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Abstract

Like urban heat islands (UHI), human-induced land degradation (HLD) is a phenomenon attributed to human activities, but
this phenomenon occurs in non-urban areas. Although a large body of work has demonstrated that land-cover change
influences local climate systems, little work has been done on separating the impact of HLD from naturally-occurring
fluctuations in very high-altitude areas. We developed an innovative NDVI-difference method in order to evaluate HLD
effects upon the climate system in the central Tibet Plateau. The results show that the minimum temperature increased at a
significantly faster pace than the maximum temperature in the growing season at HLD meteorological stations, but this was
reversed at stations with natural forces only. Further analysis revealed that abrupt changes of minimum temperature
occurred five years earlier and amplitudes of these changes were 1.4 times larger than at stations with natural forces only.
Therefore, our results complement other evidence that points to the fact that local effects from UHI contribute to climatic
asymmetry observed between minimum and maximum temperature trends. Accordingly, we stress the need for
consideration of non-urban factors from anthropogenic activities, such as human-induced land degradation, in
understanding these asymmetric diurnal changes.
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Introduction

Human activities, such as burning fossil fuels, releasing

chemicals into the atmosphere from industrial activities, reducing

the amount of forest cover, and rapid expansion of farming, are

changing the balance of the climate system [1–7]. A prominent

example is that that the rise of the minimum temperature has

occurred at a higher rate than the rise of the maximum

temperature since 1950, resulting in a broad decline in the diurnal

temperature range (DTR) [8–10]. A large body of work has

demonstrated that land-cover change provides an additional major

forcing of the climate, through changes in the physical properties

of the land surface [11–14]. Since land degradation is a human-

induced process leading to different amounts and rates of climate

system variability, a pervasive issue in this topic has been how to

separate human-induced climate change from natural climate

fluctuations and henceforth help to quantify human influences on

global warming [15–20,3]. Very high-altitude areas are ideal

environments for monitoring human-induced climate change

because they have low temperature conditions. However, human

influences on the climatic system at high altitudes have a high

degree of complexity and a high degree of uncertainty. Difficulties

in taking direct measurements in very high altitude areas make this

an even more challenging consideration.

Human-induced land degradation (HLD) is a man-made

phenomenon that negatively affects the effective function of land

within an ecosystem, to accept, store and recycle water, energy,

and nutrients [21–23]. Changes in satellite-measured greenness

are a good indicator of land degradation. The normalized different

vegetation index (NDVI), which is a non-linear transformation of

the visible (red) and near-infrared bands from remote sensing, has

been proven to be capable of highlighting the area with

comparatively reduced vegetation activity and thus monitoring

the spatial- pattern and magnitude of land degradation [24–29]. In

this study an innovative NDVI-difference method that utilizes

spatially distributed information of time-series NDVI in the

growing season, with verification of the actual vegetation

conditions, was developed in order to evaluate HLD effects upon

climate in the central Tibet Plateau (TP), where long-term

pressures resulting from growing human populations and higher

numbers of grazing livestock had been putting the actual and/or

future capability of land in danger [30]. The Mann–Kendall (MK)

test was used for detecting temperature trends and abrupt changes

in time series.

Background and Methodology

There are clear suggestions from a number of high-altitude

climate records from this century that the amplitude of temper-

ature changes at high altitudes is greater than the observed global

or hemispheric change; furthermore, a number of lines of evidence

suggest that the warming signal in the tropics during the past few
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Table 1. (A) Temperature and (B) precipitation indicators for climatic regionalization of the Tibetan Plateau (TP), listing the number
of days per year on which average temperature is above 10uC, the average temperature in the hottest month, the aridity index,
and the annual precipitation [40].

(A) Temperature

Type Days above 106C Temperature in hottest month (6C)

Subtropical .180 .18

Plateau temperate 180 to 50 17.9 to 12

Plateau subfrigid ,50 11.9 to 6

Plateau frigid 0 ,6

(B) Precipitation

Type Aridity index Annual precipitation (mm)

Humid ,1.0 .800

Semi-humid 1.0 to 1.5 800 to 500

Semi-arid 1.6 to 5.0 499 to 200

Arid 5.1 to 15.0 199 to 50

Extremely arid .15.0 ,50

doi:10.1371/journal.pone.0081535.t001

Figure 1. Study area. The study area is located in the central Tibet Plateau, with 7 stations in the same climatic zone. Distribution of population is a
reasonable indicator for pressures from human activities. Stations in areas of human-induced land degradation (Group B including Damxung, Maqu,
Nangqian and Nagqu) are close to high-pressure areas, while stations in areas of natural forces only (Group A including Qumarleb, Madoi and
Qingshuihe) are located in the sparsely populated hinterland.
doi:10.1371/journal.pone.0081535.g001
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decades increases with height. The IPCC Second Assessment

Report [31], in its chapter on the impacts of climate change on

mountainous regions [32], has recommended that ‘‘future

research needed to understand and predict effects of climatic

change on mountain regions should represent balance and

coordination between field studies, monitoring, experimental

studies, and modeling.’’

The Tibetan Plateau (TP), with the most prominent and

complex terrain on the globe and an elevation averaging more

than 4000 m above mean sea level [33], is often called the ‘‘Third

Pole’’ because its geographic significance is akin to that of

Antarctica and the Arctic [34]. The TP plays an important role in

global atmospheric circulation through orographic and thermal

forcing mechanisms. The TP, which is considered to be ‘‘the

driver and amplifier of global climate change,’’ is the ‘start-up

region’ for climate change in China, as well as for the world [35].

There is evidence that the degradation of grassland has become

increasingly serious with growing population and livestock in

recent years. Human-induced land degradation has become a

widespread problem in the TP, with its large area and wide-

ranging types of degradation. It was estimated that the total area of

degraded land in the TP was approximately 4.06107 to

6.06107 ha in 1990s [36]. Serious degradation is particularly

found around water sites and the camps where animals gather in

the winter-spring. The causes of land degradation include

inappropriate human activities like overgrazing, an imbalanced

use of grasslands between winter-spring and summer –autumn and

poor management of grasslands.

NDVI-difference method
For global change research the long term Global Inventory

Model and Mapping Studies (GIMMS) NDVI dataset provides a

critical historical perspective on vegetation changes related to

anthropogenic and/or natural causes (http://glcf.umd.edu/data/

gimms/). Tests of GIMMS data against measures of vegetation

and climate have shown that GIMMS data are able to capture

general patterns of vegetation, inter-annual variations of vegeta-

tion, and climate signals [27]. Here we use the bi-monthly Global

Inventory Modeling and Mapping Studies (GIMMS) Satellite

Drift Corrected and NOAA-16 incorporated 8 km NDVI in

mainland China from 1982 to 2006.

To minimize the influence of non-vegetation land-cover, NDVI

values below 0.1, representing snow, inland water bodies, desert

and exposed soil, were removed. Furthermore NDVI was only

calculated in growing season in order to reduce other factors not

related to actual vegetation change. NDVI was sampled for 868

pixel windows centered on each meteorological station involved in

this study. Such a pixel window, with a radius of about 32 km, was

chosen because it is generally accepted that meteorological station

observation data is influenced by mesoscale climate (1 km to

30 km) including proximity and size of vegetation cover types,

urbanized areas and other factors [28,29]. It is assumed that each

station NDVI is comprised of natural components and anthropo-

genic components due to averaging the corresponding 868 pixel

window. For example, interannual changes in climate factors,

especially temperature and precipitation, can profoundly influence

vegetation growth and vegetation cover and are thus related to

changes on NDVI. On the other hand, clearing of forest for

agriculture also influences NDVI. The basic aim is to remove the

climate signal in order to isolate the signal of human activities. We

assume that NDVI in the 128 km radius area (32632 pixel

window) around the station should not be sensitive to the HLD

effect on the station. Hence natural components could be derived

from the 32632 pixel window. Consequently NDVI difference,

which is the 868 pixel window minus the 32632 pixel window,

should be the best indicator available, in which a decline trend

indicates intensity of human activities and occurrence of the HLD

process. In particular, nightlights data from the Defense Meteo-

rological Satellite Program Operational Linescan System (DMSP-

OLS) (NOAA’s National Geophysical Data Center) sensor was

used to separate HLD stations from stations of urban expansion,

which leads to a similar NDVI reduction. Finally HLD stations

were identified by following the steps:

Step 1. NDVI difference values around the station during growing

season was aggregated and averaged for each year. Ordinary Least

Squares (OLS) regression technique based on a linear regression

model (Y = a+bX+e) was then applied on the dataset.

Step 2. Each 1 km grid in the satellite image of the DMSP-OLS

data above the nightlights intensity threshold was classified into

urban and non-urban categories. The decision tree to categorize

the stations was based on analysis of the grid box group within

32 km of each station [15].

Table 3. List of selected stations in the Tibetan Plateau (TP)
included in the analysis, listed with World Meteorological
Organization (WMO) number, station name, latitude,
longitude and elevation.

WMO
number

Station
name North latitude

East
longitude Elevation (m)

55299 Nagqu 31.5 92.1 4507.0

56074 Maqu 34.0 102.1 3471.4

56125 Nangqian 32.2 96.5 3643.7

55493 Damxung 30.5 91.1 4200.0

56021 Qumarleb 34.1 95.8 4175.0

56033 Madoi 34.9 98.2 4272.3

56034 Qingshuihe 33.8 97.1 4415.4

doi:10.1371/journal.pone.0081535.t003

Table 2. The 11 climatic zones of the Tibetan Plateau (shown
in Fig. 1) based on the indicators given in Table 1, and average
annual temperature for each zone for 1961–2005.

Zone Type Temperature (6C)

Temperature Precipitation

1 Plateau temperate Extremely arid 3.62

2 Plateau temperate Semi-arid 3.59

3 Plateau temperate & frigid Arid 0.55

4 Plateau subfrigid Semi-humid 23.60

5 Plateau subfrigid Semi-humid 4.77

6* Plateau subfrigid Semi-humid 20.66

7 Plateau temperate Humid 8.26

8 Plateau subfrigid Humid 0.14

9 Plateau temperate Semi-humid 5.71

10 Plateau temperate Semi-arid 4.64

11 Subtropical Humid 14.56

*Research area.
doi:10.1371/journal.pone.0081535.t002
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Step 3. Only stations with negative trend and no more than

25% urban grid boxes were classified as HLD.

Step 4. Results were validated through the auxiliary data of

Landsat TM satellite image with 30 m spatial resolution from the

United States Geological Survey (http://www.usgs.gov/).

No specific permissions were required for these locations/

activities, and the field studies did not involve endangered or

protected species.

Identification of growing season
A number of methods, including NDVI threshold, lowest NDVI

value from derivative, smoothing algorithms and model fit, have

been devised for determining vegetation phenological stage

[24,37]. In this study the model fit method, which was developed

by Jönsson and Eklundh [37] for analyzing time-series NDVI data,

was selected to indentify the growing season. It implements three

processing methods based on least-squares fits to the upper

envelope of the NDVI data: asymmetric Gaussian (AG), double

logistic (DL) and adaptive Savitzky-Golay filtering (SG). The

benefit of both asymmetric Gaussian and double logistic

approaches is that they are less sensitive to incomplete time-series

data with data gaps. In contrast, whilst adaptive Savitzky-Golay

filtering is sensitive to data gaps, it can capture subtle and rapid

changes in the time-series. Since the GIMMS data have received

even better corrections for noise and artifacts [38,39] our method

starts with SG to fit the time-series data. To smooth data and

suppress disturbances, the SG method uses a filter, and replaces yi

with a linear combination of nearby values in a window:

Xn

j~{n
cjyizj ð1Þ

where yi are each data value, cj are weights, i = 1, …, n. For each

value of yi, the quadratic polynomial f (t) = c1+c2t+c3t2 was fit to

all 2n+1 points in the moving window and the value yi was

replaced with the value of the polynomial at position ti.

The beginning of a season is defined from the SG functions as

the point in time when the value has increased by 10% of the

distance between the left minimum level and the maximum. The

end of the season is defined in a similar way. As such the growing

season is defined as the difference between the beginning and the

end of a season.

Climatic Zones
The complex topography of the TP makes it difficult to analyze

climate change at the scale of the whole region. Therefore, the TP

is divided into different climatic zones in order to identify changes

more clearly and accurately. The method, based on Lin and Wu

[40], uses temperature and precipitation as the basic indicators

(Table 1). The TP is divided into different climatic zones

Figure 2. Historical land degradation. Land degradation can be mapped and observed in physical terms, but can only be explained and
understood when hidden social, political, and economic structures are analyzed [57]. Socioeconomic data from the 200 years from 1800 to 2000 were
collected to explore the reasons for human-induced land degradation. It is clear that growing population and livestock have been putting high
pressure on the study area. The flattening curve of population has changed since the 1950s and increased dramatically since the 1980s. Such growth
is attributed by People’s Republic of China officials to the improved quality of health and lifestyle of the average Tibetan since the beginning of
reforms under the Chinese governance. In contrast, population livestock reached its climax in 1980 and has steadily declined since then, resulting in a
downward trend in livestock per capita. Loss and degradation of grassland due to increasing human population and livestock pressures are the
principal threats to this extremely fragile zone.
doi:10.1371/journal.pone.0081535.g002
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Figure 3. NDVI difference. Time-series NDVIs in 868 (32 km) and 32632 (128 km) pixel windows of the stations are shown at the top. Heavy lines
are the result of smoothing with Savitzky-Golay filtering. Time-series NDVI differences and their trends are shown on the bottom. Zero values of
trends from stations in areas with natural forces only (Group A) indicate that there are almost no differences between 32 km areas and 128 km areas,
since no additional forces influence the vegetation except natural forces. Negative values of trends from stations in HLD areas (Group B) indicate that
NDVI decreases more in the 32 km areas than in the 128 km areas, since pasture degradation from human activities occurred close to these stations.
Note that there are two opposite initial states for NDVI difference: 32632 pixel window above 868 pixel window at Madoi station and 868 pixel
windows above 32632 pixel window at other stations.
doi:10.1371/journal.pone.0081535.g003

Figure 4. Degraded land from high resolution satellite images. We used 32 km windows of Landsat Thematic Mapper (TM) satellite images
with 30 m spatial resolution during two periods of 1982–1994 and 1994–2006 downloaded from U.S. Geological Survey (USGS), which are centered
on each station. Four ranks of degraded land were determined through remote sensing interpretation: slight, moderate, moderate to severe and
severe. The major steps included (1) field survey for interpretation and mapping; (2) image preprocessing, including geometric rectification, image
registration and atmospheric correction; (3) classification using visual interpretation of spectral features and texture types; and (4) final mapping after
validation. It can be clearly seen that land degradation rate is high due to the pressure of human activities at HLD stations. For instance, total
degraded area increased 5.6% in the period of 1994–2006 in Nagqu. The part that increased the most was the rank of severe degradation, about 51%
of total degraded area. This result confirmed the declining trends of NDVI.
doi:10.1371/journal.pone.0081535.g004

Table 4. A comparison of results from NDVI-difference method and RESTREND.

Site Name NDVI-difference method RESTREND

NDVI-difference
trend

Validation from
high resolution
satellite images Result

R-square
statistic slope Result

Nagqu 20.05 ! Human-induced land
degradation

,0.1 N/A N/A

Maqu 20.09 ! Human-induced land
degradation

,0.1 N/A N/A

Nangqian 20.1 ! Human-induced land
degradation

,0.1 N/A N/A

Damxung 20.05 ! Human-induced land
degradation

0.15 20.13 Human-induced land
degradation

Qumarleb zero ! Natural forces only 0.22 0.2 Natural forces only

Madoi zero ! Natural forces only 0.12 0.13 Natural forces only

Qingshuihe 0.01 ! Natural forces only 0.11 0.17 Natural forces only

doi:10.1371/journal.pone.0081535.t004
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according to (1) the number of days per year on which the average

temperature is above 10uC, with average temperature in the

hottest month as an auxiliary indicator, and (2) an aridity index

(Eq. 1), with annual precipitation as an auxiliary indicator:

K~PET=P ð2Þ

where K is the aridity index, PET is potential evapotranspiration

and P is annual precipitation.

Based on the temperature and precipitation indicators, the TP is

divided into 11 climatic zones (Table 2, Fig. 1).

Mann-Kendall test
The Mann-Kendall test is a non-parametric statistical procedure

that is well suited to analyzing trends in data over time [41]. One

advantage of this test is that the data need not conform to any

particular distribution. The second advantage of the test is its low

sensitivity to abrupt breaks due to inhomogeneous time series [42].

As a result, the time series of DTR values at seven sites were

analyzed for monotonous increasing or decreasing trends with the

Mann-Kendall test.

The Mann-Kendall test can be viewed as a nonparametric test for

zero slope of the first-order regression of time-ordered data versus

time. Each data value is compared with all subsequent data values. If

a data value from a later time period is higher than a data value from

an earlier time period, the statistic S is incremented by 1. On the

other hand, if the data value from a later time period is lower than a

data value sampled earlier, S is decremented by 1. The net result of

all such increments and decrements yields the final value of S [43].

The MK test used to be applied by considering the statistic S as [44]:

S~
Xn

i~2

Xi{1

j~1
sgn xi{xj

� �
ð3Þ

where xj is the sequential data values, n is the length of the series and

sgn xi{xj

� �
~{1 if xi{xj

� �
v0; sgn xi{xj

� �
~0 if xi{xj

� �
~0

and sgn xi{xj

� �
~1 if xi{xj

� �
w0.

The standard test statistic Z is computed as follows:

Z~

S{1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR Sð Þ

p � � � if Sw0

0 � � � � � � � � � � � � if S~0

Sz1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VAR Sð Þ

p � � � if Sv0

8>>>>><
>>>>>:

ð4Þ

The presence of a statistically significant trend is evaluated using

the Z value. A positive (negative) value of Z indicates an upward

(downward) trend.

The Sen slope [41] calculation is determined along with the

Mann-Kendall test. Similar to Mann-Kendall test, the advantage of

Sen’s slope estimator is that it is insensitive to outliers or missing

data. Therefore it is more rigorous than the usual regression slopes

and thus provides a realistic measure of the trends in the data series.

Simply speaking, Sen’s slope is the median of all differences

between successive data values. The magnitude of the trend is

computed as [45,46]:

Ti~
xj{xk

j{k
for i~1,2,:::,N ð5Þ

where Ti is the slope of all data pairs, and xj and xk are data values

at times j and k (j.k) correspondingly.

The estimate of the slope of the trend is calculated as:

B~median
xj{xk

j{k

� �
ð6Þ

A positive value of B means an increasing trend whereas a

negative value means a decreasing trend.

The sequential version of the Mann–Kendall test was used to

detect abrupt changes in climate against the long-term trend [47].

The null hypothesis H0 presumes that the sample under

investigation shows no indication of a developing trend. This

rank-based test considers the relations between all terms in the

time series (61, 62, 63,…6n). The following steps are applied in

order to accept or reject the null hypothesis [48]:

Step 1. Definition of the test statistic. The test statistic tj
variables are computed as follows:

tj~
Xj

i
nj ð7Þ

where nj denotes for each element xj (j.k) the number of cases

where xj.xk, with j = 1,2,…..n and k = 1,2,…..j21. The distribu-

tion of tj is asymptotically normal with E(tj) = [j(j21)]/4 and

Var(tj) = [j(j21)(2j+5)]/72.

Step 2. Calculation of the reduced variables. A reduced

variable, called statistic u(t),is calculated for each of the test statistic

variables tj as follows:

u tð Þ~
tj{E tj

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var tj

� �q ð8Þ

Step 3. Determination of the starting of an emerging

trend. Similarly to the calculation of progressive rows of statistic

u(t),the retrograde rows of statistic u’(t) are computed backward

starting from the end of a series. The intersection point of the

progressive and retrograde rows of the statistic u(t) and u’(t)

provides the point in time of the beginning of an emerging trend

within the time series. The null hypothesis H0 should be rejected

when at least one of the reduced variables is greater than a chosen

level of significance of the Gaussian distribution.

Meteorological data
Minimum and maximum temperatures from a total of 7

national meteorological stations for the period from 1 January

1982 to 31 December 2006 were used for this study. The

observational data are derived from the ‘‘Daily Surface Climate

Variables of China’’ catalog issued by the National Meteorological

Figure 5. Growing season and related phenological measures for seven meteorological stations. The diagrams depict upper envelope
Savitzky–Golay filtered data, with time in month steps. Dots represent original NDVI data. The thick solid lines show fitted functions of SG. The start
point is defined as the date of the inflection point of the NDVI curve and end points as the date at which NDVI drops to the same level as the
measured right minimum level. In between these dates, vegetation development stages are defined, covering the entire growing season (shaded
area).
doi:10.1371/journal.pone.0081535.g005
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Information Center of the China Meteorological Administration

(NMIC/CMA). The station locations span from 30.5uN to 34.9uN,

and from 91.1uE to 102.1uE, whilst the altitude of the stations

varies from 3471.4 m above sea level (a.s.l.) to 4507 m a.s.l.

(Table 3).

Quality control (QC) of observational data is an extremely

important factor in evaluating human-induced effects on climate

in the study area. The QC must be undertaken prior to any data

analysis to eliminate erroneous values. For example corrections

must be performed on meteorological observed data if station

metadata (coordinates, elevation, etc) change. In recent years

researchers have paid more attention to atmospheric data

assimilation techniques that could improve QC [49,50].

There were two stages of QC in this study. Firstly, the data were

quality controlled by the provider of NMIC/CMA. They were

checked by Feng et al. [51] for homogeneity and consistency in

five tiers: high–low extreme checking for daily values, internal

consistency checking, temporal outlier checking, spatial outlier

checking and missing data checking. The data were then screened

with the software package C3 extraQC (http://www.c3.urv.cat/

data.html): an expanded version of RClimDex (http://etccdi.

pacificclimate.org/software.shtml, running with R 1.84 or a later

version) http://cccma.seos.uvic.ca/ETCCDMIin order to (1)

identify errors in the minimum and maximum temperature; (2)

search for outliers in the minimum and maximum temperature; (3)

use the generalized data plot to visually inspect the data and (4)

assess data homogeneity.

Results and Analysis

Seven meteorological stations with an average altitude of

around 4000 m in the same climatic zone in the central Tibet

Plateau were classified into two groups: stations in areas of natural

forces only (Group A) and stations in areas of HLD (Group B)

(Fig. 1) (Fig. 2). There is a transition zone between the area that

has a high-pressure exerted from human activities (close to Group

B) and the area with a low-pressure (close to Group A). Although

NDVI differences trends in Group A remained unchanged, those

in Group B showed clear declining trends (Fig. 3). The land

degradation for stations were also visually interpreted and

confirmed through the auxiliary data of Landsat TM satellite

image with 30 m spatial resolution in the two periods of 1982–

1994 and 1994–2006 (Fig. 4). Wessels [52] proposed the use of

RESTREND (residual trend between actual NDVI and predicted

NDVI) to distinguish land degradation from the effects of rainfall

variability in South Africa. We use the RESTREND technique to

validate the NDVI-difference method presented in this study.

NDVI data and precipitation during the growing season of 1982–

2006 are used in this technique and a comparison of results from

NDVI-difference method and RESTREND is shown in Table 4.

It can be seen that same results could be concluded for the 4

stations of Damxung, Qumarleb, Madoi and Qingshuihe, but the

3 stations of Nagqu, Maqu and Nangqian were not available using

RESTREND. The reason may be that RESTREND is less

sensitive to human-induced land degradation in alpine meadow in

very high-altitude area of TP than NDVI-difference method, since

RESTREND developed by Wessels was originally used in semi-

arid Karoo, Southern Africa.

A set of analyses were initially performed to compare the effects

on trends of maximum temperature and minimum temperature

during growing seasons for the period 1982–2006 for the two

groups (Fig. 5). It was found that although maximum temperature

and minimum temperature both increased, the minimum

temperature increased at a significantly faster pace in Group B

T
a

b
le

5
.

T
re

n
d

d
ir

e
ct

io
n

fo
r

th
e

d
iu

rn
al

te
m

p
e

ra
tu

re
ra

n
g

e
(D

T
R

)
u

si
n

g
th

e
M

an
n

–
K

e
n

d
al

l
(M

K
)

te
st

.

G
ro

u
p

S
it

e
N

a
m

e
M

a
x

im
u

m
te

m
p

e
ra

tu
re

M
in

im
u

m
te

m
p

e
ra

tu
re

D
T

R

M
e

a
n

K
e

n
d

a
ll

S
ta

ti
st

ic
(S

)

N
o

rm
a

li
z

e
d

T
e

st
S

ta
ti

st
ic

(Z
)

P
-v

a
lu

e
R

e
su

lt
S

e
n

’s
sl

o
p

e
M

e
a

n
K

e
n

d
a

ll
S

ta
ti

st
ic

(S
)

N
o

rm
a

li
z

e
d

T
e

st
S

ta
ti

st
ic

(Z
)

P
-v

a
lu

e
R

e
su

lt
S

e
n

’s
sl

o
p

e
S

lo
p

e
T

re
n

d
D

ir
e

ct
io

n

B
N

ag
q

u
8

6
1

.9
8

5
0

.0
4

7
T

re
n

d
e

xi
st

s
0

.0
4

0
2

2
6

5
.2

5
5

0
.0

0
0

T
re

n
d

e
xi

st
s

0
.1

0
7

2
0

.0
6

7
D

e
cr

e
as

in
g

M
aq

u
1

6
2

3
.7

6
0

0
.0

0
0

T
re

n
d

e
xi

st
s

0
.0

6
6

1
7

0
3

.9
4

7
0

.0
0

0
T

re
n

d
e

xi
st

s
0

.0
8

4
2

0
.0

1
8

D
e

cr
e

as
in

g

N
an

g
q

ia
n

8
4

1
.9

3
9

0
.0

5
3

T
re

n
d

p
ro

b
ab

ly
e

xi
st

s
0

.0
5

7
1

4
4

3
.3

4
0

0
.0

0
1

T
re

n
d

e
xi

st
s

0
.0

6
5

2
0

.0
0

8
D

e
cr

e
as

in
g

D
am

xu
n

g
9

7
2

.2
4

3
0

.0
2

5
T

re
n

d
e

xi
st

s
0

.0
3

6
1

7
0

3
.9

4
7

0
.0

0
0

T
re

n
d

e
xi

st
s

0
.0

9
1

2
0

.0
5

5
D

e
cr

e
as

in
g

A
Q

u
m

ar
le

b
1

4
0

3
.2

4
6

0
.0

0
1

T
re

n
d

e
xi

st
s

0
.0

8
4

1
2

6
2

.9
1

9
0

.0
0

4
T

re
n

d
e

xi
st

s
0

.0
7

2
0

.0
1

2
In

cr
e

as
in

g

M
ad

o
i

1
7

4
4

.0
4

0
0

.0
0

0
T

re
n

d
e

xi
st

s
0

.1
1

5
1

5
2

3
.5

2
7

0
.0

0
0

T
re

n
d

e
xi

st
s

0
.0

8
8

0
.0

2
7

In
cr

e
as

in
g

Q
in

g
sh

u
ih

e
2

0
4

4
.7

4
1

0
.0

0
0

T
re

n
d

e
xi

st
s

0
.0

8
9

1
1

4
2

.6
3

9
0

.0
0

8
T

re
n

d
e

xi
st

s
0

.0
4

4
0

.0
4

5
In

cr
e

as
in

g

D
T

R
sl

o
p

e
s

ar
e

n
e

g
at

iv
e

fo
r

al
l

H
LD

st
at

io
n

s
(G

ro
u

p
B

),
in

co
n

tr
as

t
to

th
e

p
o

si
ti

ve
va

lu
e

s
fo

r
st

at
io

n
s

in
ar

e
as

o
f

n
at

u
ra

l
fo

rc
e

s
o

n
ly

(G
ro

u
p

A
).

N
o

te
th

at
th

e
P

-v
al

u
e

is
th

e
st

at
is

ti
ca

l
p

ro
b

ab
ili

ty
th

at
th

e
m

ax
im

u
m

o
r

m
in

im
u

m
te

m
p

e
ra

tu
re

is
in

cr
e

as
in

g
(Z

.
0

)
o

r
d

e
cr

e
as

in
g

(Z
,

0
).

T
h

e
n

u
ll

h
yp

o
th

e
si

s
(n

o
tr

e
n

d
)

is
re

je
ct

e
d

fo
r

co
n

fi
d

e
n

ce
ab

o
ve

9
0

%
.P

-v
al

u
e

s
ab

o
ve

9
5

%
m

e
an

th
e

tr
e

n
d

e
xi

st
s,

P
-v

al
u

e
s

ab
o

ve
9

0
%

an
d

b
e

lo
w

9
5

%
m

e
an

th
e

tr
e

n
d

p
ro

b
ab

ly
e

xi
st

s,
an

d
P

-v
al

u
e

s
b

e
lo

w
9

0
%

m
e

an
th

e
re

is
n

o
tr

e
n

d
.

It
ca

n
b

e
se

e
n

th
at

th
e

n
e

g
at

iv
e

tr
e

n
d

e
xi

st
s

fo
r

al
l

ca
se

s
e

xc
e

p
t

th
e

tr
e

n
d

o
f

m
ax

im
u

m
te

m
p

e
ra

tu
re

in
N

an
g

q
ia

n
.

d
o

i:1
0

.1
3

7
1

/j
o

u
rn

al
.p

o
n

e
.0

0
8

1
5

3
5

.t
0

0
5

Human-induced Asymmetric Effects on Climate

PLOS ONE | www.plosone.org 9 January 2014 | Volume 9 | Issue 1 | e81535



Human-induced Asymmetric Effects on Climate

PLOS ONE | www.plosone.org 10 January 2014 | Volume 9 | Issue 1 | e81535



than in Group A, resulting in a negative trend for the diurnal

temperature range (DTR). For example, the normalized test

statistic (Z) of DTR was 20.067, 20.018, 20.008 and 20.055 in

the HLD stations of Nagqu, Maqu, Nangqian and Damxung, in

contrast to 0.012, 0.027 and 0.045 in the stations with natural

forces only, Qumarleb, Madoi and Qingshuihe, respectively

(Table 5). The confidence in the trend for the Mann-Kendall

statistic is calculated using a Kendall probability table [53]. By

assessing the S result along with the number of samples, n, the

Kendall table provides the probability of rejecting the null

hypothesis (H0 = no trend) for a given level of significance. We

calculate a ‘confidence level’ percentage by subtracting the

probability (p) from 1 (Confidence = 1-p%). Confidence of 90%

represents a significance level of a= 0.1, and 95% confidence

corresponds to a= 0.05. The resulting confidence in the trend is

applied in the Mann Kendall trend analysis as outlined in Table 3.

The statistical probabilities of P-values were all above 95% except

maximum temperature in Nangqian, and hence the null

hypothesis (no trend) was rejected.

Further analysis showed that there were abrupt changes for

minimum temperature at all stations. However the year that

abrupt changes happened was much earlier in Group B than in

Group A, and the amplitude of this change was larger for Group

B. The average abrupt year in Group B was about 5 years earlier:

in 1996 vs. in 2001. The average amplitude change was 0.393%

for Group B, about 1.4 times that (0.276%) for Group A (Fig. 6).

These results reveal a significant and complex effect on the Tibet

Plateau climate system from human activities, due to the multiple

processes and feedbacks between degraded land surface from

anthropogenic influences and the atmosphere. These results reveal

differences between HLD and natural stations, which should be

probed further in order to fully capture the role of human activities

on the plateau climate system.

Conclusions

There are some interesting implications of the differences

between HLD stations and the stations in areas with natural forces

only. Firstly, annual trends in minimum temperature in the HLD

group increase at a much faster rate than in the group from areas

with natural forces only, indicating that HLD has a strong impact

on the observed temperature. This is consistent with the

conclusion that persistent land degradation can notably increase

temperatures [54,55]. Secondly, the decreasing rate of annual

DTR in the HLD group is particularly remarkable given that it is

the reverse of the result from stations in areas with natural forces

only. The result reinforces previous work suggesting that the

reduction of vegetation cover and soil wetness may reduce the

DTR by increasing nighttime surface air temperature [56]. This

greater decrease may be partly attributed to (i) environmental

conditions (e.g., vegetation) that reduce minimum temperature to

a certain extent, thus minimizing the cooling mechanism in land

degradation areas; (ii) weak evapotranspiration that prevents

surface evaporative cooling effects in land degradation areas at

very high-altitudes; and (iii) other factors that influence surface

energy balance such as increased soil heating and long-wave

surface forcing. These results demonstrate anthropogenic asym-

metric changes to the climate, which reflect the complexity of the

impact of human-caused land-cover change in the Earth’s Third

Pole. As such, more attention should be paid to issues such as

HLD and more emphasis should be placed on characterizing and

quantifying the effect of human-induced land-use change on

asymmetric diurnal changes.

Author Contributions

Conceived and designed the experiments: HL. Performed the experiments:

HL GL. Analyzed the data: HL GL. Contributed reagents/materials/

analysis tools: HL GL. Wrote the paper: HL GL.

References

1. Marland G, Pielke Sr RA, Apps MJ, Avissar R, Betts RA, et al. (2003) The

climatic impacts of land surface change and carbon management, and the

implications for climate-change mitigation policy. Clim Pol 3: 149–157.

2. WMO (2005) Climate change and land degradation. WMO-No. 989, World
Meteorological organization, Geneva, Switzerland. ISBN 92-63-10989-3. 6 p.

3. Intergovernmental Panel on Climate Change (IPCC) (2007) The IPCC Fourth

Assessment Report: Climate Change 2007: The Physical Science Basis,

Cambridge Univ. Press, Cambridge, U. K. 2 p.

4. Cornelis WM, Gabriels D (2009) Human-Induced Land Degradation. Land

Use, Land Cover and Soil -Volume 3. ISBN: 978-1-84826-237-9.
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