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ABSTRACT

Non-coding RNAs (ncRNAs) are regulatory mol-
ecules encoded in the intergenic or intragenic
regions of the genome. In prokaryotes, biocomputa-
tional identification of homologs of known ncRNAs in
other species often fails due to weakly evolutionarily
conserved sequences, structures, synteny and
genome localization, except in the case of evolution-
arily closely related species. To eliminate results
from weak conservation, we focused on RNA struc-
ture, which is the most conserved ncRNA property.
Analysis of the structure of one of the few well-
studied bacterial ncRNAs, 6S RNA, demonstrated
that unlike optimal and consensus structures, sub-
optimal structures are capable of capturing RNA
homology even in divergent bacterial species. A
computational procedure for the identification of
homologous ncRNAs using suboptimal structures
was created. The suggested procedure was applied
to strongly divergent bacterial species and was
capable of identifying homologous ncRNAs.

INTRODUCTION

Non-coding RNAs (ncRNAs) control a variety of cellular
processes in both prokaryotic and eukaryotic species. In
prokaryotes, ncRNAs can affect transcription by interact-
ing with RNA polymerase (1), act as post-transcriptional
regulators by interacting with mRNAs, act as cis acting
transcriptional regulators (riboswitches) (2), or interact
with and modulate the activities of cellular proteins (3).
The proportion of non-coding regions, where ncRNA
genes are most frequently located, increases with the

complexity of the organism. These regions form about
98.5% of the human genome (4) and typically <20% of
bacterial genomes. Although the identification of bacterial
ncRNAs is of prime importance, only a minor fraction of
all potential ncRNAs in bacteria have been identified so
far. Experimental detection and identification of bacterial
ncRNAs can be expensive and time consuming. Therefore,
relatively cheap and fast computational identification of
bacterial ncRNAs has become the first method of choice.

However, computational searches for bacterial ncRNAs
are severely limited by weak conservation of ncRNA
properties. Generally, computational searches are based
on comparisons of sequences and optimal secondary
RNA structures (5), which both display limited similarity,
especially between divergent bacterial species. The broad
limitation of the computational searches is obvious from
the Rfam database (6). This database contains approxi-
mately 150 different bacterial ncRNAs, which were experi-
mentally identified or computationally predicted. The
majority of them were computationally identified only in
species closely related to the species in which they were
originally found.

There are four physiologically well-studied bacterial
ncRNAs: M1, tm, 4.5S and 6S RNAs. The first three
have been broadly identified in bacteria, whereas the iden-
tification of 6S RNA was much more limited. 6S RNA
regulates protein transcription via interaction with the s
factor–RNA polymerase complex. The interaction is
caused by the 6S RNA structure as it resembles an open
promoter DNA region (1).

Computational identification of 6S RNA was limited to
groups of related species. According to Rfam 10.0, 1700
6S RNAs are known. The Rfam seed alignment contains
154 6S RNAs that comprise a few groups of related
species: Gram-negative (G�), mostly g, proteobacteria
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(92 sequences), cyanobacteria (15 sequences), and
Gram-positive (G+), low G+C bacteria of Bacillus,
Staphylococcus and Streptococcus (38 sequences).
Examples of 6S RNAs that had to be identified experi-
mentally, even in related species, can be found, e.g.
B. subtilis 6S-2 RNA (7–9), Bordetella pertussis 6S RNA
(9). A comprehensive computational identification of 6S
RNA found approximately 100 6S RNAs homologs in
eubacteria (10), of which most were in evolutionarily
related species. Of distantly related to species with
known 6S RNA, only Symbiobacterium thermophilum 6S
RNA was reported (10). 6S RNA has not been identified
in almost all G+high G+C species, in most G+low G+C
species and numerous G� species.

Here, we set out to identify 6S RNA in divergent
bacterial species using structural similarity. Our compu-
tational identification of 6S RNA is based on structures
with higher than minimal free energy (FE) (suboptimal
structures). We demonstrate that the suboptimal struc-
tures better capture the functional properties of
the 6S RNA molecule than any other genomic or struc-
tural features. For the example of species distantly
related to already known 6S RNAs—Streptomyces and
Mycobacterium—we show that such an approach can
identify homologous ncRNAs in related and divergent
bacterial species.

MATERIALS AND METHODS

Data and similarity measures

Genome sequences and genomic annotations were
imported from the NCBI ftp site (ftp://ftp.ncbi.hih.gov/
genomes/Bacteria). Rho-independent terminators were
predicted by TransTermHP (11) with default parameters.
Sequence comparisons were performed by BLAST.
BLAST parameters were optimized for cross-species
exploration (-r 1 -q 1 -G 1 -E 2 -W 9 -F ‘m D’ –U) (12).
RNAdistance for structure comparisons used structure
tree comparison and returned the edit distance as a pair-
wise structural similarity score. The smaller the value of
the score the higher the similarity; a value of zero indicates
identical structures.

Bacterial strains, media and northern blot analysis

Streptomyces coelicolor A3(2) M145 cells were grown in
NMMP medium. At indicated time points, cells were
harvested and RNA was isolated as described in (13).
UV spectroscopy and agarose gel electrophoresis were
used to assess the quantity and quality of total RNA
samples. Total RNA samples were separated on 6%
denaturing polyacrylamide gels and transferred to nylon
membranes (BioRad) using a Trans-Blot semi-dry transfer
cell (BioRad) (25V, 4�C over night). Membranes were
UV-cross linked. The membranes were hybridized with
50-end-labeled oligonucleotides, which corresponded to
the internal part of the 6S RNA, overnight at 42�C in
ULTRAhybridization buffer (Ambion). The detection
and quantification of signals were conducted using a
phosphorimager (BioRad).

The Mycobacterium smegmatis cells were grown at 37�C
in Middlebrook 7H9 medium supplemented with 0.05%
Tween-80. For experiments with this organism, the
M. smegmatis mc155 strain was used (a kind gift from
Dr J. Weiser from the Institute of Microbiology in
Prague, Czech Republic). RNA extractions were carried
out as described in (14). Time points were taken from the
exponential phase (OD600 �0.4), from the entry into the
stationary phase (OD600 �1.7), and from 2 h into the sta-
tionary phase (OD600 �3.4). Gel electrophoresis,
northern blotting and hybridization were performed as
described in (13). Briefly, 4 mg of total RNA was loaded
per lane onto 7% polyacrylamide gels and transferred to
Amersham Hybond-N membranes. Probes were 50
32P-labeled oligonucleotides (Table 3), and signals were
visualized by PhosphorImaging (BioRad).
Bacillus subtilis 168 and Escherichia coli DH5a were

grown in LB medium.

Western blotting. Mycobacterium smegmatis mc155,
Bacillus subtilis 168 and Escherichia coli DH5a cells from
the stationary phase of growth (�2 h after exiting the
exponential phase) were homogenized by sonication
(sonicator Hielscher UP200S) in lysis buffer [20mM Tris
(pH 8.0), 150mM KCl, 1mM MgCl2 and 1mM DTT].
Equal protein amounts (20 mg) of cell lysates were
electrophoresed through a reducing SDS PAGE
(NuPAGE� 4–12% Bis–Tris Gel, Carlsbad, CA, USA)
and electroblotted onto a Protran BA 85 cellulosenitrat
(E) (Schleicher & Schuell, Dassel, Germany). The
membrane was blocked with 5% milk and incubated
with the mouse monoclonal antibody to RNA polymerase
sigma 70 for 2 h (1/1000; Abcam, Cambridge, UK). The
membrane was washed with TBST buffer [10mM Tris,
150mM NaCl, 0.05% Tween-20, (pH 7.4)] and treated
with horseradish peroxidase (HRP)-linked goat-anti-
mouse IgG (Fc specific)-Peroxidase antibodies (1 h,
1/1000; Sigma-Aldrich). Subsequently, the blot was
incubated for 2min with SuperSignal� West Pico
Chemiluminiscent substrate (Thermo scientific, Rockford,
IL, USA), exposed on film and developed.

Immunoprecipitation. Mycobacterium smegmatis mc155
and B. subtilis 168 cells (15ml of each) from stationary
phase (�2 h after exiting the exponential phase) were
pelleted, resuspended in 0.8ml of lysis buffer (see
western blotting) and sonicated. Each lysate (0.2ml) was
incubated for 3 h with 4 ml of Mouse monoclonal [2G10]
antibody to RNA polymerase sigma 70 (1/50; Abcam,
Cambridge, UK). Subsequently, 20 ml of Dynabeads
Protein A (Invitrogen) was added, incubated for 2 h,
washed five times with lysis buffer and electrophoresed
on a 7% polyacrylamide gel along with 4 mg of total
RNA from each organism. After northern blotting, the
blot was divided in two, with each part containing total
RNA and immunoprecipitation from one organism.
Subsequently, hybridization was carried out with
50-labeled probes against B. subtilis 6S RNA (positive
control) and M. smegmatis Ms1 (for probe sequence see
Table 4).
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RESULTS

Sequence and structure similarity of 6S RNAs

To address how sequence similarity corresponds to struc-
tural similarity in the case of 6S RNA, 147 6S RNA se-
quences from 147 bacterial species were downloaded from
the Rfam 10.0 database (15). Only unique bacterial se-
quences were used. Minimum free energy (MFE) struc-
tures of the 6S RNAs were generated using UNAFold
(16). To make a comparison between the sequence and
structure similarity, similarity scores for sequences and
structures were computed for all selected 6S RNAs. The
pair-wise sequence similarities were computed using
BLAST (17, and structural similarities for MFE structures
were computed by means of RNAdistance (18). The simi-
larity scores formed two distance matrices (one for
sequence similarity and one for structural similarity).
Each matrix was used as an input to a hierarchical clus-
tering algorithm forming two clustering trees (Figure 1)
one for sequence similarity (clusters 1–5) and one for
structural similarity (clusters I–V). The lines between the
trees of Figure 1 connect clusters, including single 6S
RNAs. The width of each line is proportional to the
number of 6S RNAs included in the connected clusters.
The lines indicate that similar sequences did not have
similar structures and vice versa: lines connect single
sequence clusters with multiple structure clusters, and
single structure clusters make connections to multiple
sequence clusters. For example, cluster 5, which included
sequences of 6S RNA of E. coli and other G� relatives, is
connected with all structural clusters except for cluster II.
Similar results were obtained for other 6S RNAs. Such
structure/sequence dissimilarity can be observed even
for closely related species. This point can be demonstrated
by 6S RNAs of E. coli, Bordetella parapertussis and
Vibrio vulnificus (Figure 2), which are all closely related
G� bacteria. All three species were found in differ-
ent clusters (clusters I, III and IV in Figure 1), which in-
dicates their mutual structural dissimilarity, while their
sequences were similar and clustered to a single cluster 5
(Figure 1).

Similarity of suboptimal 6S RNA structures

In the search for a better structural model for 6S RNA
than the MFE one, we focused on suboptimal structures,
i.e. the structures with free energies (FEs) higher than
the MFE. Several 6S RNAs with dissimilar optimal
and similar suboptimal structures were found. Examples
of 6S RNAs from V. vulnificus and B. parapertussis
(Figure 3, cf. with Figure 2) with 6S RNA-like structures
had the 19th and fifth lowest FEs, respectively. These
examples encouraged us to test whether suboptimal struc-
tures can characterize 6S RNA. For this purpose, we
computed suboptimal secondary structures for all 147 6S
RNAs with FEs within 10% of the MFE, but no more
than 75 structures for a single RNA were generated. We
hypothesized that when clustered, unlike in the case of
optimal structures, there should exist a cluster with 6S
RNA-like suboptimal structures, which would contain
most of the 6S RNA species. In total, we obtained 3452

structures—23 structures on average for a single 6S RNA.
The similarity matrix was computed for the 3452 struc-
tures by the RNAdistance program and 6S RNAs were
clustered into five clusters (Table 1). Because each bacter-
ial species was represented by an average of 23 structures,
we had to find a way to assign a position in the clustering
tree to a specific species. For this purpose, the similarity
between the 6S RNA consensus structure (copied from the
Rfam database 10.0) and each suboptimal structure of the
individual species was computed. The suboptimal struc-
ture of a given species most similar to the consensus struc-
ture was then identified in the tree, and this position was
labeled as representative for the given species. This pro-
cedure was repeated for all 147 individual 6S RNAs.

5
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II

IV

III

Figure 1. A comparison of the sequence and structural similarity of 6S
RNAs by optimal structures. Using both sequence similarity (leftmost
tree) and similarity of optimal structures (rightmost tree), 147 6S RNAs
were clustered. The similarity scores were pair-wise BLAST E-values
for sequences and RNAdistance scores for structures. A hierarchical
clustering algorithm with ‘ward’ linkage was used for both trees.
Lines between trees connect the positions of sequences and structures
of single 6S RNAs. The width of each line is proportional to the
number of 6S RNAs included in the line. For proportions, refer to
the size of the clusters in Table 1.

(a) (b) (c)

Figure 2. The optimal 6S RNA structures of E. coli (a), V. vulnificus
(b) and B. parapertussis (c).
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Unfortunately, this approach failed because only 90 6S
RNAs (out of 147, 61%) could be labeled (Table 1).
Other 6S RNAs exhibited structural dissimilarity of their
suboptimal structures to the consensus structure, which
was higher than the obvious similarity threshold of 80.
This result implies that the consensus structure does not
represent all 147 6S RNA. A consensus structure is
derived from multiple sequence alignments, i.e. it is
based on sequence similarity. We noted above that the
sequence and structural similarity do not match each
other; therefore, the consensus structure determined
from the consensus sequence only represents a limited
set of 6S RNAs, as we found here. Another more repre-
sentative structural template has to be found.

Representative structure template search

We expected that a structural template could be found
among the 3452 alternative suboptimal structures. Such

a structure has to exhibit the highest similarity with sub-
optimal structures of most of the 147 individual 6S RNA.
To find the template, similarity scores for each of the 3452
suboptimal structures to all remaining suboptimal struc-
tures were computed. Out of these, those having a score
lower than the similarity threshold of 80 were excluded
(the lower dissimilarity, the lower score), which prevented
a bias towards dissimilar structures. Each of the 3452 sub-
optimal structures was considered as a potential template.
For each of the templates, the following procedure was
performed:

Select potential template i
suma=0
select 6S RNA j

select all suboptimal structures of 6S RNA j with
similarity to template i above

threshold (similarity score� 80)
find suboptimal structure with lowest score b or

b=0 if not found
if b6¼0, save b, suma=suma+1

next 6S RNA j+1
meanb=average(saved b)

next template i+1

This process was repeated for all 3452 potential templates,
and for each of them, two values were recorded: the number
of 6S RNAs with a non-zero scores (suma) and the average
of recorded non-zero scores for the potential template
(meanb). The template was selected as the one having
highest suma and lowest meanb. This procedure selected a
template that was most represented among all 147 6S
RNAs and had the highest similarity to at least one of the
suboptimal structures of each 6S RNA. The number and
average structural similarity of the four best-scoring struc-
tures, and for comparison, the consensus 6SRNA structure
are shown in Figure 4. The template with the largest
number of best-scoring structures (140 out of 147) was
the structure with the third lowest FE of Synechococcus
sp. WH 7803, i.e. the structure characterized 140 out of
147 known 6S RNAs (Table 1). For comparison, the con-
sensus structure characterized only 90 6S RNAs (Table 1),

Table 1. Clustering of suboptimal 6S RNA structures

Cluster Total no. of
optimal/
suboptimal
structures

Total no. of
6S RNAsa

No. of 6S
RNAs by
consensus
structureb

Structural
similarity by
consensus
structurec

No. of 6S RNAs
by suboptimal
structured

Structural
similarity by
suboptimal
structuree

I 1470 140 74 70 125 62
II 512 67 10 71 10 59
III 789 94 0 – 0 –
IV 628 57 6 72 5 69
V 53 5 0 – 0 –

aThe number of 6S RNAs with at least one structure either optimal or suboptimal in a cluster.
bThe number of 6S RNAs with the best scoring optimal/suboptimal structure to the consensus 6S RNA structure in a cluster.
cThe mean of the pair-wise RNAdistance scores of best-scoring suboptimal structures to consensus 6S RNA structure.
dThe number of 6S RNAs with the best-scoring optimal/suboptimal structure to the structure of Synechococcus sp. WH 7803 6S
RNA with the third lowest FE in a cluster.
eThe mean pair-wise RNAdistance scores of the best-scoring suboptimal structures to the structure of Synechococcus sp. WH 7803
6S RNA with the third lowest FE.

(a) (b)

Figure 3. The suboptimal 6S RNA structures of V. vulnificus with the
19th lowest FE (a), and B. parapertussis with the fifth lowest FE (b).
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as shown above. The distribution of characterized 6S
RNAs in structural clusters for the Synechococcus
template and the consensus 6S RNA structure are shown
in Table 1.

Identification of 6S RNAs in suboptimal structure clusters
using new structural template

Using the structure with the third lowest FE of
Synechococcus sp. WH 7803 as a template, a similarity
matrix of RNAdistance scores was computed between
the template and all 3452 individual suboptimal struc-
tures. The positions of individual 6S RNA species in the

clusters of suboptimal structures were defined as the
position of the best scoring suboptimal structure of the
given 6S RNA. Clustering of the suboptimal structures
identified five major clusters (I–V, Figure 5). Individual
6S RNAs in clusters I–V were connected with correspond-
ing 6S RNAs in the previously computed tree of sequence
similarity (the same as in Figure 1). The width of the con-
necting lines in Figure 5 is proportional to the number of
6S RNAs connecting the structural and sequence clusters.
It can be seen that unlike in Figure 1, where the optimal
structures were used, the suboptimal structures of differ-
ent sequences are grouped in cluster I.

Cluster I contained 1470 suboptimal structures (out of a
total of 3452, 42%) with various FEs that corresponded to
140 (95%) out of 147 6S RNAs. Almost half of all sub-
optimal structures were similar to each other and were
clustered into a single cluster. The existence of such a
cluster indicates that a 6S RNA structural template
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Figure 4. Search for suboptimal 6S RNAs structural templates. X-axis
shows number of 6S RNAs represented by a template, y-axis shows
structural similarity of the best-scoring structures to a template. Four
best templates and 6S RNA consensus structure are shown. The tem-
plates are, represented by thumbnails centered at positions given by
values on x- and y-axes. The templates are as follows (listed from the
left to right and from bottom to the top of the figure): consensus 6S
RNA structure (Rfam), Synechococcus sp. WH 8102 with fifth lowest
FE, E. coli optimal structure, Synechococcus sp. WH 7803 with third
lowest FE, C. watsonii with 16th lowest FE.

Table 2. Predicted Streptomyces ncRNAs

Name Organism Genome locus FE - MFEa Structure
similarity to
templateb

Syntenyc

Sc1 Streptomyces coelicolor 6370627..6370817 �3.4 74 DNA topoisomerase IV subunit B (3e-165)/
serine protease (0)

Sc2 Streptomyces coelicolor 3934820..3934630 �4.4 78 hypothetical protein, oxidoreductase (0)/
morphological differentiation-associated
protein (0)

aThe FE of a suboptimal structure minus MFE.
bThe RNAdistance score, which is the lowest of three scores to optimal template structures from E. coli, Synechococcus sp. WH 7803 with the third
lowest FE and C. watsonii with the 16th lowest FE are shown.
cThe left/right flanking genes. The compared species are S. coelicolor and S. avermitilis. Two names used for a single flanking gene indicate different
annotations for the compared species. The BLAST E-values of the sequence similarity are in parenthesis.

5

4

2

3

1

I

III

IV

V

II

Figure 5. A comparison of the sequence and structural similarity of 6S
RNAs using suboptimal structures. Using both sequence similarity
(leftmost tree) and similarity of optimal structures (rightmost tree),
147 6S RNAs were clustered. The similarity scores were pair-wise
BLAST E-values for sequences and RNAdistance scores of the
best-scoring optimal/suboptimal structures to the Synechococcus sp.
WH 7803 structure with the third lowest FE. A hierarchical clustering
algorithm with ‘ward’ linkage was used for both trees. Lines between
trees connect the positions of sequences and best-scoring structures of
single 6S RNAs. The width of each line is proportional to numbers of
6S RNAs included into the line. For proportions, refer to the size of
the clusters in Table 2.
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characteristic for dissimilar sequences and different bac-
terial species exists. It also shows that the structural
template does not exist among optimal structures. The
comparison demonstrated that suboptimal structures
could characterize 6S RNA, i.e. they followed the
homology of 6S RNAs via structural similarity regardless
of the level of sequence similarity.

A 6S RNA homology search in Mycobacterium and
Streptomyces using suboptimal structures

To test the hypothesis that our structural templates can
identify physiological structurally similar ncRNAs in di-
vergent bacteria without the use of sequence similarity, we
applied it to the homology search in Streptomyces and
Mycobacterium, G+high G+C bacteria, which are evolu-
tionary distant from others. The 6S RNA in these species
were neither identified, nor experimentally proven. Only in
our previous bioinformatic search (19) was some indica-
tion of its existence in S. coelicolor given.

Because ncRNAs should be conserved in closely related
species, we used the intergenic regions (IGR) of
S. coelicolor sequences, which are similar to those of
S. avermitilis, for the search. The similarity was measured
by BLAST, and sequences with E-value�1� 10�3 were
used. The sequences produced 768 ncRNA candidate
genes, which were 185- to 200-nt long, flanked by a pre-
dicted terminator within 50 nt either upstream or down-
stream of the potential 30-ends of candidate sequences.
Up to 75 optimal/suboptimal structures within 10% of
MFE were generated for a single ncRNA candidate
sequence, which gave a total of 28 028 optimal/suboptimal
structures. The structures were matched to structural tem-
plates, which are mentioned below, to identify structurally
similar 6S RNA candidates.

The three best structural templates from the search
described above (Figure 4), the E. coli 6S RNA optimal
structure, the Synechococcus sp. WH 7803 6S RNA struc-
ture with the third lowest FE and the Crocosphaera
watsonii 6S RNA structure with the 16th lowest FE,
were used. Structural similarity was computed using the
RNAdistance program. The candidate structures were
each matched to all of the templates producing three
scores, and the best out of the three scores �80 identified
structures of similar ncRNAs. The RNAdistance score
threshold 80 was used to filter out pairs of dissimilar struc-
tures. The use of three templates delivered structural
variability that increased the chance of retrieving good
structural hits among suboptimal structures. The
matching procedure identified 177 suboptimal structures
of eight candidate ncRNAs in S. coelicolor. Two sequence
candidates (Sc1 and Sc2) were found to be conserved in at
least five other Streptomyces species (with BLAST
E-values �1� 10�20), with conserved synteny and
similar structures in conserved IGRs in S. avermitilis
(Table 2 and Figure 6). The expression of these candidates
was confirmed experimentally under standard growth con-
ditions (Table 3). Sc2 was found to interact with RNA
polymerase in a complex with Hrdb, the Streptomyces
housekeeping sigma factor, which is a presumption of
the functionality of 6S RNA (K. Mikulı́k, paper in

(a)

(d) (e) (f)

(b) (c)

Figure 6. 6S RNA candidates. (a) S. coelicolor Sc1, (b) S. coelicolor
Sc2, (c) M. smegmatis Ms1, (d) S. avermitilis predicted homolog to Sc1,
(e) S. avermitilis predicted homolog to Sc2, (f) M. avium
paratuberculosis predicted homolog to Ms1.

Table 3. Expression of the S. coelicolor candidate ncRNAs by

northern blot hybridization

ncRNA
candidate

Expressiona Probe

Sc1 g3h 3d 6d AGTCCTTTGTAC
TACCGGTCCC
GAGTAAG

Sc2 40h 2d 3d 6d g5.5h AATGTGCCGTAT
TGCGTGT

aExpression after 40 h (40 h); 2, 3 and 6 days (2d, 3d and 6d, respect-
ively) and after 5,5 and 3 h during germination (g5, 5h and g3h, re-
spectively) was tested.
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preparation). Sc1 was found to be adjacent to hrdb gene
indicating their coordinated expression.
In Mycobacterium, ncRNAs structurally similar to 6S

RNA were identified in M. smegmatis. IGR sequences
conserved in M. smegmatis and M. avium paratuberculosis
were used (BLAST E-values � 1� 10�3). Under the
same conditions and using same parameters as for
Streptomyces, 190 candidate terminated sequences were
identified, which gave 5130 suboptimal structures. By
matching to the structural templates, 86 similar subopti-
mal structures of four candidate ncRNAs were identified
(called Ms1–4). However, none of them passed the con-
servation test used for Streptomyces: either sequences,
synteny or structures were not conserved in other
Mycobacterium species. The best of these candidates was
Ms1, which had a sequence and structure broadly
conserved in other Mycobacterium species (as in
M. avium paratuberculosis, see Figure 6c and f). For this
candidate, only synteny was not conserved, but in a rather
interesting way: flanking genes were annotated differently
in M. smegmatis and M. avium paratuberculosis although
strong sequence similarity was detected (BLAST
E-values=0). Among the Mycobacterium species, in
which Ms1 was found to be conserved by sequence

and structure, only the flanking genes of M. smegmatis
annotation differed.

As none of the four M. smegmatis candidates passed
fully the conservation criteria, the expression of all of
them was tested experimentally under three growth
phases (the exponential phase, the entry into stationary
phase and the stationary phase, Table 4). One of the
four, Ms1, was found to be expressed in all phases. Its
characteristics are shown in Table 5. Ms1 produced two
transcripts �280- and 230-nt long (Figure 7a). The expres-
sion maximum of both transcripts was in the stationary
phase. During all three tested growth phases, the longer
transcript prevailed. However, interaction of Ms1 with
sigA–RNA polymerase complex was not confirmed ex-
perimentally (Figure 7b), suggesting that Ms1 is not 6S
RNA, but a novel Mycobacterium ncRNA (Figure 6c
and f).

DISCUSSION

Using an example ncRNA (6S RNA), suboptimal RNA
structures were demonstrated here to be a property
capable of improving the identification of bacterial
ncRNAs. About 150 bacterial ncRNAs have been

Table 4. Expression of M. smegmatis candidate ncRNAs by northern blot hybridization

ncRNA candidate 1 2 3a Probe

Ms1 GTCGTGGCCGTCCGCTTTTCGAAACTACGC

Ms2 CGGGTCACAGCCCAACGTAACTGCCTCAAC

Ms3 AAGACTTCGACGTGCGCGACCACCGCAAAC

Ms4 CCAAACCCCCACACCCACCGCGTTCGTAAC

a1, exponential phase (OD600 �0.4) 2, entry into stationary phase (OD600 �1.7) 3, 2 h into stationary phase (OD600 �3.4)

Table 5. Predicted Mycobacterium ncRNA

Name Organism Genome locus FE - MFEa Structure
similarity
to templateb

Syntenyc

Ms1 Mycobacterium
smegmatis

6242435..6242625 �10.2 74 morphological differentiation-associated protein,
hypothetical protein (0)/transcriptional regulator,
IclR family protein, HAD-superfamily protein
subfamily protein IB hydrolase (0)5

aThe FE of a suboptimal structure minus MFE.
bThe RNAdistance score, which is the lowest of three scores to optimal template structures from E. coli, Synechococcus sp. WH 7803 with the third
lowest FE and C. watsonii with the 16th lowest FE are shown.
cThe left/right flanking genes. The compared species are M. smegmatis and M. avium paratuberculosis. Two names used for a single flanking gene
indicate different annotations for the compared species. The BLAST E-values of the sequence similarity are in parenthesis.
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identified so far; however, most were identified in closely
related bacterial species and are waiting for identification
in other species. We showed that ncRNA identification
can be substantially improved using suboptimal RNA
structures.

It was demonstrated here that structures with the lowest
FE did not characterize the native structure of our
example ncRNA, which is functional in the cell. We
showed that the best characterizing structure appeared
among models with higher than minimal FE, i.e. the sub-
optimal structures. The FEs of suboptimal structures used
throughout our analysis were still quite similar to the
minimal one (a 10% limit was used); therefore, their in-
clusion in the analysis was quite logical.

We demonstrated that to find 6S RNAs, and most
probably other ncRNAs, in the intergenic regions of the
genome, it was necessary to identify a structural template
consistent with the known functional properties of the
given ncRNA. At the same time, the template had to be
common for most of the known ncRNAs of the same type.
Such a template, as shown here for 6S RNA, can be
identified among the suboptimal structures.

The presented search through suboptimal structures
indicated that more than one structural template that
would characterize a single ncRNA may exist. To follow
the homology of ncRNAs across bacterial species, more
structural models for a single RNA may be required. If
you look at Figure 4, the four rightmost structures are
very similar in principle, and any one of them can serve
as a template. Indeed, using all of them sequentially as
templates, we were able to identify 6S RNA in divergent
species of Streptomyces. Such a procedure effectively over-
comes the lack of specificity of consensus ncRNA struc-
tures inferred using sequence similarity.

Suboptimal structures of whole ncRNA molecules were
used. Within a range of FE, these structures were all
matched to each other for all analyzed ncRNAs, and by
this computationally straightforward procedure, we
demonstrated that 23 suboptimal structures for a single
RNA were enough to increase the number of similar

structures of homologous ncRNAs threefold in compari-
son to optimal structures (from 32 to 95%).
The structural similarity does not automatically imply

ncRNA (or even RNA) homology. It means that using the
homology search one can also find ncRNAs that are not
homologous (asM. smegmatisMs1 gene, see paragraph ‘A
6S RNA homology search in Mycobacterium and
Streptomyces using suboptimal structures’ in ‘Results’
section). Computational biology is not able to give an
ultimate answer so far, but is only able to substantially
narrow the number of samples requiring wet-lab experi-
ments. By our opinion—and as it is demonstrated by the
presented results—the only ultimate proof of ncRNA
homology is the wet-lab experiment that unfortunately
never is easy and simple.
The matching of suboptimal structures used here prin-

cipally differs from earlier uses of suboptimal structures
for increasing the accuracy of modeling RNA helices (20)
and for increasing the accuracy of ncRNAs prediction
without a need for homology (21). These papers use
suboptimal structure to predict sequence regions that
may contain unknown ncRNAs. We do not predict a
specific sequence but rather identify ncRNAs from a
pool of candidate sequences. Therefore, our goal is to
find structural similarity that could reflect functional simi-
larity. The presented results indicate that suboptimal
structures better capture the ncRNA homology than
other known ncRNA properties and that the use of exclu-
sively optimal structures in computational searches may
preclude successful identification of ncRNAs.

CONCLUSIONS

We present this analysis of ‘wrong’ (suboptimal) instead of
the usual analyses of ‘right’ (optimal) to demonstrate that
from a biological point of view, suboptimal structures can
be more natural than optimal ones. This notion is
demonstrated here through the ability of suboptimal
structures to predict ncRNAs. The suboptimal structures

(a) (b)

Figure 7. Imunoprecipitation of 6S RNA. (A) Western blot of total protein from E. coli, B. subtilis and M. smegmatis probed with monoclonal
antibody against s70 from E. coli. The antibody reacts with the main housekeeping sigma factors from all three organisms. (B) Northern blot of total
RNA (RNA) and the products of immunoprecipitation experiments (IP). The B. subtilis blot (positive control) was probed with an oligonucleotide
against 6Sb RNA demonstrating the presence of this ncRNA on B. subtilis RNAP containing �A. The M. smegmatis blot was probed with an
oligonucleotide against Ms1 RNA, demonstrating that it is likely not a real 6S RNA.
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substantially improved the identification of bacterial
ncRNAs represented here by 6S RNA.
Although the paper deals with bacterial ncRNAs, a

similar approach can also be applied to the identification
of eukaryotic ncRNAs. The analysis of all databased 6S
RNAs allowed us to identify general principles of
homology shared among different bacterial species and
allowed the implementation of the presented method for
identification of new potential 6S RNAs. The same pro-
cedure would have to be adopted for the eukaryotic
ncRNAs and the presented algorithmic pipeline modified
according to the found principles. The general principle of
the conservation of biologically active ncRNA structure
among the computed suboptimal structures should be
conserved also for the eukaryotic ncRNAs.
Unlike optimal and consensus structures, sequence simi-

larity and genomic properties, suboptimal structures have
not been commonly used in computational searches.
Optimal structures, which are used commonly, were
shown here to be dissimilar, even for 6S RNAs of
related species, whereas suboptimal structures effectively
demonstrated expected similarity. This result indicates
that the first precondition of improvement in the compu-
tational identification of bacterial ncRNAs requires re-
placement of the commonly used sequence similarity,
predicted genomic properties and exclusive use of
optimal and/or consensus structures by the use of more
natural and functionally relevant suboptimal structures.
The suboptimal structures apparently better capture the
structural properties of the ncRNA molecule. As more
structural models need to be computationally compared
than when using optimal structures, the demand for com-
putational power increases when using suboptimal struc-
tures. Our results indicate that the biologically relevant
biocomputational searches for ncRNAs are not that
cheap and rapid, as has been generally thought, but
require the extensive computation of many structural can-
didates, among which those relevant to the given ncRNA
are found.
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