which is also
assembled at the same timing. The dispersal of nuclear proteins
to the cytoplasm during anaphase II can be blocked in several spo
gene mutants, which are involved in the assembly of the forespore
membrane. When the nuclear envelope expands in anaphase II,
the lipid components constituting the nuclear envelope may be in
a shortage because the components may need to be preferentially
used for the assembly of the forespore membrane. This idea
is based on the fact that vNEBD does not occur when the
vesicle transport pathway that conveys membrane components
from Golgi to endoplasmic reticulum is inhibited by a drug
(Arai et al., 2010). This implies the possibility that vNEBD
may be caused by a shortage of nuclear envelope components,
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which results in an increase of membrane permeability only
during anaphase II.

Interestingly, vNEBD accompanies nuclear entry of the
cytoplasmic RanGAP protein (Asakawa et al., 2010, 2011).
RanGAP (Rna1 in S. pombe) is expected to localize constantly
to the cytoplasm to govern the Ran GTPase-dependent
nucleocytoplasmic transport. The aberrant nuclear entry of
RanGAP indicates that the nucleocytoplasmic transport is
invalidated during meiosis II. Even when the nuclear envelope
seemingly persists as in closed meiosis II, the nuclear conditions
can be temporarily neutralized as is seen in open mitosis of
higher eukaryotes.

The biological roles of vNEBD had been undefined, but
recently it was shown to promote the maturation of spores
through redistribution of the nuclear proteasome subunit Rpn11
to the cytoplasm (Yang et al., 2020). This means that vNEBD
can be induced by sporulation events, which in turn feedbacks
to promote spore maturation.

Further studies will illuminate the molecular mechanisms
to trigger vNEBD as well as the biological significance of the
phenomenon. As the interplay between the nuclear envelope
and the genome contributes to the determination of cell fate
[reviewed in Talamas and Capelson (2015)], it would be tempting
to investigate the role of (v)NEBD for differentiation of cells in
yeast and other species.

Dispensable Interpolar Microtubules
Another unexpected aspect of sporulation events is the effect of
the forespore membrane on the spindle of meiosis II.

In general, the spindle comprises three types of microtubules:
kinetochore microtubules (kinetochore fibers, k-fibers) as
mentioned earlier (see Figures 2C,G), interpolar microtubules
connecting two spindle poles in an antiparallel manner, and
astral microtubules extending outward of the spindle from
the poles. In fission yeast, the majority of astral microtubules
are formed in the cytoplasm from SPBs, and some bundles
are in the nucleus (Zimmerman et al., 2004). Other two
types are in the nucleus. Both kinetochore microtubules and
interpolar microtubules are essential in mitosis and meiosis
I, but interpolar microtubules are dispensable for the bi-
directional segregation of chromosomes only in meiosis II (Akera
et al., 2012). When interpolar microtubules are disrupted by
microtubule poisons, the globular forespore membrane serves
as an interpolar structure on their behalf to separate SPBs to
assemble a bipolar apparatus and to separate two nuclei. The
forespore membrane is guided by LEPs and septin proteins
and grows from two SPBs, and two globular structures make
a physical contact with each other in the middle of the
nucleus in anaphase II, when the interpolar microtubules are
destroyed by microtubule poisons. As a pair of the contacted
forespore membrane grows, they gradually cleave and separate
the anaphase nucleus into two, even though there is no spindle
elongation in the conditions.

The forespore membrane-mediated nuclear division partly
contributes to physiological meiosis II in the presence of
normal microtubules, as SPB separation is perturbed in the
spo15 mutant lacking meiosis II-specific SPB modification as

well as in the meu141 spn61 double mutant, showing the
disorganized forespore membrane by depletion of both LEP
and septin structures (Akera et al., 2012). Data remained
elusive on whether kinetochore microtubules are also dispensable
in meiosis II, although it is technically impossible at the
moment to remove even the last traces of kinetochore
microtubules, as some microtubules are resistant to canonical
drugs [benzimidazole compounds such as MBC (carbendazim)
and TBZ (thiabendazole)].

It is also reported that, in mitosis, microtubule-independent
nuclear fission also occurs (Castagnetti et al., 2010). SPBs can
separate in the absence of spindle microtubules when cdc11
mutant cells (defective in cytokinesis) are exposed to microtubule
poisons. It is also possible that a constant increase of the
nuclear membrane components, which are supposed to be
used for nuclear elongation in anaphase, caused an abundance
in surplus in the absence of spindle elongation, resulting in
aberrant nuclear fission (Castagnetti et al., 2010), given the
case of vNEBD (Arai et al., 2010). Interestingly, nuclear fission
requires F-actin. This is reminiscent of animal cells in which
F-actin-dependent mechanisms promote spindle positioning and
orientation [reviewed in Sandquist et al. (2011)].

The study strikingly showed that chromosome segregation
is also fine to some degree. This might be also due to actin-
dependent mechanisms as in bacterial cells in which chromosome
segregation is driven by actin-like cytoskeleton. It is also possible
that the segregation system utilizes any nucleoplasmic factors
such as Csi1, as a material that connects mitotic SPBs and
kinetochores even in the absence of microtubules, because Csi1
has been shown to connect SPBs and centromeres constantly in
interphase (Hou et al., 2012).

It should be noted that no specific systems have been so far
identified that ensure the equal segregation of sister chromatids
in eukaryotes besides spindle microtubules. Currently, it is hard
to completely rule out the possibility that very tiny residual
microtubule seeds remain at SPBs even in the presence of
the drug, as such tiny microtubule seeds might be able to
connect SPBs and kinetochores clustered altogether at the mitotic
onset. Once such attachments were made, kinetochore-mediated
SPB separation might take place (similar to the situation in
Figure 3C) to separate SPBs and segregate sister chromatids.
It has been impossible to completely disrupt microtubules and
inhibit regrowth by existing drugs; it would be intriguing to
revisit these phenomena again when more effective drugs are
invented in the future.

PERSPECTIVES

The evolutionary origin of meiosis has been discussed from
the viewpoint of the phenomena for a long period, and one
of the most reasonable ideas must be that meiosis was evolved
from mitosis (Simchen and Hugerat, 1993). Although meiosis is
different from mitosis in many ways, one of the most essential
characteristics in meiosis could be pairing of homologous
chromosomes. Meiosis might have first evolved from mitosis
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through the acquisition of homolog pairing as an additional
step (Wilkins and Holliday, 2009). As the molecular mechanisms
have been illuminated in the last decades, the idea is getting
realistic as evidenced by the genes involved in key events in
meiosis. Most of the key events in meiosis appear to be conducted
by meiosis-specific genes that are paralogous to those used in
mitosis. Assuming that paralogous genes are generated via gene
duplication in the long history of evolution, Spo11 (S. pombe
Rec12) might have evolved from other topoisomerase genes as a
copy specific for homolog pairing in meiosis, and this could be a
key incident to acquire meiotic recombination and the following
reductional division in meiosis I.

The meiotic cohesin Rec8 could likewise be originated from
a duplicated copy of the mitotic cohesin Rad21. Fzr1, a meiosis-
specific activator of APC/C, might have evolved from the mitotic
one Slp1 (Cdc20). Those key factors might have defined the
outline of meiosis as a newly acquired division system. In
addition to those copied genes, meiosis-specific genes whose
ancestors are currently unknown are also created to fine-tune
meiotic events to the current state.

On the other hand, we also know that molecules or detailed
molecular mechanisms in meiosis have been differentiated
depending on species, although the whole system of meiosis per
se is common among eukaryotes. The molecular mechanisms are
thought to be fine-tuned in each organism depending on internal
and external reasons such as the lifestyle and surrounding
environment. Considering similarities and differences among
species and in between two types of divisions, we will be able

to converge the divergent mechanisms to explore the ultimate
origin in the future.
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