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Abstract 

Background:  Napsin B Aspartic Peptidase, Pseudogene (NAPSB) was associated with CD4 + T cell infiltration in pan‑
creatic ductal adenocarcinoma. However, the biological role of NAPSB in hepatocellular carcinoma (HCC) remains to 
be determined.

Methods:  The expression of NAPSB in HCC as well as its clinicopathological association were analyzed using data 
from several public datasets. qRT-PCR was used to verify the relative expression of NAPSB in patients with HCC using 
the Zhongnan cohort. Kaplan–Meier analyses, and univariate and multivariate Cox regression were conducted to 
determine the prognosis value of NAPSB on patients with HCC. Then enrichment analyses were performed to identify 
the possible biological functions of NAPSB. Subsequently, the immunological characteristics of NAPSB in the HCC 
tumor microenvironment (TME) were demonstrated comprehensively. The role of NAPSB in predicting hot tumors 
and its impact on immunotherapy and chemotherapy responses was also analyzed by bioinformatics methods.

Results:  NAPSB was downregulated in patients with HCC and high NAPSB expression showed an improved survival 
outcome. Enrichment analyses showed that NAPSB was related to immune activation. NAPSB was positively corre‑
lated with immunomodulators, tumor-infiltrating immune cells, T cell inflamed score and cancer-immunity cycle, and 
highly expressed in immuno-hot tumors. High expression of NAPSB was sensitive to immunotherapy and chemo‑
therapy, possibly due to its association with pyroptosis, apoptosis and necrosis.

Conclusions:  NAPSB was correlated with an immuno-hot and inflamed TME, and tumor cell death. It can be utilized 
as a promising predictive marker for prognosis and therapy in HCC.
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Introduction
Hepatocellular carcinoma (HCC) is the sixth most fre-
quent malignancy worldwide and the third leading 
cause of cancer-related deaths, accounting for almost 
90% of primary liver cancer [1]. Systemic treatments are 
the important options for patients with HCC [2], and 
emerging immunotherapies involving the use of immune 
checkpoint inhibitors (ICIs) are currently the focus of 
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research in many advanced cancers [3–5]. However, both 
systemic chemotherapy and immune checkpoint therapy 
have limitations of response in only some patients [6, 7]. 
Therefore, it is urgent and beneficial to identify new bio-
markers for individualized therapy.

In HCC, the tumor microenvironment (TME) com-
posed of cancer cells, immune cells and extracellular 
matrix has an immunosuppressive effect, promoting 
immune tolerance and avoidance [8]. However, recent 
studies have shown that abundant infiltration of CD8 + , 
CD4 + , regulatory T cells and dendritic cells (DCs) can 
shape an inflamed TME to anti-cancer and influence 
the efficacy of ICIs [9, 10]. Based on the characteristics 
of the TME, tumors can be divided into hot and cold 
tumors. Hot tumors are characterized by T cell infiltra-
tion, molecular characteristics of immune activation, and 
response to cancer immunotherapy, while cold tumors 
are characterized by the opposite [11].

Over the past decade, non-coding RNAs including 
pseudogene, long non-coding RNA and microRNA have 
been demonstrated to play crucial roles in TME [12, 13]. 
Napsin B Aspartic Peptidase, Pseudogene (NAPSB) is a 
pseudogene that has been identified to be associated 
with the infiltration of CD4 + T immune cells in pan-
creatic ductal adenocarcinoma (PDAC) [14]. In HCC, 
NAPSB was found to be downregulated [15], but its bio-
logical role has not been elucidated. Thus, in this study, 
the potential biological functions of NAPSB were com-
prehensively explored in HCC, including its differential 
expression, prognosis value and immunological role. We 
also reported that high NAPSB expression was related to 
an immuno-hot TME and sensitive to immunotherapy/
chemotherapy possibly on account of affecting pyropto-
sis, apoptosis and necrosis (PANoptosis) in HCC.

Materials and methods
Public data collection
The TIMER database (https://​cistr​ome.​shiny​apps.​io/​
timer/) was used to analyze expression levels of NAPSB 
in various cancers. Patients with HCC (n = 369) with the 
transcriptomic RNA-sequencing data (log2 (fragments 
per kilobase of transcript permillion mapped reads + 1) 
value) of The Cancer Genome Atlas (TCGA)-LIHC 
cohort were obtained from University of California Santa 
Cruz Xena (https://​xenab​rowser.​net/​datap​ages/). Mean-
while, the LIRI-JP (n = 231) cohort retrieved from the 
International Cancer Genome Consortium (ICGC) data-
base (https://​icgc.​org/) was chosen for primary external 
validation. In addition, we used multiple cohorts from 
Gene Expression Omnibus (GEO) (https://​www.​ncbi.​
nlm.​nih.​gov/​geo/), including GSE55092, GSE54236 and 
GSE121248, to verify the relative expression of NAPSB in 
HCC and normal tissues.

Two immunotherapy-related cohorts, GSE78220 and 
GSE91061 (melanoma), were downloaded from the GEO 
database. GSE104580, a dataset of transcatheter arterial 
chemoembolization (TACE) for patients with HCC was 
also downloaded.

Tissue specimens acquisition
Thirteen HCC tissues and paired adjacent normal tissues 
were obtained from the Zhongnan Hospital of Wuhan 
University between February 2021 and September 2021 
following patient informed consent. The protocols used 
in the study were approved by the Medical Ethics Com-
mittee of the Zhongnan Hospital of Wuhan University 
(grant no. 20200110).

Quantitative reverse transcription polymerase chain 
reaction (qRT‑PCR) assays
Total RNA was extracted from HCC and paired adjacent 
normal tissues using TRIZOL reagent (Invitrogen, Carls-
bad, CA, USA). RNA quantity was determined by Nan-
oDrop2000c (Thermo Scientific, Waltham, MA, USA). 
For qRT-PCR, 1  μg RNA was reverse transcribed to 
cDNA using a Reverse Transcription Kit (Toyobo, Osaka, 
Japan). The qRT-PCR assays were conducted on LightCy-
cler® 96. Target gene expression was normalized against 
GAPDH. The primer sequences were:

NAPSB-Forward: CAT​CCA​GTT​TGC​TCA​GGG​T;
NAPSB-Reverse: TCG​AAG​ACG​GTC​ACA​TAC​GC;
GAPDH-Forward: CCC​CAG​CAA​GAG​CAC​AAG​AG;
GAPDH-Reverse: GCA​CAG​GGT​ACT​TTA​TTG​ATG​

GTA​C.

Immunohistochemistry (IHC)
Liver tissues were fixed in 10% neutral-buffered formalin 
(Sigma-Aldrich, USA) and embedded in paraffin. Tissue 
sections were sliced from paraffin blocks into 4-μm-thick 
slices. The slices were further used for IHC test. The IHC 
staining was conducted in the NAPSB-high and NAPSB-
low tissues based on the qRT-PCR results. The primary 
antibodies against CD8 (Wuhan JiaYuan Biomedical 
Engineering Co., Ltd., Wuhan, China) and PD-L1 (Amoy 
Diagnostics Co., Ltd., Xiamen, China) were utilized. They 
were performed heat mediated antigen retrieval with 
EDTA buffer pH 8.0. Images were processed with Image J 
software, and relative expression was calculated.

Evaluate the prognostic value of NAPSB
Kaplan–Meier (K-M) analyses, and univariate and mul-
tivariate Cox regression were conducted to explore the 
influence of NAPSB on the survival of patients with 
HCC using the R package “survminer” and “survival”. 
The log-rank test was applied to estimate statistical sig-
nificance. Overall survival (OS), disease-free interval 
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(DFI) and progression-free interval (PFI) were evaluated 
(p-value < 0.05 as significant).

Analysis of NAPSB co‑expressed genes and differential 
expressed genes
Genes potentially positively co-expressed with NAPSB 
were predicted using R software. Those genes with the 
thresholds p-value < 0.01 and |Spearman`s correla-
tion|≥ 0.45 were selected for further analysis. Patients 
were classified into two groups based on the median 
NAPSB expression. We screened differentially expressed 
genes (DEGs) between the NAPSB-high group and 
the NAPSB-low group using the “edgeR” package in the 
R software. An adjusted p-value < 0.05 and |log2 fold 
change (FC)|≥ 1.3 was considered significant. We took 
the intersection of the co-expressed genes and the upreg-
ulated DEGs as the genes most related to NAPSB for fur-
ther analysis.

Biological function, pathway annotation, gene set 
enrichment analysis (GSEA) and gene set variation analysis 
(GSVA)
We conducted gene ontology (GO) and Kyoto Encyclope-
dia of Genes and Genomes (KEGG, www.​kegg.​jp/​kegg/​
kegg1.​html) [16] pathway analyses to explore the possible 
biological function of the genes most related to NAPSB 
(mentioned above) via the R package “clusterprofiler”. To 
investigate the difference in biological process terms in 
NAPSB subgroups, GSEA was applied using the R pack-
age “clusterProfiler” and GSVA was applied using the R 
package “GSVA”. The gene sets of “h.all.v7.4.symbols” and 
“c5.cp.kegg.v7.4.symbols” were downloaded from Molec-
ular Signatures Database (http://​www.​gsea-​msigdb.​org/​
gsea/​index.​jsp) for GSEA and GSVA, respectively.

Evaluation of relationship between NAPSB expression 
and the immunological characteristics of the TME
A total fifty immunomodulators (including major his-
tocompatibility complex (MHC), immunomodulators, 
chemokines and receptors) were collected from the study 
of Charoentong et  al. [17] (Additional file  1: Supple-
mentary Table 1). We applied the ESTIMATE algorithm 
to assess the immune scores, stromal scores, estimate 
scores and tumor purity for each HCC sample [18]. Sev-
eral algorithms were used to calculate the infiltration lev-
els of tumor-infiltrating immune cells (TIICs) to avoid 
calculation errors: single sample gene set enrichment 
analysis (ssGSEA) [19], TIMER [20], CIBERSORT [21], 
quanTIseq [22], EPIC [23], xCell [24] and MCP-counter 
[25]. We identified the effector genes of TIICs from pre-
vious studies [26, 27] (Additional file  1: Supplementary 
Table  2). Also, we calculated the steps of cancer-immu-
nity cycle as described previously [28]. Finally, the T 

cell–inflamed score was calculated as an average value 
of log2-scale normalized expression of the 18 signature 
genes [29].

Unsupervised clustering
Unsupervised clustering was implemented to classify 
HCC tissues into hot or cold tumors on the basis of hot 
tumor signature genes according to previous literature 
[30]. We used the “ConsensusClusterPlus” package to per-
form this algorithm and 1000 repetitions were conducted 
for guaranteeing the stability of classification [31].

Calculation of the enrichment scores of various gene 
signatures and prediction of immunotherapy response
We analyzed the oncogenic pathways that were asso-
ciated with targeted therapy, and immunotherapy 
responses according to previous research [26] (Addi-
tional file  1: Supplementary Table  3). The enrichment 
scores of these signatures were calculated using the R 
package “GSVA” [19]. To analyze the efficacy of immuno-
therapy, two immunotherapy-related cohorts, GSE78220 
and GSE91061 (melanoma) were obtained.

Prediction of chemotherapeutic response
We downloaded the transcriptional expression data and 
drug response of more than 1000 cancer cell lines from 
Genomics of Drug Sensitivity in Cancer (GDSC, http://​
www.​cance​rrxge​ne.​org/​downl​oads) [32] and Cancer 
Therapeutics Response Portal (CTRP) [33], respectively. 
The Spearman correlations between the NAPSB of each 
cell line and half maximal inhibitory concentration 
(IC50) of each cell line to particular drugs were calcu-
lated. Correlations with adjusted p-value < 0.01 were con-
sidered significant. In addition, GSE104580 was used to 
analyze the correlation between NAPSB expression and 
TACE response in patients with HCC.

Calculation of the enrichment scores of cell death gene 
sets
We collected signatures of several forms of cell death, 
including pyroptosis, apoptosis, necroptosis, autophagy 
and ferroptosis, from previous literature [34–38] (Addi-
tional file  1: Supplementary Table  4). The enrichment 
scores of these signatures were also calculated using the 
R package “GSVA” as mentioned above.

Statistical analysis
Statistical analyses were performed using R soft-
ware (version 4.1.1). Paired Student’s t-test was per-
formed to detect the differential expression of NAPSB 
in paired HCC and adjacent normal tissues. One-
way ANOVA test were used for comparison of mul-
tiple groups. Correlations between variables were 
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explored using Pearson or Spearman coefficients. 
For all analyses, a two-paired p-value < 0.05 was con-
sidered statistically significant if not noted. Statisti-
cal significance was defined as: ns, no significance; *, 
p-value < 0.05; **, p-value < 0.01; ***, p-value < 0.001; 
****, p-value < 0.0001.

Results
Expression levels analysis and high NAPSB inferred a better 
prognosis for HCC
NAPSB transcription levels in different human tumors 
were shown in Fig.  1A. Compared with adjacent nor-
mal tissues, expression of NAPSB in BLCA (bladder 
urothelial carcinoma), COAD (colon adenocarcinoma), 
LIHC (liver hepatocellular carcinoma), LUAD (lung 
adenocarcinoma), LUSC (lung squamous cell carci-
noma) and READ (rectal adenocarcinoma) was sig-
nificantly decreased. For the TCGA-LIHC cohort, 
we analyzed paired samples by paired Student’s t-test 
to verify the above results in HCC (Fig.  1B). To fully 
demonstrate this expression difference, we validated 
it with multiple datasets, including ICGC, GSE55092, 
GSE54236 and GSE121248, finding that NAPSB 
was indeed significantly decreased in HCC tissues 
(Fig. 1C). Moreover, NAPSB expression was examined 
in thirteen paired HCC and adjacent normal tissues 
of the Zhongnan cohort by qRT-PCR, and consistent 
results were obtained. (Fig. 1D).

The correlation between NAPSB and clinical fea-
tures of the TCGA and ICGC cohorts were presented in 
Additional file 2: Supplementary Tables 5 and 6. In addi-
tion, K-M survival analysis showed that high expression 
of NAPSB was linked to better OS than low expression 
(Fig.  1E), and more significantly associated with longer 
DFI (Fig.  1F) and PFI (Fig.  1G). The prognostic value 
for OS was also verified in the ICGC cohort (Fig.  1H). 
Univariate Cox regression analysis showed that NAPSB 
expression was significantly associated with better DFI 
and PFI outcomes (Additional file  3: Supplementary 
Fig. 1A) and multivariate Cox regression analysis further 
validated it (Additional file  3: Supplementary Fig.  1B). 
Therefore, NAPSB expression was beneficial to OS, and 
could serve as an independent predictor of DFI and PFI 
of patients with HCC.

Enrichment analyses inferred NAPSB was related 
to immune activation
Correlation between NAPSB and other genes was ana-
lyzed using TCGA-LIHC data, and there were 930 genes 
significantly associated with NAPSB (p-value < 0.01, 
|Spearman`s correlation|≥ 0.45; Additional file  1: Sup-
plementary Table 7). The correlation of NAPSB with the 
top 50 co-expressed genes was shown in Fig. 2A, which 
contained some immune-related molecules like CD48, 
CD37, IL6 and HLA-DQA1. Meanwhile, DEGs analy-
sis between the NAPSB-high group and the NAPSB-low 
group showed that there were 993 upregulated genes 
(adjusted p-value < 0.05 and |log2 FC|≥ 1.3; Additional 
file  1: Supplementary Table  8). The top 10 upregulated 
genes also contained immune-related molecules, such as 
CD48, CD37 and CCR5 (Fig. 2B), suggesting that NAPSB 
may be involved in immunity.

Thereafter, the intersection of co-expressed genes and 
upregulated DEGs included 476 common genes, which 
were selected as the genes most closely related to NAPSB 
(Fig.  2C; Additional file  1: Supplementary Table  9). The 
GO analysis for these common genes demonstrated 
they were enriched in processes such as T cell activa-
tion, regulation of T cell activation and regulation of 
immune effector process (Fig. 2D; Additional file 1: Sup-
plementary Table  10). The KEGG analysis showed they 
were associated with chemokine signaling pathway, Th17 
cell differentiation and T cell receptor signaling path-
way (Fig. 2E; Additional file 1: Supplementary Table 11). 
Most biological functions and signaling pathways were 
immune-related, strongly implying that NAPSB may 
mediate the TME in HCC.

Even further, we conducted GSEA and GSVA between 
NAPSB subgroups and also identified many significant 
pathways related to immunity (Fig.  2F, G; Additional 
file  1: Supplementary Tables  12 and 13). These findings 
paralleled the above results.

NAPSB shaped an immuno‑hot and inflamed TME in HCC
The immunological role of NAPSB was comprehensively 
explored subsequently using the TCGA and ICGC cohorts. 
NAPSB was found to upregulate the expression of criti-
cal immunomodulators (including MHC, immunostimu-
lators, chemokines and receptors) (Fig.  3A), which may 
upregulate the activities of the cancer-immunity cycle 

Fig. 1  Differential expression and prognosis value of NAPSB in various cancers and liver hepatocellular carcinoma (LIHC). A NAPSB expression 
levels in different tumor types were measured using the TIMER website. B Paired Student’s t-test analysis of NAPSB expression in paired samples of 
TCGA-LIHC. C NAPSB expression was significantly higher in normal tissues than in HCC in the ICGC, GSE55092, GSE54236 and GSE121248 cohorts. 
D In the Zhongnan cohort, lower NAPSB expression was observed in HCC compared with adjacent normal tissues (N = 13). The expression of 
NAPSB was compared with a standard reference control and relative quantities (RQ) were calculated based on the ΔΔCt method. E–H Kaplan–Meier 
analysis of NAPSB expression based on overall survival (OS), disease-free interval (DFI), progression-free interval (PFI) in the TCGA cohort and OS in 
the ICGC cohort. ns, no significance; *, p-value < 0.05; **, p-value < 0.01; ***, p-value < 0.001; ****, p-value < 0.0001

(See figure on next page.)
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Fig. 1  (See legend on previous page.)
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subsequently. The ESTIMATE algorithm was applied to 
calculate the immune score, stromal score, estimate score 
and tumor purity. We found these scores were signifi-
cantly increased in the NAPSB-high group (Fig. 3B), while 
tumor purity was negatively correlated with the expression 
of NAPSB (Fig. 3C). As for TME immune cell infiltration, 
almost all immune cells were significantly enriched in the 
NAPSB-high group (Fig. 3D). Consistently, the infiltration 
levels of CD8 + T cells, CD4 + T cells, nature killing (NK) 
cells, B cells, DCs and macrophages were almost positively 
correlated with NAPSB in six different algorithms, and the 
CD8 + T cells were the most prominent (Fig. 3E). Based on 
the IHC staining, a significant increase in CD8 (CD8 + T 
cell marker) was observed in NAPSB-high HCC tissues 
of Zhongnan cohort (Fig.  3F). In line with these results, 
NAPSB was positively correlated with the marker genes 
of these six major types of immune cells (Fig. 3G). These 
results suggested NAPSB was associated with an inflamed 
TME. Even further, we observed the NAPSB expression 
positively correlated with the T cell inflamed score (TIS) 
and all genes within this signature (Fig.  3H, I), further 
confirming its role in shaping a hot inflamed TME. These 
findings were all verified in the ICGC cohort, and consist-
ent results were obtained (Additional file 4: Supplementary 
Fig. 2).

Finally, we evaluated the correlation between NAPSB 
and seven steps of cancer-immunity cycle, which concep-
tualized the anti-cancer immune response [39]. Overall, 
in the NAPSB-high group, the activities associated with 
the majority of the steps in the cycle were notably upregu-
lated (Fig. 3J), including the release of cancer cell antigens 
(Step 1), cancer antigen presentation (step 2), priming and 
activation (Step 3), trafficking of immune cells to tumors 
(Step 4) and infiltration of immune cells into tumors (Step 
5). In summary, these data consistently indicated that high 
expression of NAPSB was to transform a non-inflamed 
TME into an immuno-hot and inflamed TME, conse-
quently triggering anti-cancer immune response.

NAPSB highly expressed in hot tumors and may enhance 
immunotherapy response
Unsupervised clustering was conducted to classified HCC 
samples into hot tumors and cold tumors based on the hot 
tumor signature genes (Additional file  1: Supplementary 
Table 14; Fig. 4A–D) [30]. The expression of NAPSB was 
compared between hot and cold tumors, and we found 

that it was overexpressed in hot tumors (Fig. 4E), suggest-
ing that NAPSB could play a role in distinct hot/cold tumor 
states and be associated with therapeutic response to 
immunotherapy. The same methods were used to validate 
the above results in the ICGC cohort (Additional file  5: 
Supplementary Fig. 3A–E).

In addition, NAPSB expression was found to be posi-
tively correlated with BTLA, CTLA-4, IDO1, LAG-3, 
PD-1, PD-L1, TIGIT and TIM-3 expression (Fig.  4F), 
which were well-known predictors of response to immu-
notherapy. Blockade of the interaction between PD1 and 
its ligands PD-L1 is the most important immunotherapy 
currently [40]. The IHC staining showed consistent cor-
relation between NAPSB and PD-L1 expression in the 
Zhongnan cohort (Fig. 4G). Also, the enrichment scores 
of therapeutic signatures that predict clinical response 
were compared in NAPSB subgroups. As exhibited in 
Fig.  4H, J, NAPSB was negatively correlated with the 
enrichment scores of PPARG network, β-catenin signal-
ing pathway, VEGFA and IDH1, all of which were immu-
nosuppressive gene signatures [41–44]. However, in the 
NAPSB-high group, immunotherapy-positive pathways 
such as IFN-γ-signature, APM-signal, EGFR-ligands, 
hypoxia and KDM6B were activated (Fig.  4I) [45–49], 
indicating high NAPSB is beneficial to immune activa-
tion and immunotherapy response. These observations 
were also validated using ICGC samples (Additional 
file 5: Supplementary Fig. 3F–H).

The last but important, the role of the NAPSB in pre-
dicting the immune checkpoint blockade (ICB) response 
was explored in two immunotherapy-related melanoma 
cohorts. In the GSE91061, we found the ICB response 
rates were obviously higher in the NAPSB-high group 
than in the NAPSB-low group (Fig. 4K) and the expres-
sion of NAPSB was significantly high in the response 
group (Fig.  4L). Similar results were observed in the 
GSE78220 cohort (Additional file  5: Supplementary 
Fig.  3I). These evidences reconfirmed that NAPSB may 
be a valuable predictor of immunotherapy response 
across cancers.

NAPSB was associated with increased sensitivity 
to chemotherapy
Using data from GDSC and CTRP, the role of NAPSB 
in chemotherapy sensitivity was analyzed. Intriguingly, 
NAPSB expression was negatively associated with IC50 

(See figure on next page.)
Fig. 2  Enrichment analysis of NAPSB biological function in the TCGA-LIHC cohort. A The heat map shows the top 50 genes positively related to 
NAPSB in HCC. B Volcano plot of DEGs between the NAPSB-high group and the NAPSB-low group. C Venn diagram of co-expressed genes and 
upregulated DEGs. D The top 20 GO terms for the most closely related genes to NAPSB. E The top 20 KEGG terms (sourced from the KEGG pathway 
database: www.​kegg.​jp/​kegg/​kegg1.​html [16]) for the most closely related genes to NAPSB. F GSEA plot shows significant signaling pathways in 
the patients with HCC (The gene sets of “c5.cp.kegg.v7.4.symbols”). G GSVA analysis between NAPSB-high and NAPSB-low expression samples (The 
gene sets of “h.all.v7.4.symbols”)

http://www.kegg.jp/kegg/kegg1.html
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Fig. 2  (See legend on previous page.)
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of most agents in GDSC and CTRP (Fig.  5A and Addi-
tional file  6: Supplementary Fig.  4; Additional file  1: 
Supplementary Table  15), supporting that NAPSB can 
enhance the therapeutic response to chemotherapy. Two 
heat maps (Fig.  5B, C) showed that the IC50 of some 
commonly used drugs for patients with HCC was lower 
in the NAPSB-high group in GDSC and CTRP databases, 
respectively. Results above speculated that high expres-
sion of NAPSB is beneficial to the sensitive response of 
chemotherapy.

Thereafter, by analyzing GSE104580, a HCC cohort of 
TACE, we found the expression of NAPSB was signifi-
cantly higher in the TACE response group (Fig. 5D), and 
the response rates were obviously higher in the NAPSB-
high group than in the NAPSB-low group (Fig. 5E). This 
data further illustrated that high expression of NAPSB 
may be beneficial to chemotherapy response.

Association of NAPSB with cell death of tumor cells
Given that cell death had been reported in recent years to 
play a significant role in tumor therapy [50], we investi-
gated the association between NAPSB and various forms 
of cell death, including pyroptosis, necroptosis, apopto-
sis, autophagy and ferroptosis. As showed in Fig. 6A–C, 
E, NAPSB expression was markedly correlated with 
pyroptosis, apoptosis and necroptosis, but negatively cor-
related with ferroptosis. Autophagy had no correlation 
with NAPSB expression (Fig. 6D). We also validated these 
findings with the ICGC cohort, and consistent results 
were obtained (Fig. 6F, G). Among the above results, the 
correlation between NAPSB and pyroptosis was the most 
significant. Results above inferred that NAPSB may have 
a beneficial effect on immunotherapy and chemotherapy 
responses by promoting PANoptosis in tumor therapy.

Discussion
In this study, the potential biological functions of NAPSB 
have been comprehensively explored for the first time in 
HCC. By analyzing the data from multiple public data-
bases and the Zhongnan cohort, our study obtained 
consistent results as previous research: NAPSB was 

downregulated in HCC [15]. Tan et  al.’s study showed 
NAPSB was upregulated in PDAC and related to 
CD4 + T Cell infiltration [14]. Additionally, upregula-
tion of NAPSB was also found in pre-eclampsia, a sta-
tus of highly inflammatory activity [51]. It was expected 
that NAPSB overexpressed under inflammatory condi-
tions. In line with these results, enrichment analyses in 
this study showed the genes most related to NAPSB were 
enriched in immune cell receptor signaling pathway and 
inflammatory response in our study.

A more important part of this study was to compre-
hensively clarify the immunological role of NAPSB in 
HCC immune microenvironment. MHC molecules 
represent antigen presentation and processing capac-
ity, and chemokines and receptors recruit effector TIICs 
[52, 53], which may upregulate the activities of the can-
cer-immunity cycle subsequently [54]. In our study, 
NAPSB was found to be positively correlated with these 
immunomodulators, suggesting that NAPSB promoted 
immune activation, which was consistent with the results 
of enrichment analyses above. In addition, NAPSB 
expression had a positive correlation with the abundance 
of immune cells. Currently, the prognosis of HCC is 
known to be related to the infiltration and activation of 
immune cells [55, 56], whose presence participates in an 
inflamed TME [57, 58], supporting the observation that 
NAPSB can stimulate the immune response in the TME 
and play an anti-tumor role in HCC, thereby prolonging 
survival. This could also be used to explain the results 
of this study: high expression of NAPSB was associated 
with better prognosis of HCC. Additionally, we observed 
NAPSB was positively related to the TIS, as well as sev-
eral critical steps of the cancer-immunity cycle.

. Since both TIS and cancer-immunity cycle reflect 
the T cell infiltration and anti-cancer immune response 
of human body [29, 39], these results reaffirmed and 
extended the close relationship between NAPSB and an 
immune-hot and inflamed TME.

T-cell infiltration, molecular characteristics of immune 
activation and anti-tumor response are characteristics 
of hot tumors [59, 60], so we speculated NAPSB can 

Fig. 3  High NAPSB was associated with an inflamed TME among patients with HCC from the TCGA cohort. A Expression levels of fifty 
immunomodulators (MHC, immunostimulators, chemokines and receptors) patients with HCC of the NAPSB-high and NAPSB-low groups. B 
Distribution of stromal score, immune score and estimate score calculated using the ESTIMATE algorithm in the NAPSB-high and NAPSB-low 
groups. C Correlation between NAPSB expression and tumor purity using the ESTIMATE algorithm. D Different expression of 28 tumor-associated 
immune cells calculated with the ssGSEA algorithm between NAPSB subgroups. E Correlation between NAPSB expression and the infiltration levels 
of six types of TIICs (CD8 + T cells, CD4 + T cells, NK cells, B cells, dendritic cells and macrophages), which were calculated using six independent 
algorithms. F Representations (left) and quantification of IHC (right) positive areas of CD8 in NAPSB-high and NAPSB-low HCC tissues. G Correlation 
between NAPSB expression and the effector genes of the above immune cells. H, I Correlations between NAPSB and the T cell inflamed score, and 
the individual genes included in the T cell inflamed signature. J The activities of the various steps of the cancer-immunity cycle in the NAPSB-high 
and NAPSB-low groups. ns, no significance; *, p-value < 0.05; **, p-value < 0.01; ***, p-value < 0.001; ****, p-value < 0.0001

(See figure on next page.)
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play a role in distinct hot/cold tumor states based on the 
above results. Here, NAPSB was highly expressed in hot 
tumor samples consistently. Not only that, NAPSB was 
significantly positively correlated with ICB therapeutic 
targets, such as PD-L1, PD-1 and CTLA-4. Better clini-
cal response to ICB is another character of hot tumors 
due to more active immune molecules [61]. Together, 
NAPSB could distinguish between hot and cold tumors, 
and facilitate immunotherapeutic responses. Meanwhile, 
we found that samples in the NAPSB-high group were 
activated in immune-activated pathways, such as IFN-γ 
signature, which had been revealed to contributing to an 
inflamed TME and resulting in better clinical responses 
to immunotherapy. These results not only demonstrated 
that NAPSB can improve the immunotherapy response, 
but also reconfirmed the role of NAPSB in activation of 
immune activity as discussed above.

The main treatments for advanced HCC are still chem-
otherapy and targeted drugs, among which first-line 
drugs include doxorubicin, fluorouracil and sorafenib, 
etc. [2], improving the five-year survival rates of patients 
with HCC [62]. TACE is a treatment for liver cancer often 
applying doxorubicin or cisplatin as intra-arterial injec-
tion agents [63]. In our study, we proved that NAPSB was 
negatively correlated with IC50 of a variety of commonly 
used drugs, but overexpressed in TACE responders as 
expected, strongly inferring high NAPSB expression can 
improve the sensitivity of chemotherapy. NAPSB may 
be utilized as a promising predictive marker for chemo-
therapy since drug resistance is prevalent at present [7, 
64]. Recently, studies have focused on the interactions 
between tumor cell death and sensitivity or resistance of 

anticancer therapy. For instance, Makin et  al. proposed 
that apoptosis was the predominant form of regulated 
cell death, and was responsible for tumor therapies [65]. 
Carina et  al.’s study revealed sorafenib therapy induced 
pyroptosis in MΦ and thereby enhanced the response 
of NK-cell against HCC tumors [66]. Instead, autophagy, 
this cell death form participates in the progression of 
HCC and the resistance of HCC cells to sorafenib [37, 
67]. In our study, we revealed NAPSB was positively cor-
related with PANoptosis, but had no correlation with 
autophagy, suggesting that NAPSB may promote PANop-
tosis to improve the sensitivity of chemotherapy.

Despite these findings, there is existing the limitation 
that the study was primarily carried out using bioinfor-
matics methods. To remedy this deficiency, the main con-
clusions of this study were confirmed by several methods 
and external validation. For instance, differential expres-
sion of NAPSB in HCC and normal tissue has been veri-
fied in multiple cohorts; the association of NAPSB with 
immune infiltration was demonstrated by ssGSEA and 
six other independent algorithms.

Conclusions
In conclusion, our study is the first comprehensive analy-
sis to demonstrate that NAPSB could shape an immuno-
hot and inflamed TME in HCC; NAPSB could be 
considered a predictor of disease-free and progression-
free survival outcomes in patients with HCC; NAPSB 
can also predict the clinical response to ICB and chemo-
therapy. These findings will provide important insights 
for the development of cytokine-based therapy for cancer 
treatment.

(See figure on next page.)
Fig. 4  High NAPSB was correlated with a hot tumor status, and improved the response to immunotherapy. A Consensus clustering cumulative 
distribution function (CDF) for k = 2–9. B Relative change in area under CDF curve for k = 2–9. C Consensus clustering heat map for k = 2 in HCC 
samples. D Heat map plot showed hot tumor signature genes were enriched in hot tumor samples. E NAPSB was significantly overexpressed in hot 
tumors. F The expression of NAPSB was positively correlated with immune checkpoint molecules expression levels. G Representations (left) and 
quantification of IHC (right) positive areas of PD-L1 in NAPSB-high and NAPSB-low HCC tissues. H Correlations between NAPSB and the enrichment 
scores of several therapeutic signatures. I Differences in enrichment scores of IFN-γ-signature, APM-signal, EGFR-ligands and hypoxia between 
NAPSB subgroups. J Differences in enrichment scores of PPARG network, β-catenin signaling pathway, VEGFA and IDH1 between NAPSB subgroups. 
K The proportion of immune response to immunotherapy of NAPSB subgroups in GSE91061. L NAPSB was highly expressed in the CR/PR group in 
GSE91061. CR/PR: Complete and partial response. PD/SD: Progressive and stable disease. ns, no significance; *, p-value < 0.05; **, p-value < 0.01; ***, 
p-value < 0.001; ****, p-value < 0.0001
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Fig. 5  The role of NAPSB in chemotherapy response. A Bar plot exhibiting the Spearman’s correlation between NAPSB and the IC50 of drugs (the 
top 50 drugs in order of p-value from smallest to largest) in GDSC. B Correlations between NAPSB and the IC50 of the frequently used drugs for 
advanced patients with HCC in CTRP, including doxorubicin, fluorouracil, carboplatin, gemcitabine, lenvatinib, sorafenib, sabozantinib, axitinib, 
sunitinib, etoposide and linifanib. C Correlations between NAPSB and the IC50 of the commonly used drugs for advanced patients with HCC in 
GDSC, including fluorouracil, gemcitabine, cisplatin, sorafenib, erlotinib and grfitinib. D NAPSB was highly expressed in CR/PR group of transarterial 
chemoembolization (TACE) therapy in GSE104580. E The proportion of response to TACE of NAPSB subgroups in GSE104580. ns, no significance; *, 
p-value < 0.05; **, p-value < 0.01; ***, p-value < 0.001; ****, p-value < 0.0001
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Fig. 6  Correlations between NAPSB and the enrichment scores of several cell death signatures in the TCGA A–E and ICGC F and G cohorts. NAPSB 
expression was positively correlated with pyroptosis (A; R = 0.72, P < 0.001), apoptosis necroptosis (B; R = 0.21, P < 0.001) and necroptosis (C; R = 0.53, 
P < 0.001). D Autophagy had no correlation with NAPSB expression (R = − 0.017, P = 0.795). E NAPSB was negatively correlated with ferroptosis 
(R = − 0.24, P < 0.001). F Correlations between NAPSB and several forms of cell death in the ICGC cohort. G The enrichment scores of pyroptosis, 
necroptosis and apoptosis in the NAPSB-high groups were markedly higher than the NAPSB-low groups. However, ferroptosis score was lower in 
the NAPSB-high group than in the NAPSB-low group, and autophagy score had no significant difference between NAPSB subgroups. Spearman 
coefficients were used to explore the correlations. ns, no significance; *, p-value < 0.05; **, p-value < 0.01; ***, p-value < 0.001; ****, p-value < 0.0001
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