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ABSTRACT
We study the glycosylation processes that convert initially toxic substrates to nu-
tritionally valuable metabolites in the flavonoid biosynthesis pathway of tomato
(Solanum lycopersicum) seedlings. To estimate the reaction rates we use ordinary
differential equations (ODEs) to model the enzyme kinetics. A popular choice is to
use a system of linear ODEs with constant kinetic rates or to use Michaelis–Menten
kinetics. In reality, the catalytic rates, which are affected among other factors by kinetic
constants and enzyme concentrations, are changing in time and with the approaches
just mentioned, this phenomenon cannot be described. Another problem is that, in
general these kinetic coefficients are not always identifiable. A third problem is that,
it is not precisely known which enzymes are catalyzing the observed glycosylation
processes. With several hundred potential gene candidates, experimental validation
using purified target proteins is expensive and time consuming. We aim at reducing
this task via mathematical modeling to allow for the pre-selection of most potential
gene candidates. In this article we discuss a fast and relatively simple approach to
estimate time varying kinetic rates, with three favorable properties: firstly, it allows
for identifiable estimation of time dependent parameters in networks with a tree-
like structure. Secondly, it is relatively fast compared to usually applied methods that
estimate the model derivatives together with the network parameters. Thirdly, by
combining the metabolite concentration data with a corresponding microarray data, it
can help in detecting the genes related to the enzymatic processes. By comparing the
estimated time dynamics of the catalytic rates with time series gene expression data we
may assess potential candidate genes behind enzymatic reactions. As an example, we
show how to apply this method to select prominent glycosyltransferase genes in tomato
seedlings.
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INTRODUCTION
In this paper we study metabolic network inference from given biological time-series data.
The two main ingredients in general metabolic pathway inference are the reconstruction
of the network topology and the estimation of the parameters involved. When the network
is large and the concentrations of intermediates are unknown, or when there are no
time series data available, one may still study the fluxes by setting up stoichiometric
models for flux balance analysis (Varma & Palsson, 1995; Stelling et al., 2002; Orth, Thiele
& Palsson, 2010). If time-series data of metabolites are available ordinary differential
equations (ODEs) can often provide a suitable model (Chen, Niepel & Sorger, 2010;
Chou & Voit, 2009; Srinath & Gunawan, 2010; Hatzimanikatis, Floudas & Bailey, 1996).
If the enzymes involved are also known, it is customary to use enzyme-kinetic models
(Steuer & Junker, 2009; Schallau & Junker, 2010; Liebermeister & Klipp, 2006) with
Michaelis–Menten kinetics, although the reliability of this approach has been questioned,
especially when applied to in vivomeasurements (Savageau, 1995; Hill, Waight & Bardsley,
1977). When (part of) the catalytic rates are not known, linear ODEs (Astola et al., 2011)
and general biochemical systems theory (Voit, Marino & Lall, 2005) can be used. When the
network topology is completely unknown, the situation ismore complicated, although some
recent studies attempt to tackle this problem using methods based on genetic algorithms
(Schmidt et al., 2011). Still, the uniqueness of the reconstructed network is often compro-
mised and the identifiability of the system remains an issue that needs to be investigated
(Craciun & Pantea, 2008; Srinath & Gunawan, 2010). Model identifiability is an essential
prerequisite in making any conclusions from (by default limited number of) observations.
The foremost categories of identifiability are the structural and the practical identifiability,
the former related to the symbolic expression of the model itself and the latter related to
the amount and nature of the available data. We will test our models and data on both
conditions.

Here we discuss a special and relevant class of network topologies, which are so-called
tree networks and show that in such networks linear models yield parameter estimates that
are unique in the structural sense. As the name suggests, a tree graph looks like a branching
tree where the edges (arrows) are directed so that the nutrients flow from root to leaf
(cf. Fig. 1).

As in real trees the branches do not form cycles. By a cycle we mean any closed chain of
edges regardless of the directions of the edges. In many biological pathways, such as in the
flavone and the flavonol biosynthesis (Kanehisa Laboratories, 2010), a tree graph captures
the network of the enzymatic reactions. Indeed metabolic networks with tree structures
constitute a relevant class including, for example, large parts of the biosynthetic pathways
of, e.g., γ -carotene, limonene, ansamycin and puromycin etc. (Kanehisa Laboratories,
2010).

Although this paper focuses on the mathematical modeling of tree structured metabolic
networks in general, the original motivation rose from biological questions concerning the
specific networks in flavonol biosynthesis. Therefore we have also included a brief Material
and Methods section to refer to the original data generated prior to this study. The paper
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Figure 1 (A) A graph with a tree structure. (B) This graph contains a cycle and is thus not a tree graph.
The catalytic rate corresponding to reaction between node i and j is indicated as kij . Here the node X0 rep-
resents a boundary node connecting this network to the surrounding larger network.

is organized as follows: in ‘Parameter estimation in general networks’ to set the stage we
review our earlier work in modeling metabolic pathways using time-invariant systems of
linear differential equations and discuss the particular properties of tree-graph networks.
In ‘Discussion’ we consider the essential problem of model identifiability and show that
our candidate networks satisfy the criteria for structural and practical identifiability. In
‘Time varying kinetic rates’ we propose a novel application for our time-variant estimation
scheme by showing how it can be employed in finding the most likely catalysts from a large
set of enzymes.

MATERIALS AND METHODS
Throughout this article we use as a model example data the time series of the
concentrations of the metabolites involved in a putative quercetin glycosylation pathway
(PlantCyc, 2016). The data explored and modelled in this article originates from the
research by Gomez Roldan et al. (2014), where flavonol pathway related metabolites were
studied in tomato seedlings. The metabolites were measured from roots, hypocotyls, and
cotyledons on different days and under different conditions. The time series of metabolite
concentration data that we used in the mathematical models were statistically corrected
for fixed and random effects with a standard mixed model pre-processing resulting in
the so-called best linear unbiased predictions (BLUP) and provided as Supplementary
Data. (In SAS this can be done with the command: Proc Mixed.) The original metabolite
concentration time series and the corresponding enzymatic assays are included in the
Supplementary Data. The supplementary data also contains Mathematica notebooks to
estimate the kinetic rates from data and to do sensitivity analysis of the reconstructed
model. In this section we further discuss the theoretical analysis and how we implement
the practical parameter estimation on metabolic networks.
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Parameter estimation in general networks
We first consider the parameter estimation problem in general linear time-invariant
ordinary differential equation (LTI-ODE) systems. For convenience, we briefly sketch
the approach when the catalytic rates are constants over time as in our previous work
(Astola et al., 2011).

We recall that any network can be represented as a graph, where nodes are connected
by edges when there is some interaction between these nodes. In a metabolic network a
node represents a substrate or a product, and a directed edge from node i to node j means
that i can be converted to j by enzymatic activity. To an edge from node i to j, we assign
a weight, i.e., the catalytic rate kij ≥ 0, which represents the rate of product formation. In
parameter inference one estimates the kij from data.

Denoting the concentration of substrate i at time t as Xi(t ), a general time-invariant
linear ODEmodel with a constant nonhomogeneous term, satisfying themass conservation
law, can be written as

Ẋi(t )=−
∑
j 6=i

kijXi(t )+
∑
j 6=i

kjiXj(t )+bi, (1)

for i= 1,...,n, with

bi=

{
constant if i= 1
0 otherwise.

(2)

The first summation in (1) stands for the edges leaving Xi, the second for the incoming
edges and bi for the possible in or outflow to the system. To simplify the notation, we
introduce a matrix A with components given by
Aij = kji, i 6= j
Aii=−

∑
j 6=i

kij . (3)

Then, (1) becomes

Ẋi(t )=
n∑

j=1

AijXj(t )+bi,i= 1,...,n. (4)

Equation (4) can be rewritten in a compact matrix form as

Ẋ(t )=


Ẋ1(t )
Ẋ2(t )
...

Ẋn(t )

=


−

∑
j 6=1

k1j kn1 b1

k12 kn2 0
...

...

k1n −

∑
j 6=n

knj 0




X1(t )
X2(t )
...

Xn(t )
1

 = Ã · X̃(t ), (5)

where X̃(t ) is obtained from X(t ) by appending an extra 1 and matrix Ã is obtained from
A by extending it with an extra column containing the constant b1.
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To reconstruct a metabolic network from time-series measurements, we have to estimate
the reaction rates kij , i.e., the weights of the edges in the network and the flow terms bi. In
view of (5), it is sufficient to estimate the (n+1)×(n+1) matrix Ã. We denote the data, i.e.,
measured concentrations of substrate i at time points tj, j = 1,...,m, as an (n×m) matrix
X. Estimates of the derivatives of the data curves we will store in a matrix Ẋ. To compute
these estimates we may proceed in two ways. First, construct two n×m data matricesX0,X1

as follows

X0=


X1,m−1 X1,m−2 ... X1,0

X2,m−1 X2,m−2 ... X2,0
... ...

...

Xn,m−1 Xn,m−2 ... Xn,0

, X1=


X1,m X1,m−1 ... X1,1

X2,m X2,m−1 ... X2,1
... ...

...

Xn,m Xn,m−1 ... Xn,1

, (6)

where m is the number of measurements. The matrix

Ẋ≡
1
1t
(X1−X0), (7)

could then be used as an approximation for Ẋ . For simplicity we assume the time grid to
be equidistant with time step 1t . If this is not the case, the necessary modifications are
easily implemented.

Secondly, we may use an alternative and often better approach to obtain approximations
for Ẋi by fitting splines to the time series data Xi (Zhan & Yeung, 2011). To obtain curves
that interpolate the data faithfully, we require that the distances between the curves and
the measurements are minimal and that at the same time the curves are smooth. To
achieve this we fit P-splines, which are B-splines with a penalization for non-smoothness
(Eilers & Marx, 1996). From these splines, we evaluate the derivative estimates at time
points tj . These estimates are then used as entries in the matrix Ẋ. Having at hand an
estimate for matrix Ẋ, the problem of network inference comes down to finding the matrix
Ã from the equation

Ẋ= ÃX̃, (8)

in which Ẋ is known and X̃ is obtained from the data matrix X by extending this with an
extra row of ones. However, solving Ã directly from (8) often results in over-fitting, since
all possible edges are included in the modeled network. Another serious shortcoming of
such a matrix (pseudo-) inversion approach is the fact that we cannot control the positivity
of the reaction rates. Although in Schmidt, Cho & Jacobsen (2005) negative coefficients
were interpreted as inhibition of the compounds, in many biological pathways, negative
coefficients are not permitted. Thus we take a more general approach in which one can
exclude all edges that are biologically not acceptable, and in which one can constrain the
reaction rates to be positive, without substantially compromising computation time.

To this end, we reformulate the equation as a minimization problem:

argmin
Ã

(
‖ Ẋ− ÃX̃ ‖

)
. (9)
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The matrix norm used here is the Frobenius norm:

‖Ã‖=

√√√√ n∑
i=1

m∑
j=1

Ã2
ij . (10)

This alternative formulation allows inclusion of expert knowledge in a simple way. We put
Ãij = 0, when an edge from node i to node j cannot exist. Nearly all mathematical software
packages (Mathematica, Matlab, Maple, etc.) can numerically find the minimizer Ã (and
thus the reaction rates kij and the flow term b1) with the constraint that kij ≥ 0.

Parameter estimation in tree networks
As described in the introduction, tree networks are networks, whose graphs resemble
trees in that they branch away from the root and the directions of the edges always point
from the root towards the leaves. In Fig. 1 we presented, using an example, the difference
between a tree and a non-tree graph. In a kinetic reaction system with a tree network, the
parameters can be uniquely estimated even when they are time dependent. We could write
this down in general. However, the proof is based on one central idea. We feel that the
reader gains more insight if we simply show this idea through an example. To that end we
use as example the network in the left hand side of Fig. 1. The extension to the general is
straightforward.

For the network on Fig. 1A, we have the following kinetic mass balance model:



Ẋ1
Ẋ2
Ẋ3
Ẋ4
Ẋ5
Ẋ6
Ẋ7


=



−(k1,2+k1,3) 0 0 0 0 0 0 0 b1
k1,2 −(k2,4+k2,5) 0 0 0 0 0 0 0
k1,3 0 −(k3,6+k3,7) 0 0 0 0 0 0
0 k2,4 0 0 0 0 0 0 0
0 k2,5 0 0 0 0 0 0 0
0 0 k3,6 0 0 0 0 0 0
0 0 k3,7 0 0 0 0 0 0





X1
X2
X3
X4
X5
X6
X7
1


, (11)

where the constant b1 represents the influx into the system and the ki,j are the catalytic
rates. Note that there are as many unknown parameters (ki,j,b1) as there are measured
variables Xi(tj). Therefore, as can be directly verified, we can rewrite the previous matrix
equation by exchanging the Xi and ki,j as follows:

Ẋ1

Ẋ2

Ẋ3

Ẋ4

Ẋ5

Ẋ6

Ẋ7


=



1 −X1 −X1 0 0 0 0
0 X1 0 −X2 −X2 0 0
0 0 X1 0 0 −X3 −X3

0 0 0 X2 0 0 0
0 0 0 0 X2 0 0
0 0 0 0 0 X3 0
0 0 0 0 0 0 X3


︸ ︷︷ ︸

matrix B



b1
k1,2
k1,3
k2,4
k2,5
k3,6
k3,7


. (12)

We immediately see that B is an upper triangular matrix since the entries below the
diagonal are zero. This implies that the determinant of the matrix B in (12) is the product
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Figure 2 In this figure we have used three different models to reconstruct a flavonol concentration
data indicated as dots. The compounds shown here belong to a pathway with putative structure as on
the (A) in Fig. 1A. The colors of the reconstructed curves correspond to those of the dots. (A) A recon-
struction with a tree network and constant catalytic rates. (B) A reconstruction with the full network (all
nodes are connected to each other) and constant catalytic rates. Note that the fit is still poor, although the
number of parameters is much higher than in the case on the left. (C) A reconstruction with the same tree
structure as in (A), but with time dependent catalytic rates.

of the entries on the diagonal: X 2
1 ·X

2
2 ·X

2
3 , and thus unequal to 0 since Xi 6= 0, ∀i= 1,...,n.

So, B is invertible and the system of equations has the unique solution.

b1
k1,2
k1,3
k2,4
k2,5
k3,6
k3,7


=



X−10 X−10 X−10 X−10 X−10 X−10 X−10
0 X−11 0 X−11 X−11 0 0
0 0 X−11 0 0 X−11 X−11
0 0 0 X−12 0 0 0
0 0 0 0 X−12 0 0
0 0 0 0 0 X−13 0
0 0 0 0 0 0 X−13


︸ ︷︷ ︸

matrix B−1



Ẋ1

Ẋ2

Ẋ3

Ẋ4

Ẋ5

Ẋ6

Ẋ7


. (13)

Time varying kinetic rates
In earlier work we developed a fast method to reconstruct metabolic networks (Astola et
al., 2011). The idea in this approach was to substitute the measurements directly into the
model equations and not only in the objective function. This approach had as a limitation
that all parameters were assumed to be constant in time. Here we extend our previous
approach by allowing the catalytic rates to be time dependent, to better reflect the real
situation, since in practice the enzyme concentrations are fluctuating in time. This has also
immediately resulted in reconstructions that better fit the observed data as can be seen in
Fig. 2. While the standard practice in enzyme kinetics is to either use constant catalytic
rates in mass balance equation or to model product formation through a Hill function
(Goutelle et al., 2008) such as in the Michaelis–Menten equation (Savageau, 1995), none of
these take into account the fact that the enzyme concentration is also changing in time.
Since we also want to study the relation of gene expression and enzyme concentration in
time, we need to capture their dynamics.

As the catalytic rate is now modeled as a function in time, and not as a constant, it is no
longer possible to infer this with the standard procedure of solving for those parameters
that fit the ordinary differential equations to data in the sense of maximum likelihood.
We cannot clearly separate the substrate/product, enzyme concentrations and noise, since
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Figure 3 A schematic view of the inference procedure. After fitting splines to data, the parameters can
be estimated for any given network of choice. Next, the optimal network can be selected by comparing the
reconstruction result with each candidate network model to the original measurements.

we have no measurements of the enzyme concentrations. To solve them, we would have
to impose a model on them, which we don’t have a priori. A reasonable approach in this
situation is to first estimate a model for the metabolite concentrations for which we have
several measurements. By fixing the concentrations first using spline approximations, we
may then estimate the trends in the enzyme concentrations. This method assumes that the
solutions are rather smooth. If this is not the case and the sampling frequency is low, the
derivatives obtained by fitting splines can introduce errors that distort the reconstruction.
The inference method proposed here is by no means restricted to tree networks, but in
case the network has a tree structure, the parameters can be estimated in an unambiguous
way. We summarize the general work flow for the proposed parameter inference in the
schematic diagram in Fig. 3.
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Time dependent parameter estimation
In this section we present three different schemes to estimate the kij(t ) in model (4).
In (9) we used the data at all time points simultaneously to estimate the time independent
parameters. However, a remarkable feature of tree structured networks is that the data at
one time point is already enough to calculate unique estimates for the parameter values at
that particular time point. This is immediately clear from (13): as soon as we have estimates
for the time derivatives Ẋ(tk) available, we may calculate estimates for the kij(tk).

Scheme 1. To estimate the derivatives at some time point one still needs the data of
neighboring time points. So, the first step in this scheme is to fit, e.g., P-splines to the
data time series (O’Sullivan, 1986; Eilers & Marx, 1996). From these splines we calculate
estimates for the time derivatives Ẋi(tk). Then by substituting these estimates as well as
the measurements into Eq. (4), we are left with a set of linear equations to solve kij(tk)
and b1 at all times tk . Finally, for smooth and continuous catalytic rates, one may fit,
e.g., a second order polynomial through these estimates.

Scheme 2. An alternative approach in which the number of parameters is smaller than
in scheme 1, is to assume that the functions kij(t ) can be adequately represented as
polynomials in time of some order. In practice order 2 is often sufficient. With this
choice we have then:

kij(t )=αij t 2+βij t+γij . (14)

This implies that per kij we have 3 parameters to be estimated using the whole time
series data. By substituting (14) into matrix Ã in (9) we then obtain estimates for αij , βij
and γij , and thus for kij(t ).

Scheme 3. As in the previous scheme, we assume (14).We construct an objective function
like the following:∑
k

‖X(tk)−X(tk) ‖, (15)

which is the sum of the distances between X(tk) and the measurements. We look for a
matrix Ã, such that the solutions Xi(t ) to (4) minimize this objective function. Using
suitable optimization algorithm we simultaneously estimate Xi, kij , and b1.

To compare the fit, accuracy and speed of these three schemes we applied them using
as test networks random tree networks that have equal numbers of nodes and edges as the
network on Fig. 1A.

In these networks, we simulated time series data with time varying catalytic rates. To
generate artificial data, we assigned random values to αij,βij and γij in a range, such that
the resulting solutions have approximately the same range as the metabolite concentration
data for quercetin glycosides measured in tomato seedlings (cf. Fig. 2). To assess the
reconstruction power of the three schemes, we also tested them on networks that are not
trees. The corresponding data generation process is the same but the network models
contain cycles. In the third set of simulations we added ±10% uniformly distributed noise
to tree structured network data.
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Parameter inference as a mean to select active genes
In addition, as a potentially powerful application, we show how we may infer the gene
candidates likely to be involved in the enzymatic reactions. This can be done by comparing
estimated time dependent catalytic rates with simultaneously measured gene expression
data. If, according to the model, the formation of a metabolite necessitates higher/lower
enzyme concentration, this should be also observable in the expression level of the gene
that codes for this enzyme. Using this heuristic, we were able to select from a large set
of potential genes the most likely candidate genes for further experimental validation of
their functioning in particular reactions. In view of this application, small inaccuracies in
parameters are not detrimental, since here we are mainly interested the dynamic trends of
the catalytic rates instead of their precise numeric values.

As an example, we take the quercetin glycosylation pathway in cotyledons, occurring
during the development of tomato seedlings (Koes, Quattrocchio & Mol, 1994). Quercetin
glycosides are a subset of flavonoids, which are plant secondary metabolites naturally
produced by plants. Flavonoids are being intensively studied for their proposed beneficial
effects on prevention of chronic diseases (Bovy, Schijlen & Hall, 2007; Rein et al., 2006;
Moon, Wang & Morris, 2006).

We have measured the concentrations of several quercetin derivative compounds
accumulating in cotyledon- and hypocotyl tissues. We have daily measurements from day
5 after sowing up to day 9. The same sample used for the metabolite analysis with liquid
chromatography mass spectrometry were used for gene expression analysis. The expression
levels of genes, putatively involved in the glycosylation of quercetin, were quantified using
microarray analysis. Glycosyltransferases (GTs) are members of the multigene superfamily
in plants that can transfer single or multiple sugars to various plant molecules, resulting
in the glycosylation of these compounds (Wang, 2009). To date, it is not known exactly
which GTs catalyze each glycosylation reaction. With more than 200 GT candidates an
experimental validation of every single GT is costly. Therefore we wanted to make a
pre-selection of the potentially strongest gene candidates, using mathematical modeling
and simulations. We use the heuristics that if the kinetic ODE model describes the system
of enzymatic reactions reasonably well, the estimated catalytic rates should reflect the real
enzymatic activity. This in turn should correlate with the expression trends of the GTs
observed using the time series microarray analysis.

Our procedure for the GT inference is as follows:
1. Given the time series metabolite concentration data, estimate the time dependent

parameters using all biologically relevant networks. Select the network that gives the
best fit to measurements with respect to residual or goodness of fit etc. Save the
estimated catalytic rates corresponding to the best network as reference.

2. Compute correlations between the time series of expression levels of each GT and the
previously saved series of catalytic rates.

3. Select those GTs whose dynamics correlate best with catalytic dynamics for further
experimental validation.
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Figure 4 We have compared three different reconstruction schemes in 100 simulations, when the underlying network has a tree structure (A–
C), with non tree structures (D–F), and with 10% noise added to data (G–I). In each sub-figure the box plots of simulation results are plotted. (A,
D, G) the average point-wise errors in the estimated concentrations. (B, E, H) the average absolute differences in the recovered parameters (catalytic
rates) vs. the parameters used to simulate the data. (C) the computation times in seconds. In all figures, the logarithmic scale is used. In terms of
network inference, schemes 1 & 2 give in general lower errors.

RESULTS
Comparison of parameter inference schemes
As can be seen from Figs. 4A, 4D and 4G, concerning the fitting errors, all schemes give
similar results and their box-plots have some overlap. In principle they are solving the
same optimization problem, only scheme 1 first solves the point wise rate values and then
fits a polynomial, whereas scheme 2 searches for a polynomial-valued rates that fit to the
whole series of data and scheme 3 tries simultaneously estimate the parameters as well
as the derivatives. We measured the accuracy of the parameter estimation by computing
the Frobenius norm (10) of the difference between the original timevariant kinetic rates
used in simulation and the reconstructed rates. Besides the actual estimation accuracy, also
computation times are relevant. In terms of computation time, scheme 2 is the fastest and
scheme 3 is slowest, although the differences are not large. Notice that the comparisons
in Fig. 4 were done in a setting where equal parameter constraints (kij > 0) were given
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to the solvers and the parameters were estimated using constrained non-linear global
optimization (NMinimize in Mathematica) choosing for the fast Nelder–Mead algorithm
(with option ‘‘PostProcess’’→ False).

This result is more or less to be expected, since when the data is reasonably accurate,
it does not always make sense to re-estimate the data by using it as an unknown variable
in the equations of the system. Rather, it may pay off to substitute the data directly into
the equations reducing the number of unknown elements. Also it is logical that schemes
1 and 2 perform less well on non-tree graph networks, since the assumption on unique
point-wise estimability is not valid anymore. Since our method is based on initial fitting of
splines, the major sensitivity is indeed with respect to data. This was also confirmed by the
sensitivity analysis we conducted.

Our network models, although relatively small, belong to the general group of the so-
called sloppy biochemical models (Gutenkunst, 2008), despite of which the parameters still
may be identifiable. For a separate discussion and more background on this subject, please
see ‘Discussion’. The range of eigenvalues of the Hessian of the residual (between predicted
and measured values) varies from 10−4 to 105. For the sensitivity analysis numerical
derivatives need to be computed. Since we are considering time varying parameters, we
have taken time-averages of point-wise derivatives. Eigenvectors corresponding to very
small eigenvalues, implying sloppiness in sensitivity, all point towards those parameters
that are associated with network nodes where the measured metabolite concentrations are
very low. This is logical since the parameters associated with concentration values close to
zero have little effect on the residual, because our objective function does not contain the
standard deviation term in the denominator. By this choice we explicitly wanted to avoid
that those measurements that are close to noise level shall have equal weight with the more
abundant ones.

Enzyme inference from microarray data
In Fig. 5we illustrate the results of the analysis as described in ‘Parameter inference as amean
to select active genes’. These are the expression levels of best matching six GTs together with
the estimated catalytic rates for the reactions that corresponds to the conversions from node
Xi to Xj exactly as in Fig. 1A. We have standardized, i.e., subtracted the mean and divided
by standard deviation both predicted and measured expressions for visual comparison. As
can be seen from Fig. 5, the deviation of the expression levels between samples can vary
from gene to gene. One could also weight the correlation according to this variation so that
more precise observations are favored. For accurate reconstruction of both the kinetic rates
as well as the selection of appropriate genes, a time series with more data points is desired.
What exactly the minimal sample number and sampling method should be depends on
the data and the system model, but a rule of thumb from experienced modelers would be a
minimum of 15 data points. To test experimentally whether the inferred genes are actually
related to the enzymes that glycosylate the flavonols, a set of selected genes are currently
being cloned.

As a computational validation of the selection procedure, we tested whether substituting
the (scaled) expression levels of the selected genes into the model will result in a decreased
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Figure 5 The mean expression levels of different glucosyl transferase (GT) candidate genes and the es-
timated catalytic rates for reactions in a putative network.Here the best matching gene expression pro-
files are retrieved from the data.

residual (better likelihood of observing the measurements). The reason we want to do
this post-analysis is two-fold. First of all, our GT candidates are ranked according to
their correlation with the predicted enzymatic trends, but it may happen that several
candidates have almost equal correlation coefficients. This makes it difficult to distinguish
between the candidates, especially because the initial GT-population is already a result
of an ontology-based selection. Another point is that the selection of the most likely
GT’s is based on individual matchings with single dynamic parameters whose magnitudes
are unknown. It is not absolutely clear, say, whether the combination of the very best
candidates will always give better results than when, for example, one candidate is actually
the second best one (in terms of correlation). In each network combination, at most seven
GTs are considered, but the number of all possible combinations is still very high. Also the
expression levels need to be scaled to match the metabolic model.

To ensure a rich set of gene combinations, we ran a Markov Chain Monte Carlo-
algorithm (MCMC) (Calvetti & Somersalo, 2007). To address the question of whether the
differences in correlations are significant enough, we first ordered the genes into a sequence
according to their correlation with the predicted enzyme concentration levels and took two
sets of genes according to their order number in the sequence: 1,2,...,10 and 11,12,...,20.
We tested whether the residuals, obtained after 200 iterations of 1,000 samples withMCMC
algorithm using the data of these two sets, have equal means and variances. For the mean
test we obtained a P-value less than 0.00001 and for the variance test a P-value of less
than 0.006. We may conclude that in the context of a dynamic kinetic reaction model,
those genes with expression levels highly correlating to the predicted enzyme dynamics,
are significantly more likely to be responsible for the observations.

DISCUSSION
In this section we discuss the results in terms of identifiability which is a major issue in
parameter inference. A parameter estimation method may always be able to find some
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Figure 6 All biologically feasible networks of the quercetin glycosylation pathway.

estimates, but this makes sense only if it is clear that it is possible to estimate the parameters
from the data, i.e., they are structurally and practically identifiable.

Structural identifiability
A general problem in parameter estimation is that it is difficult and sometimes even
impossible to be sure that the estimated parameters are unique. If the model is structurally
unidentifiable, there is an infinite number of parameter sets that give equal results. This
is a substantial challenge, especially when the network structure is not known, since an
overly complex network can result in over-fitting. This problem is not present in any of the
(biologically) potential networks as sketched in Fig. 6, since as tree graphs these all turn
out to be locally structurally identifiable as they can be embedded in an upper triangular
matrix as discussed in the preceding section.

Practical identifiability
Structural identifiability does not imply practical identifiability and therefore we have
studied the practical identifiability of the parameters in our system by means of profile
likelihood (Raue et al., 2009). We learned that all the kinetic parameters connecting
substrates and products with concentrations above detection limit show also practical
identifiability (see Supplementary Data). Another observation is that if we allow a product
to decay without constraints, the practical identifiability as well as the tree structure of the
graph is lost.

CONCLUSIONS
In this article, we consider the time dependence and unique estimability of kinetic rates
in metabolic networks. Firstly, we show that when the underlying network has a structure
of a tree graph, these rates can be unambiguously estimated. Secondly we propose a
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fast approach for the estimation of time dependent kinetic rates and demonstrate its
performance on simulated data. Finally we also propose an application where we utilize the
estimation method to detect the genes that are potentially involved in particular enzymatic
reactions using microarray data.
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