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Abstract
Angelman syndrome (AS) is a neurodevelopmental disorder caused by loss-of-
function mutations in the maternal copy of the UBE3A gene. AS is characterized
by intellectual disability, impaired speech and motor skills, epilepsy, and sleep dis-
ruptions. Multiple treatment strategies to re-express functional neuronal UBE3A
from the dormant paternal allele were successful in rodent models of AS and have
now moved to early phase clinical trials in children. Developing reliable and
objective AS biomarkers is essential to guide the design and execution of current
and future clinical trials. Our prior work quantified short daytime electroencepha-
lograms (EEGs) to define promising biomarkers for AS. Here, we asked whether
overnight sleep is better suited to detect AS EEG biomarkers. We retrospectively
analyzed EEGs from 12 overnight sleep studies from individuals with AS with age
and sex-matched Down syndrome and neurotypical controls, focusing on low fre-
quency (2–4 Hz) delta rhythms and sleep spindles. Delta EEG rhythms were
increased in individuals with AS during all stages of overnight sleep, but overnight
sleep did not provide additional benefit over wake in the ability to detect
increased delta. Abnormal sleep spindles were not reliably detected in EEGs from
individuals with AS during overnight sleep, suggesting that delta rhythms repre-
sent a more reliable biomarker. Overall, we conclude that periods of wakefulness
are sufficient, and perhaps ideal, to quantify delta EEG rhythms for use as AS
biomarkers.

Lay Summary
Electroencephalography (EEG) is a safe and reliable way of measuring abnormal
brain activity in Angelman syndrome. We found that low-frequency “delta” EEG
rhythms are increased in individuals with Angelman syndrome during all stages of
overnight sleep. Delta rhythms can be used as a tool to measure improvement in
future clinical trials.
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INTRODUCTION

Angelman syndrome (AS) is a rare (~1:15,000) neu-
rodevelopmental disorder characterized by intellectual

disability, seizures, lack of speech, motor dysfunction,
microcephaly, and sleep disturbances (Bird, 2014).
Impaired sleep - including the inability to fall asleep, stay
asleep, and fall back asleep after waking - affects up to
90% of individuals with AS, and is a common quality of
life concern for affected individuals and caregivers
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(Thibert et al., 2013; Wheeler et al., 2017). AS is a single-
gene disorder caused by loss of expression of maternal
UBE3A (Kishino et al., 1997). In neurons, the paternal
copy of UBE3A is epigenetically silenced by a long non-
coding antisense transcript (UBE3A-ATS) (Meng
et al., 2012). In mouse models of AS, multiple
approaches to “unsilence” the paternal Ube3a allele have
resulted in neuronal Ube3a protein expression and dura-
ble behavioral improvement (Huang et al., 2011; Meng
et al., 2015; Milazzo et al., 2021; Schmid et al., 2021;
Wolter et al., 2020). Promising clinical trials are currently
underway using one such approach: an antisense oligonu-
cleotide designed to inhibit the UBE3A-ATS and
unsilence paternal UBE3A (Elgersma & Sonzogni, 2021;
Markati et al., 2021). In order for current and future tri-
als to be successful, biomarkers are needed to assess tar-
get engagement and/or the effectiveness of treatments.
Ideal biomarkers for AS clinical trials should be safe, eas-
ily obtained, quantifiable, robust, biologically based, and
linked to meaningful AS phenotypes (Jeste et al., 2015).

Low-frequency delta (~2–4 Hz) EEG rhythms repre-
sent a promising AS biomarker that meets each of the
above criteria. First, EEG is a safe and noninvasive tool
to measure patterned neural activity that is well-tolerated
in children with neurodevelopmental disorders including
AS (Wang et al., 2013). Increased delta rhythms are pre-
sent in >80% of individuals with AS (Vendrame
et al., 2012), and are also seen in rodent models of AS
(Born et al., 2017; Born et al., 2021; Copping &
Silverman, 2021; Sidorov et al., 2017). Increased delta
rhythms are quantifiable and robust in AS: they are pre-
sent across the brain, during periods of both wake and
sleep, and across childhood development (Frohlich
et al., 2019; Sidorov et al., 2017). In individuals with AS,
the strength of delta rhythms correlates with symptom
severity across multiple domains, including cognitive,
motor, communication, and severity of epilepsy (Hipp
et al., 2021; Ostrowski et al., 2021). For these reasons,
delta power represents a promising biomarker for
assessing target engagement and for tracking improve-
ment in AS in response to treatment. Optimizing the con-
ditions for reliably measuring and comparing delta
power to other putative EEG biomarkers in AS will help
to guide the design of clinical trials.

Given the high prevalence of sleep impairments in AS
and the well-established relationship between delta
rhythms and slow-wave sleep (Hirshkowitz, 2004), we
asked whether delta rhythms can be more reliably mea-
sured in sleep versus wake. While recent work correlated
the strength of delta rhythms with AS clinical severity
across many domains (Hipp et al., 2021; Ostrowski
et al., 2021), these studies did not assess the relationship
between delta power and impaired sleep. Our prior work
(Sidorov et al., 2017) found increased delta during sleep
in AS; however, a limitation of this study was the dura-
tion and quality of sleep used. There, we analyzed short
daytime EEGs, where only ~50% of EEGs included

periods of sleep and the average length of sleep was
~20 min. Here, we quantified delta rhythms in EEGs
obtained during overnight polysomnography, averaging
~5–7 h of sleep. We compared AS EEGs to EEGs from
age and sex-matched neurotypical individuals and indi-
viduals with Down syndrome. In addition, we assessed
sleep spindles during overnight EEGs, as prior work
using daytime EEGs suggested that spindles may be
impaired during short periods of sleep (den Bakker
et al., 2018).

We report that delta rhythms were reliably increased
in AS during wake and during all stages of NREM sleep
in overnight EEGs. However, the degree to which delta
was increased in AS relative to NT controls was not
greater in sleep than during wake. In addition, sleep spin-
dle impairments were difficult to detect via EEG mea-
surements taken during overnight sleep. Overall, we
conclude that overnight sleep EEG does not confer addi-
tional benefit relative to wake EEG for the detection of
AS EEG biomarkers.

METHODS

Subjects and data acquisition

We analyzed retrospective, de-identified inpatient poly-
somnography data acquired by the UNC Sleep Disorders
Center from 2006 to 2020. Overnight EEGs from individ-
uals with a confirmed AS diagnosis were age and sex
matched with EEGs from neurotypical (NT) individuals
and individuals with Down syndrome (DS) (Figure 1a).
Subjects of all three genotypes were referred for overnight
polysomnography because of obstructive sleep apnea
(Figure S1A). We analyzed 12 EEGs per genotype
(5 male, 7 female). Subjects ranged in age from 10 months
to 37 years, averaging 8.7 � 1.4 years. Wake and sleep
EEG data were collected from the same subjects within
sessions. Sleep periods analyzed during EEG analysis
(5.3 � 0.3 h) were significantly longer than wake periods
analyzed during EEG analysis (1.7 � 0.2 h) (Figure S5A).
AS polysomnography included a single EEG from five
subjects, two EEGs from two subjects, and three EEGs
from one subject. In cases where multiple EEGs were
analyzed from the same subject, the time between EEGs
ranged from 5 months to 9 years. Each NT and DS EEG
was from a unique subject. Molecular diagnoses of indi-
viduals with AS included one subject (one EEG) with a
Class I deletion, two subjects (three EEGs) with a Class
II deletion, four subjects (seven EEGs) with a deletion
but class not specified, and one subject (one EEG) with
uniparental disomy. Multichannel polysomnograms were
recorded digitally and stored using Natus Systems or
Grass Systems hardware and software. Sleep staging was
determined by trained technicians and physicians board-
certified in sleep medicine with access to video. EEGs
were acquired using sampling rates of 200 or 256 Hz
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using six electrodes: two frontal channels (F3, F4), two
central channels (C3, C4), and two occipital channels
(O1, O2).

Sleep analysis

Technician and physician-defined sleep staging data were
used to analyze sleep quality and sleep architecture
(Figure 1, Figure S1). Sleep efficiency was defined as the
percentage of time spent asleep beginning at initial sleep
onset and ending on final waking at the end of the ses-
sion. The percentage of time spent in each sleep stage rep-
resents percentage of total sleep time spent in that stage,
with periods of wake excluded. First REM latency was
defined as the time from sleep onset until the beginning
of the first period of REM sleep. Apnea/hypopnea index
(AHI), average O2 saturation, percent time under 88%
O2 saturation, and body mass index (BMI) data were
provided in sleep reports. One AS EEG was excluded
from sleep architecture analysis because it was coded for
entirely N1 sleep (technician was not able to determine
sleep stage accurately due to high background delta). The
NT and DS studies matched to this file were also
excluded from sleep analysis. Thus n = 12 per group for
analyses of total sleep time and sleep efficiency, but
n = 11 per group for sleep stage analyses. BMI and per-
cent time under 88% O2 saturation data were not avail-
able for all subjects.

EEG preprocessing

EEGs were preprocessed in MATLAB using a similar
pipeline to previous work (den Bakker et al., 2018;
Sidorov et al., 2017). First, data were exported from
native software to .edf or .csv file formats using a refer-
ential montage and including 0.1 Hz high-pass, 70 Hz
low-pass, and 60 Hz band-stop filtering. Raw data were
then re-referenced to linked ears ((A1 + A2)/2) and
underwent additional 1 Hz high-pass filtering.
Timestamps marked by technician staging identified
boundaries for periods of wake and sleep, or sleep stages.
Artifacts were manually identified and excluded, and
noisy or absent channels were excluded from analysis. In
sum, 16 channels were excluded from analysis (of 216
total). Channels were excluded from three NT EEGs,
five AS EEGs, and two DS EEGs. There were no group
differences between the amount of data excluded due to
artifacts during either wake (F(2,22) = 1.776, p = 0.1927)
or sleep (F(2,22) = 0.7103, p = 0.8027) periods of EEG.
All REM sleep was excluded, and spectral analyses rep-
resent either wake, NREM sleep, or individual NREM
sleep stages (N1, N2, and N3) as noted. For EEG ana-
lyses during individual sleep stages, subjects were
excluded if less than 2 min of data were available during
a stage.

Spectral analysis

We performed spectral analysis of preprocessed wake
and sleep EEG data using methods identical to our prior
study (Sidorov et al., 2017). Briefly, we performed fast
Fourier analysis on each channel in MATLAB using the
spectrogram() function with a time bin of 2 s and a 1 s
overlap between bins. Relative spectral power was
defined as power within a bin of interest divided by the
total power between 1 and 50 Hz. Relative power was
averaged across all time bins to generate power spectra
and analyze delta, defined as relative power in the 2–
4 Hz band. We analyzed delta power across all six elec-
trodes in periods of wake (Figure 2a–c), sleep
(Figure 2d–f), and individual NREM sleep stages
(Figure 3). In addition, we compared delta power region-
ally during sleep and wake (Figure S2) using frontal (F3,
F4), central (C3, C4), and occipital (O1, O2) groupings.
Delta was defined as 2–4 Hz for all analysis as in previ-
ous work (Sidorov et al., 2017) except in Figure S3,
where the bandwidth was extended to 1–4 Hz. The pur-
pose of Figure S3 was to confirm that delta is increased
in stage N3 of sleep in all groups.

Spindle detection

We examined the quantity, duration, and peak frequency
of sleep spindles (Figure 5) using two spindle detection
algorithms. First, we used the same detector (Kim
et al., 2015) that we previously used to quantify spindles
during periods of sleep in short daytime AS EEGs (den
Bakker et al., 2018). Our prior work confirmed that spin-
dle detection using this automated approach was largely
consistent with detection performed by two independent
clinical experts (den Bakker et al., 2018). Briefly, raw
NREM sleep EEG data were band-pass filtered between
11 and 16 Hz and Hilbert transformed to calculate the
instantaneous amplitude of the signal. If the instanta-
neous amplitude exceeded 5.5 times the baseline signal
amplitude, a spindle was detected. The start and end of
the spindle was defined by when the instantaneous ampli-
tude crossed 2.5 times the mean signal amplitude. Spin-
dles were included in analysis if their duration was
between 0.4 and 2.0 s. If spindles were detected across
multiple channels and their initiation differed by
<300 ms, they were considered to be a single spindle.
Spindle quantity (Figure 5d, Figure S6A,D) was defined
as the number of spindles detected across all channels
divided by the time of the recording. Spindle duration
(Figure 5e, Figure S6B,E) was defined as the average
length of all spindles detected within a session across all
channels. To ensure that the same number of channels
were compared across trios, if a channel was excluded
from any EEG analysis due to noise, then it was also
excluded from paired EEGs for the purposes of spindle
analyses. We quantified the peak frequency of spindles
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(Figure 5F, Figure S6C,F) by performing spectral analy-
sis of the raw data where spindles were detected and cal-
culating the local maximum of spectral power between
11 and 16 Hz, rounded to the nearest 0.5 Hz. Peak fre-
quency and duration were averaged across all spindles
detected per EEG session, and “n” represents the number
of sessions. As noted, spindles were analyzed separately
during all NREM sleep, the first 20 min of NREM sleep
(to compare results to den Bakker et al., 2018), and all
N2 sleep.

Additional spindle detection (Figure 5g–i) was per-
formed using yet another spindle algorithm (YASA)
(Vallat & Walker, 2021), a Python-based open-source
spindle detector, using Jupyter Lab. First, YASA band-
pass filters raw EEG data between 1 and 30 Hz, resulting
in the filtered signal EEGbf. YASA also band-pass filters
the raw EEG data between 12 and 15 Hz (~11–16 Hz,
including filter roll-off) to create a sigma-filtered signal,
EEGσ. YASA then calculates the relative sigma power,
root mean square, and moving correlation between
EEGbf and EEGσ. In order for a spindle to be detected
by YASA, each of these three parameters must eclipse a
threshold in the same time window: (a) relative sigma
power ≥0.2, (b) root mean square ≥ RMSmean + 1.5 *
RMSstd, and (c) moving correlation ≥0.65. If all three
thresholds are crossed, a potential spindle is detected.
The start and end of the spindle is determined by when
two of the three thresholds are crossed, and potential
spindles between 0.5 and 2.0 s are considered spindles.
Spindles detected within 500 ms of one another on the
same channel were merged and considered a single spin-
dle. YASA also calculates the median instantaneous fre-
quency of each spindle using a Hilbert transform. YASA
does not automatically remove spindles detected across
multiple channels, so we removed duplicates post hoc
whose initiation differed by <1 s.

Statistical analysis

A one-way repeated measures (RM) ANOVA was used
for most comparisons of sleep (Figure 1b–g, Figure S1A,
B,F,G), delta power (Figure 2b,e, Figures S2A,B,D,E,
S3A,C), and spindles (Figure 5b–g, Figure S6D) between
matched NT, AS, and DS data. In cases where data
points were absent or excluded, a mixed-effects analysis
was used (Figures S1C–E and S2C,F, Figure 3d–f,
Figure S3B, Figures 4d and 5h,i, and Figures S5E and
S6A–C,E-F). Where a statistically significant main effect
was found, a Tukey–Kramer post hoc test was used to
make direct comparisons between individual groups. We
used a two-way ANOVA with age and genotype as fac-
tors, and two continuous measures (age and delta power),
to assess the effects of age and genotype on delta power
(Figure 2c,f). We used a two-way RM ANOVA for
Figure 4b and Figure S5A,C. We used a two-way RM
ANOVA, with time and genotype as factors, for
Figure S5A. Simple linear regression was used to assess

relationships between delta power in different sleep stages
within sessions (Figure S4), between delta and sleep effi-
ciency (Figure 4d), and between spindle quantity and
AHI, average O2 saturation, and age (Figure S7). A
paired t-test was used in Figure 4c to compare the AS/NT
delta ratio during wake and sleep within individuals, and
in Figure S5D to compare the AS/NT delta ratio across
sleep within individuals. Statistical analysis was per-
formed in Prism 9 and JMP 16. All data are plotted as
mean � SEM and *p <0.05, **p <0.01, ***p <0.001,
****p <0.0001.

RESULTS

Overnight sleep is impaired in individuals with
Angelman syndrome

We compared sleep quality and sleep architecture in indi-
viduals with AS to age and sex-matched neurotypical
(NT) and Down syndrome (DS) controls, with subjects
ranging in age from 10 months to 37 years (Figure 1a).
Subjects were referred for polysomnography because of
sleep apnea, but the severity of sleep apnea, and the body
mass index of subjects, did not differ by genotype
(Figure S1A–D). Sleep efficiency, defined as the percent-
age of time spent asleep after initial sleep onset, was
decreased in AS relative to NT and DS controls
(Figure 1b; one-way RM ANOVA, F(2,22) = 7.674,
p = 0.0030; post hoc NT-AS: p = 0.0049; AS-DS:
p = 0.0107). Total sleep time was significantly decreased
in AS relative to DS, but not relative to NT (Figure 1c;
F(2,22) = 3.856, p = 0.0367; post hoc NT-AS: p = 0.1391;
AS-DS: p = 0.0356). Individuals with AS spent signifi-
cantly less time in REM sleep (Figure 1d; F(2,20) = 7.890,
p = 0.0030; post hoc NT-AS: p = 0.0066; AS-DS:
p = 0.0074), with an increased latency to the first bout of
REM sleep (Figure S1E). The percentage of sleep spent
in stage N1 did not differ between groups (Figure 1e;
F(2,20) = 0.7180, p = 0.4999). The percentage of sleep
spent in stage N2 was decreased in AS relative to DS, but
not relative to NT (Figure 1f: F(2,20) = 7.890, p = 0.0268;
post hoc NT-AS: p = 0.1479; AS-DS: p = 0.0233). The
percentage of sleep spent in stage N3 was increased in AS
relative to NT and DS controls (Figure 1g;
F(2,20) = 8.009, p = 0.0028; post hoc NT-AS: p = 0.0158;
AS-DS: p = 0.0034). The amount of stage shifts and wak-
ings were not different between genotypes (Figure S1F,
G). Overall, our results are consistent with prior reports
of impaired sleep in AS (Miano et al., 2004), confirming
that our sample is representative of typical AS sleep.

Delta power is increased during wake and all
stages of non-REM sleep in Angelman syndrome

During periods of wakefulness, 2–4 Hz delta power was
increased in AS relative to NT controls (Figure 2a,b;
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F(2,22) = 16.84, p <0.0001; post hoc NT-AS: p <0.0001),
and increased delta power was specific to AS (post hoc
AS-DS: p = 0.0003). Increased delta power in AS during
wake was age-dependent (Figure 2c; age X genotype
interaction: F(5,30) = 6.3938, p = 0.0049). During NREM
sleep, delta power was increased in AS relative to NT
controls (Figure 2d,e; F(2,22) = 16.52, p <0.0001; post hoc
NT-AS: p <0.0001), and increased delta power was spe-
cific to AS (post hoc AS-DS: p = 0.0003). Increased delta
power in AS during NREM sleep was age-dependent
(Figure 2f; age X genotype interaction: F(5,30) = 6.6976,
p = 0.0039). During both wake and NREM sleep, delta
power was increased in AS in frontal, central, and occipi-
tal electrodes (Figure S2).

To compare delta power across sleep, we calculated
power spectra separately during each NREM sleep stage:
N1, N2, and N3 (Figure 3a–c). Delta power was
increased in AS relative to NT during N1 (Figure 3d;
F(2,18) = 7.271, p = 0.0048; post hoc NT-AS: p = 0.0038),
N2 (Figure 3e; F(2,21) = 15.15, p <0.0001; post hoc NT-
AS: p = 0.0001), and N3 (Figure 3f; F(2,20) = 13.72,
p = 0.0002; post hoc NT-AS: p = 0.0034). Increases in
delta power were specific to AS in each sleep stage
(Figure 3d–f; post hoc AS-DS for N1: p = 0.0318, for
N2: p = 0.0006, for N3: p = 0.0001). Delta power was
greater during N3 than N1 and N2 in all groups
(Figure S3), confirming that N3 staging was generally
accurate. Within individuals, delta power was strongly

correlated between sleep stages (Figure S4). Overall,
increased delta power was seen in AS EEGs across wake,
across all stages of NREM sleep, and across all
electrodes.

Increased delta power in Angelman syndrome
relative to neurotypical controls is more
pronounced during wake than during sleep

The primary goal of this study was to determine whether
wake EEGs or sleep EEGs are best suited to detect
increased delta power as an AS biomarker. To directly
address this question, we compared delta power during
wake and NREM sleep within individual overnight
EEGs. As expected, delta power was higher during sleep
periods in the majority (30/36) of total EEGs (Figure 4a).
The increase in delta rhythms during sleep relative to
wake was statistically significant (Figure 4b; RM two-
way ANOVA: main effect of sleep/wake state:
F(1,11) = 29.95, p = 0.0002). Post-hoc tests revealed a sta-
tistically significant increase in delta power during sleep
relative to wake in NT EEGs (p <0.0001) and DS EEGs
(p = 0.0084) and a trend toward increased delta power in
AS EEGs (p = 0.0624).

To determine whether wake or sleep is better suited
for detecting increased delta as an AS biomarker, we
compared delta power between AS-NT matched pairs
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during wake and during sleep. Here, we restricted analy-
sis to AS and NT EEGs as this direct comparison is most
relevant from a biomarker perspective. We calculated an
“AS/NT delta ratio,” defined as delta power in an AS
EEG divided by delta power in the matched NT EEG.
The AS/NT delta ratio serves as a measure of the degree
to which delta power is increased in AS. During both
wake and sleep, the AS/NT delta ratio was greater than
1, confirming that increased delta can be detected during
both states (Figure 4c). Interestingly, the AS/NT delta
ratio was significantly higher in wake than in sleep
(Figure 4c; paired t-test: t(11) = 3.972, p = 0.0022). This
result suggests that the relative increase in delta power in
AS is greater during wake (71 � 10% increase) than dur-
ing overnight sleep (48 � 9% increase). We confirmed
that the increased AS/NT delta ratio during wake was
not due to differences in recording length between wake
and sleep EEGs (Figure S5A): delta power itself and the
AS/NT delta ratio remained consistent across the dura-
tion of NREM sleep (Figure S5B–D). We then asked
whether restricting EEG analysis to a single sleep stage
might improve detection of increased delta in individuals
with AS. The AS/NT delta ratio was not different
between stages N1, N2, and N3 (Figure S5E). Thus, we

conclude that while increased delta rhythms in AS can be
detected reliably during EEGs from overnight sleep,
overnight sleep does not provide additional benefit over
periods of wake for measurements of the delta EEG
phenotype.

Although sleep EEG does not provide an advantage
in detecting increased delta power in AS, one potential
advantage of sleep EEG is the ability to correlate delta
with sleep quality within individuals. However, there was
no correlation between delta power during NREM sleep
and sleep efficiency in individuals with AS (Figure 4d;
R2 = 5.1 � 10�5, p = 0.9825). These results provide fur-
ther evidence that sleep EEG does not provide additional
benefit over wake EEG for quantifying delta as an AS
EEG biomarker.

Sleep spindle impairments are difficult to detect
in Angelman syndrome EEGs

In a prior exploratory study, we found that the quantity
and duration of sleep spindles during short periods of
sleep during daytime EEGs were decreased in individuals
with AS (den Bakker et al., 2018). Here, we attempted to
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replicate these findings during overnight EEGs in order
to evaluate spindles as a potential AS EEG biomarker.
During NREM sleep, spectral power (Figure 5a) was

decreased in AS relative to NT controls in the low sigma
band (11–13 Hz) (Figure 5c; F(2,22) = 6.413, p = 0.0064;
post hoc NT-AS: p = 0.0064), but not in the high sigma
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band (13–16 Hz) (Figure 5d; F(2,22) = 1.635, p = 0.2177).
Spectral power was also decreased in DS relative to NT
controls in the 11–13 Hz band (Figure 5c; post hoc NT-
DS: p = 0.0419). Decreased spectral power in the 11–
13 Hz range is consistent with findings from our prior
study and suggested that there may be a decrease in sleep
spindles in AS during overnight sleep.

To quantify spindles, we first used the same auto-
mated spindle detection algorithm as in our previous
study (den Bakker et al., 2018; Kim et al., 2015). Surpris-
ingly, automated spindle detection using the Kim/den
Bakker detector revealed no difference in the quantity
(Figure 5d; F(2,22) = 0.9699, p = 0.3948) or duration
(Figure 5e; F(2,22) = 1.502, p = 0.2447) of spindles in indi-
viduals with AS. The peak frequency at which spindles
occurred was also not statistically different between
groups, though there was a trend toward increased peak
frequency in AS (Figure 5f; F(2,22) = 2.852, p = 0.0792).
Sleep spindles are a defining characteristic of N2 sleep
(Andrillon et al., 2011); therefore, we asked whether
restricting spindle detection to periods of N2 sleep is bet-
ter able to detect impairments in AS. However, within
N2 only, there was no difference in the amount (-
Figure S6A) or duration (Figure S6B) of spindles in indi-
viduals with AS. During N2 only, there was a statistically
significant increase in peak spindle frequency in AS

EEGs (Figure S6C). In our prior study, sleep during day-
time EEG recordings averaged ~20 min in length (den
Bakker et al., 2018); therefore, we also analyzed only the
first 20 min of overnight EEGs to ask whether spindle
impairments are present in AS only at the beginning of
sleep. Contrary to our earlier findings, spindle quantity
during the first 20 min of NREM sleep was not different
between AS and NT groups (Figure S6D), but spindle
duration was decreased in AS EEGs (Figure S6E). Peak
spindle frequency was not different by group in the first
20 min of NREM sleep EEGs (Figure S6F). Overall, sta-
tistically meaningful impairments in sleep spindles in
individuals with AS EEGs proved difficult to detect dur-
ing overnight sleep using the Kim/den Bakker spindle
detector.

We next performed a secondary spindle analysis using
YASA (Vallat & Walker, 2021), a newer open-source
spindle detector that uses multiple criteria simultaneously
to identify spindles (see Methods). YASA was adapted
from the “A7” spindle detection algorithm that per-
formed best among five detectors at matching human
expert performance (Lacourse et al., 2019), and has been
previously used to demonstrate that spindles are impaired
during sleep in subjects with 15q11.2–13.1 duplication
(Dup15q) syndrome (Saravanapandian et al., 2021).
YASA detected a trend toward a decrease in spindles in
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AS EEGs (Figure 5g; F(2,22) = 3.369, p = 0.0529), but no
difference in spindle duration by group (Figure 5h;
F(2,16) = 0.5670, p = 0.5782). YASA did detect an
increase in peak spindle frequency that was specific to AS
EEGs (Figure 5i; F(2,27) = 6.707, p = 0.0043; post hoc
NT-AS: p = 0.0038; post hoc AS-DS: p = 0.0383). Spin-
dles detected by YASA were positively correlated with
age, but spindles detected by the Kim/den Bakker were
not positively correlated with age (Figure S7A,B). Taken
together, results from multiple spindle detectors and mul-
tiple conditions illustrate the difficulty of reliably
detecting spindle impairments for use as bio-
markers in AS.

There were a number of differences in study design
that may have contributed to the difficulty in detecting
spindle impairments in AS as previously reported (den
Bakker et al., 2018) (see Discussion). One possibility is
that the presence of obstructive sleep apnea, which is
known to affect sleep spindles (Brockmann et al., 2018;
Brockmann et al., 2020; Vallat & Walker, 2021), pres-
ented a confounding variable. We tested this hypothesis
directly by correlating two measures of sleep-related
breathing impairment (AHI and average O2 saturation;
Figure S1) with sleep spindles. Neither measure of sleep
apnea severity correlated with spindle quantity, as mea-
sured by either the Kim/den Bakker or YASA detector
(Figure S7C–F). Thus, we conclude that sleep apnea is
unlikely to be the primary reason why we were unable to
reliably detect spindle impairments in AS EEGs in this
study.

DISCUSSION

Increased delta rhythms have long been reported clini-
cally in AS (Boyd et al., 1988; Thibert et al., 2013;
Vendrame et al., 2012), and recent quantitative EEG
studies have confirmed that increased delta power is
robust and has potential as an AS biomarker (Frohlich
et al., 2019; Frohlich et al., 2020; Hipp et al., 2021;
Martinez et al., 2020; Ostrowski et al., 2021; Sidorov
et al., 2017). In order to guide effective use of delta as a
biomarker, we sought to define ideal conditions in which
to measure increased delta power in AS EEGs. Delta
rhythms were increased in AS during periods of wake
and periods of overnight NREM sleep (Figure 2), includ-
ing all stages of NREM sleep (Figure 3). Increased delta
power was specific to AS (did not generalize to down syn-
drome controls) and was more prevalent earlier in devel-
opment (Figure 2 and 3). Interestingly, the increased
delta power in AS EEGs was greater during wake than
during sleep (Figure 4). This result suggests that over-
night sleep EEGs do not provide additional benefit over
wake EEGs for detecting increased delta as an AS
biomarker.

The sufficiency of wake EEGs for delta assessment
provides several practical benefits. Formal overnight

sleep studies often require travel and preparation, and
can be challenging for children with AS and their fami-
lies. In-home overnight EEG avoids some of these chal-
lenges, but often requires a site visit for setup, continuous
overnight monitoring, and introduces the risk of reduced
data quality or data loss relative to a sleep lab. Short,
standardized wake EEGs are well-tolerated in individuals
with AS and are ideal for use in a clinical trial setting.
However, beyond detection of delta itself, overnight sleep
studies do have the potential to provide additional bene-
fit. First, overnight EEGs provide an opportunity to
directly correlate delta power with sleep quality within
AS individuals. Linking putative biomarkers to meaning-
ful phenotypes is critical (Jeste et al., 2015), and impaired
sleep is among the most common features of AS (Thibert
et al., 2013). However, delta power did not correlate with
sleep quality in individuals with AS (Figure 4d). In addi-
tion, the absence of substantial movement artifacts dur-
ing sleep EEGs has the potential to improve data quality
relative to wake EEGs. However, recent work demon-
strated that removing movement artifacts may not be
necessary to detect increased delta or link increased delta
to cognitive performance in AS (Ostrowski et al., 2021).
Thus, overnight sleep EEGs provide neither primary nor
secondary benefit for assessing delta power in AS.

While sleep EEGs do not provide additional benefit
for detecting delta, sleep itself represents a valuable AS
biomarker. Sleep impairments are common in children
with AS and are particularly burdensome for caregivers
(Wheeler et al., 2017). Here, we demonstrate that individ-
uals with AS have reduced sleep efficiency, reduced
REM sleep, increased time spent in stage N3, and trends
toward decreased overall total sleep time and time spent
in stage N2 (Figure 1). All sleep impairments were spe-
cific to AS and did not generalize to DS controls. How-
ever, sleep staging was likely imperfect in this study due
to strong background delta rhythms in AS and techni-
cians not familiar with staging AS sleep specifically. In
particular, the increased scoring of N3 sleep in AS EEGs
may reflect challenges distinguishing increased back-
ground delta from true slow wave sleep. Despite staging
challenges, our results are consistent with a prior sleep
polysomnography study in AS that lacked quantitative
EEG analysis (Miano et al., 2004). Miano and colleagues
also reported decreased sleep efficiency, decreased REM,
increased N3, decreased N2, and a trend toward
decreased total sleep time in individuals with AS. In AS,
the absolute percentage of time spent in each sleep stage
was comparable between our study and prior work
(Miano et al., 2004) (Figure 1; REM: 4.9% vs. 11.8%,
N1: 2.3% vs. 3.4%, N2: 30.7% vs. 39.5%, N3: 62.0%
vs. 34.7%), though increased time in N3 likely reflects
staging challenges. These results confirm that our sample
is representative of typical AS sleep patterns. More
broadly, polysomnography during a single overnight
sleep study appears sufficient to reliably detect sleep
impairments in AS. Sleep itself, independent of EEG,
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should be considered as a potential outcome measure in
AS clinical trial settings. We propose that sleep efficiency
is an ideal measure for populations with AS during over-
night polysomnography: it is more reliably impaired than
total sleep time, and is not affected if sleep staging is
imperfect.

One limit to this study is that we did not assess AS
clinical severity, and thus were unable to determine
whether sleep delta or wake delta better correlates with
clinical severity. However, recent work demonstrated
that EEG delta power during both wake (Hipp
et al., 2021; Ostrowski et al., 2021) and sleep (Ostrowski
et al., 2021) is correlated with clinical severity in
AS. These studies used behavioral data gathered across
multiple domains via standardized tests including the
Bayley Scales of Infant and Toddler Development, the
Vineland Adaptive Behavior Scales, and an AS-specific
AS Clinical Severity Scale (Keute et al., 2021). Together,
this work demonstrated that delta EEG power is corre-
lated with cognitive performance, receptive and expres-
sive communication, motor skills, and earlier onset of
epilepsy. Another potential limit to using delta as a bio-
marker may be the age-dependence of phenotypes in AS
(Vendrame et al., 2012). Our work confirms that the
value of delta as an AS biomarker may wane in adult-
hood (Figure 2). However, our sample size beyond age
18 was quite limited (n = 2 per group). A comprehensive
quantitative study of EEGs in adulthood in AS would be
valuable to better understand the limits of delta as a bio-
marker. In addition, future work should explore alterna-
tive EEG biomarkers for adults with AS.

While previous studies have linked increased delta
power to cognitive impairment in AS (Hipp et al., 2021;
Ostrowski et al., 2021), we included an age and sex-
matched Down syndrome control group to demonstrate
that sleep (Figure 1) and delta EEG power (Figure 2)
impairments are specific to AS, and do not generalize to
other populations with cognitive impairment. This result
suggests that cognitive impairment can occur in the
absence of increased delta, thus, it is unlikely that
increased delta itself is a cause of cognitive impairment in
AS; rather, delta appears to represent a general readout
of AS severity across multiple domains.

Sleep spindles are short, ~11–16 Hz bursts of activity
that are linked to memory consolidation and are
impaired in a number of neurodevelopmental and neuro-
psychiatric disorders (Farmer et al., 2018; Ferrarelli
et al., 2007; Gorgoni et al., 2020; Gruber & Wise, 2016;
Saravanapandian et al., 2021; Ulrich, 2016). By band-
pass filtering signals in the range of spindles, we are able
to quantify spindles in AS EEGs despite increased back-
ground delta. We previously performed an exploratory
study of sleep spindles during short (~20 min) periods of
sleep using daytime EEGs and found that the quantity
and duration of spindles may be decreased in AS (den
Bakker et al., 2018). Mild impairments in sleep spindles
have also been observed in a mouse model of AS
(Copping & Silverman, 2021). Surprisingly, we found no

statistically significant differences in spindle quantity,
spindle duration, or peak spindle frequency in AS during
overnight sleep using identical preprocessing and detec-
tion methods to our prior study (Figure 5). There were a
number of methodological differences that might account
for these disparate results. First, this study included only
six EEG electrodes per subject compared to the 19 elec-
trodes in the prior study. Second, this study used a wider
age range (10 months to 37 years) than our prior work
(4–11 years). Sleep spindle quantity and duration are
affected by age (Campos-Beltran & Marshall, 2021), thus
the broader age range used in this study may have intro-
duced variability. It is possible that sleep spindles are a
reliable AS biomarker in a narrower developmental win-
dow than tested here. Third, it is possible that spindle
quality during overnight sleep (as in this study) differs
from spindle quality during the first ~20 min of sleep
(as in our prior study). We addressed this possibility
directly by analyzing spindles during the first 20 min of
overnight sleep. This approach did not reveal any
changes in spindle quantity in AS EEGs (Figure S6D);
however, it did reveal a decrease in spindle duration in
AS EEGs (Figure S6E). Fourth, this study (n = 12, three
comparison groups) is under-powered relative to our
prior study (n = 13 for AS, n = 54 for NT, only two
groups). Lastly, the presence of obstructive sleep apnea
in a majority of subjects in this study could explain why
spindle impairments were not reliably detected in
AS. Prior work suggests that neurotypical children with
obstructive sleep apnea have decreased spindle density
relative to controls with no sleep apnea (Brockmann
et al., 2018). However, the severity of sleep apnea was
not correlated with sleep spindle quantity in our study (-
Figure S7). Thus, sleep apnea is unlikely to be the pri-
mary reason why spindle impairments were not reliably
detected.

Use of a secondary spindle detector (YASA) did not
dramatically improve our ability to detect impairments in
AS EEGs, though we do report a trend toward fewer
spindles (Figure 5g) and a statistically significant increase
in peak spindle frequency in AS (Figure 5i). Subtle differ-
ences between spindle detectors must be considered for
future study of sleep spindles in AS EEGs. While YASA
is likely more accurate than the Kim/den Bakker detector
when using neurotypical EEGs (Lacourse et al., 2019),
one of its three detection parameters (relative sigma
power) may not be well suited for AS EEGs. Relative
sigma power is affected by relative power in other bands,
because the total power must add up to 100%. Thus,
increased delta power in AS EEGs may artificially
depress the relative sigma signal, resulting in fewer
detected spindles. More broadly, if sleep spindles are to
be considered as an AS biomarker, optimizing the detec-
tion algorithm for AS EEGs would be one way to
improve the likelihood of reliably detecting impairments.

The goal of this study was to evaluate EEG bio-
markers for Angelman syndrome during overnight sleep.
Overall, we conclude that overnight sleep is not necessary
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for detecting Angelman syndrome EEG biomarkers.
Delta power was robustly and reliably increased in AS
EEGs, especially earlier in development, but not more so
during sleep. Sleep spindle impairments were less reliably
detected than abnormal delta power. Given the chal-
lenges associated with performing overnight EEG studies
in children with AS, it is encouraging that wake EEGs
are sufficient, and perhaps ideal, for detecting delta in a
clinical trial setting.

ACKNOWLEDGMENTS
This work was supported by the Angelman Syndrome
Alliance to Michael S. Sidorov, Zheng Fan, and Benja-
min D. Philpot, and NICHD grants R01HD093771 and
5P50HD103573 to Benjamin D. Philpot. Yuval Levin
was supported by a George Washington University
Health Services Scholarship.

CONFLICT OF INTEREST
Michael S. Sidorov has received consulting fees from
Medpace, Inc. for EEG analysis.

ETHIC STATEMENT
All studies were performed with approval of the UNC
institutional review board (IRB # 18-1729).

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are avail-
able from the corresponding author upon reasonable
request.

ORCID
Michael S. Sidorov https://orcid.org/0000-0002-7154-
7690

REFERENCES
Andrillon, T., Nir, Y., Staba, R. J., Ferrarelli, F., Cirelli, C.,

Tononi, G., & Fried, I. (2011). Sleep spindles in humans: Insights
from intracranial EEG and unit recordings. The Journal of Neuro-
science, 31(49), 17821–17834. https://doi.org/10.1523/
JNEUROSCI.2604-11.2011

Bird, L. M. (2014). Angelman syndrome: Review of clinical and molec-
ular aspects. The Application of Clinical Genetics, 7, 93–104.
https://doi.org/10.2147/TACG.S57386

Born, H. A., Dao, A. T., Levine, A. T., Lee, W. L., Mehta, N. M.,
Mehra, S., Weeber, E. J., & Anderson, A. E. (2017). Strain-
dependence of the Angelman syndrome phenotypes in Ube3a
maternal deficiency mice. Scientific Reports, 7(1), 8451. https://doi.
org/10.1038/s41598-017-08825-x

Born, H. A., Martinez, L. A., Levine, A. T., Harris, S. E., Mehra, S.,
Lee, W. L., Dindot, S. V., Nash, K. R., Silverman, J. L.,
Segal, D. J., Weeber, E. J., & Anderson, A. E. (2021). Early devel-
opmental EEG and seizure phenotypes in a full gene deletion of
ubiquitin protein ligase E3A rat model of Angelman syndrome.
eNeuro, 8(2), 1–16. https://doi.org/10.1523/ENEURO.0345-20.2020

Boyd, S. G., Harden, A., & Patton, M. A. (1988). The EEG in early
diagnosis of the Angelman (happy puppet) syndrome. European
Journal of Pediatrics, 147(5), 508–513. https://doi.org/10.1007/
BF00441976

Brockmann, P. E., Damiani, F., Pincheira, E., Daiber, F., Ruiz, S.,
Aboitiz, F., Ferri, R., & Bruni, O. (2018). Sleep spindle activity in

children with obstructive sleep apnea as a marker of
neurocognitive performance: A pilot study. European Journal of
Paediatric Neurology, 22(3), 434–439. https://doi.org/10.1016/j.
ejpn.2018.02.003

Brockmann, P. E., Ferri, R., & Bruni, O. (2020). Association of sleep
spindle activity and sleepiness in children with sleep-disordered
breathing. Journal of Clinical Sleep Medicine, 16(4), 583–589.
https://doi.org/10.5664/jcsm.8282

Campos-Beltran, D., & Marshall, L. (2021). Changes in sleep EEG with
aging in humans and rodents. Pflügers Archiv, 473(5), 841–851.
https://doi.org/10.1007/s00424-021-02545-y

Copping, N. A., & Silverman, J. L. (2021). Abnormal electrophysiologi-
cal phenotypes and sleep deficits in a mouse model of Angelman
syndrome. Molecular Autism, 12(1), 9. https://doi.org/10.1186/
s13229-021-00416-y

den Bakker, H., Sidorov, M. S., Fan, Z., Lee, D. J., Bird, L. M.,
Chu, C. J., & Philpot, B. D. (2018). Abnormal coherence and sleep
composition in children with Angelman syndrome: A retrospective
EEG study. Molecular Autism, 9, 32. https://doi.org/10.1186/
s13229-018-0214-8

Elgersma, Y., & Sonzogni, M. (2021). UBE3A reinstatement as a
disease-modifying therapy for Angelman syndrome. Developmen-
tal Medicine and Child Neurology, 63(7), 802–807. https://doi.org/
10.1111/dmcn.14831

Farmer, C. A., Chilakamarri, P., Thurm, A. E., Swedo, S. E.,
Holmes, G. L., & Buckley, A. W. (2018). Spindle activity in young
children with autism, developmental delay, or typical develop-
ment. Neurology, 91(2), e112–e122. https://doi.org/10.1212/WNL.
0000000000005759

Ferrarelli, F., Huber, R., Peterson, M. J., Massimini, M., Murphy, M.,
Riedner, B. A., Watson, A., Bria, P., & Tononi, G. (2007).
Reduced sleep spindle activity in schizophrenia patients. The
American Journal of Psychiatry, 164(3), 483–492. https://doi.org/
10.1176/ajp.2007.164.3.483

Frohlich, J., Bird, L. M., Dell’Italia, J., Johnson, M. A., Hipp, J. F., &
Monti, M. M. (2020). High-voltage, diffuse delta rhythms coincide
with wakeful consciousness and complexity in Angelman syn-
drome. Neuroscience of Consciousness, 2020(1), niaa005. https://
doi.org/10.1093/nc/niaa005

Frohlich, J., Miller, M. T., Bird, L. M., Garces, P., Purtell, H.,
Hoener, M. C., Philpot, B. D., Sidorov, M. S., Tan, W.-H.,
Hernandez, M.-C., Rotenberg, A., Jeste, S. S., Krishnan, M.,
Khwaja, O., & Hipp, J. F. (2019). Electrophysiological phenotype
in Angelman syndrome differs between genotypes. Biological Psy-
chiatry, 85(9), 752–759. https://doi.org/10.1016/j.biopsych.2019.
01.008

Gorgoni, M., Scarpelli, S., Reda, F., & De Gennaro, L. (2020). Sleep
EEG oscillations in neurodevelopmental disorders without intel-
lectual disabilities. Sleep Medicine Reviews, 49, 101224. https://doi.
org/10.1016/j.smrv.2019.101224

Gruber, R., & Wise, M. S. (2016). Sleep spindle characteristics in chil-
dren with neurodevelopmental disorders and their relation to cog-
nition. Neural Plasticity, 2016, 4724792. https://doi.org/10.1155/
2016/4724792

Hipp, J. F., Frohlich, J., Keute, M., Tan, W. H., & Bird, L. M. (2021).
Electrophysiological abnormalities in Angelman syndrome corre-
late with symptom severity. Biological Psychiatry: Global Open
Science, 1(3), 201–209. https://doi.org/10.1016/j.bpsgos.2021.
05.003

Hirshkowitz, M. (2004). Normal human sleep: an overview. The Medi-
cal Clinics of North America, 88(3), 551–565. https://doi.org/10.
1016/j.mcna.2004.01.001

Huang, H. S., Allen, J. A., Mabb, A. M., King, I. F., Miriyala, J.,
Taylor-Blake, B., Sciaky, N., Walter Dutton, J., Jr., Lee, H.-M.,
Chen, X., Jin, J., Bridges, A. S., Zylka, M. J., Roth, B. L., &
Philpot, B. D. (2011). Topoisomerase inhibitors unsilence the dor-
mant allele of Ube3a in neurons. Nature, 481(7380), 185–189.
https://doi.org/10.1038/nature10726

LEVIN ET AL. 1041

https://orcid.org/0000-0002-7154-7690
https://orcid.org/0000-0002-7154-7690
https://orcid.org/0000-0002-7154-7690
https://doi.org/10.1523/JNEUROSCI.2604-11.2011
https://doi.org/10.1523/JNEUROSCI.2604-11.2011
https://doi.org/10.2147/TACG.S57386
https://doi.org/10.1038/s41598-017-08825-x
https://doi.org/10.1038/s41598-017-08825-x
https://doi.org/10.1523/ENEURO.0345-20.2020
https://doi.org/10.1007/BF00441976
https://doi.org/10.1007/BF00441976
https://doi.org/10.1016/j.ejpn.2018.02.003
https://doi.org/10.1016/j.ejpn.2018.02.003
https://doi.org/10.5664/jcsm.8282
https://doi.org/10.1007/s00424-021-02545-y
https://doi.org/10.1186/s13229-021-00416-y
https://doi.org/10.1186/s13229-021-00416-y
https://doi.org/10.1186/s13229-018-0214-8
https://doi.org/10.1186/s13229-018-0214-8
https://doi.org/10.1111/dmcn.14831
https://doi.org/10.1111/dmcn.14831
https://doi.org/10.1212/WNL.0000000000005759
https://doi.org/10.1212/WNL.0000000000005759
https://doi.org/10.1176/ajp.2007.164.3.483
https://doi.org/10.1176/ajp.2007.164.3.483
https://doi.org/10.1093/nc/niaa005
https://doi.org/10.1093/nc/niaa005
https://doi.org/10.1016/j.biopsych.2019.01.008
https://doi.org/10.1016/j.biopsych.2019.01.008
https://doi.org/10.1016/j.smrv.2019.101224
https://doi.org/10.1016/j.smrv.2019.101224
https://doi.org/10.1155/2016/4724792
https://doi.org/10.1155/2016/4724792
https://doi.org/10.1016/j.bpsgos.2021.05.003
https://doi.org/10.1016/j.bpsgos.2021.05.003
https://doi.org/10.1016/j.mcna.2004.01.001
https://doi.org/10.1016/j.mcna.2004.01.001
https://doi.org/10.1038/nature10726


Jeste, S. S., Frohlich, J., & Loo, S. K. (2015). Electrophysiological bio-
markers of diagnosis and outcome in neurodevelopmental disor-
ders. Current Opinion in Neurology, 28(2), 110–116. https://doi.org/
10.1097/WCO.0000000000000181

Keute, M., Miller, M. T., Krishnan, M. L., Sadhwani, A.,
Chamberlain, S., Thibert, R. L., Tan, W.-H., Bird, L. M., &
Hipp, J. F. (2021). Angelman syndrome genotypes manifest vary-
ing degrees of clinical severity and developmental impairment.
Molecular Psychiatry, 26(7), 3625–3633. https://doi.org/10.1038/
s41380-020-0858-6

Kim, D., Hwang, E., Lee, M., Sung, H., & Choi, J. H. (2015). Charac-
terization of topographically specific sleep spindles in mice. Sleep,
38(1), 85–96. https://doi.org/10.5665/sleep.4330

Kishino, T., Lalande, M., & Wagstaff, J. (1997). UBE3A/E6-AP muta-
tions cause Angelman syndrome. Nature Genetics, 15(1), 70–73.
https://doi.org/10.1038/ng0197-70

Lacourse, K., Delfrate, J., Beaudry, J., Peppard, P., & Warby, S. C.
(2019). A sleep spindle detection algorithm that emulates human
expert spindle scoring. Journal of Neuroscience Methods, 316, 3–
11. https://doi.org/10.1016/j.jneumeth.2018.08.014

Markati, T., Duis, J., & Servais, L. (2021). Therapies in preclinical and
clinical development for Angelman syndrome. Expert Opinion on
Investigational Drugs, 30(7), 709–720. https://doi.org/10.1080/
13543784.2021.1939674

Martinez, L. A., Born, H. A., Harris, S., Regnier-Golanov, A.,
Grieco, J. C., Weeber, E. J., & Anderson, A. E. (2020). Quantita-
tive EEG analysis in Angelman syndrome: Candidate method for
assessing therapeutics. Clinical EEG and Neuroscience,
1550059420973095. https://doi.org/10.1177/1550059420973095

Meng, L., Person, R. E., & Beaudet, A. L. (2012). Ube3a-ATS is an
atypical RNA polymerase II transcript that represses the paternal
expression of Ube3a. Human Molecular Genetics, 21(13), 3001–
3012. https://doi.org/10.1093/hmg/dds130

Meng, L., Ward, A. J., Chun, S., Bennett, C. F., Beaudet, A. L., &
Rigo, F. (2015). Towards a therapy for Angelman syndrome by
targeting a long non-coding RNA. Nature, 518(7539), 409–412.
https://doi.org/10.1038/nature13975

Miano, S., Bruni, O., Leuzzi, V., Elia, M., Verrillo, E., & Ferri, R.
(2004). Sleep polygraphy in Angelman syndrome. Clinical Neuro-
physiology, 115(4), 938–945. https://doi.org/10.1016/j.clinph.2003.
11.004

Milazzo, C., Mientjes, E. J., Wallaard, I., Rasmussen, S. V.,
Erichsen, K. D., Kakunuri, T., van der Sman, A. S. E.,
Kremer, T., Miller, M. T., Hoener, M. C., & Elgersma, Y. (2021).
Antisense oligonucleotide treatment rescues UBE3A expression
and multiple phenotypes of an Angelman syndrome mouse model.
JCI Insight, 6(15), e145991. https://doi.org/10.1172/jci.insight.
145991

Ostrowski, L. M., Spencer, E. R., Bird, L. M., Thibert, R.,
Komorowski, R. W., Kramer, M. A., & Chu, C. J. (2021). Delta
power robustly predicts cognitive function in Angelman syndrome.
Annals of Clinical Translational Neurology, 8(7), 1433–1445.
https://doi.org/10.1002/acn3.51385

Saravanapandian, V., Nadkarni, D., Hsu, S. H., Hussain, S. A.,
Maski, K., Golshani, P., Colwell, C. S., Balasubramanian, S.,
Dixon, A., Geschwind, D. H., & Jeste, S. S. (2021). Abnormal
sleep physiology in children with 15q11.2-13.1 duplication

(Dup15q) syndrome. Molecular Autism, 12(1), 54. https://doi.org/
10.1186/s13229-021-00460-8

Schmid, R. S., Deng, X., Panikker, P., Msackyi, M., Breton, C., &
Wilson, J. M. (2021). CRISPR/Cas9 directed to the Ube3a anti-
sense transcript improves Angelman syndrome phenotype in mice.
The Journal of Clinical Investigation, 131(5), 1–6. https://doi.org/
10.1172/JCI142574

Sidorov, M. S., Deck, G. M., Dolatshahi, M., Thibert, R. L.,
Bird, L. M., Chu, C. J., & Philpot, B. D. (2017). Delta rhythmicity
is a reliable EEG biomarker in Angelman syndrome: A parallel
mouse and human analysis. Journal of Neurodevelopmental Disor-
ders, 9, 17. https://doi.org/10.1186/s11689-017-9195-8

Thibert, R. L., Larson, A. M., Hsieh, D. T., Raby, A. R., &
Thiele, E. A. (2013). Neurologic manifestations of Angelman syn-
drome. Pediatric Neurology, 48(4), 271–279. https://doi.org/10.
1016/j.pediatrneurol.2012.09.015

Ulrich, D. (2016). Sleep spindles as facilitators of memory formation
and learning. Neural Plasticity, 2016, 1796715. https://doi.org/10.
1155/2016/1796715

Vallat, R., & Walker, M. P. (2021). An open-source, high-performance
tool for automated sleep staging. eLife, 10, 1–24. https://doi.org/
10.7554/eLife.70092

Vendrame, M., Loddenkemper, T., Zarowski, M., Gregas, M.,
Shuhaiber, H., Sarco, D. P., Morales, A., Nespeca, M.,
Sharpe, C., Haas, K., Barnes, G., Glaze, D., & Kothare, S. V.
(2012). Analysis of EEG patterns and genotypes in patients with
Angelman syndrome. Epilepsy & Behavior, 23(3), 261–265. https://
doi.org/10.1016/j.yebeh.2011.11.027

Wang, J., Barstein, J., Ethridge, L. E., Mosconi, M. W., Takarae, Y., &
Sweeney, J. A. (2013). Resting state EEG abnormalities in autism
spectrum disorders. Journal of Neurodevelopmental Disorders, 5(1),
24. https://doi.org/10.1186/1866-1955-5-24

Wheeler, A. C., Sacco, P., & Cabo, R. (2017). Unmet clinical needs and
burden in Angelman syndrome: A review of the literature.
Orphanet Journal of Rare Diseases, 12(1), 164. https://doi.org/10.
1186/s13023-017-0716-z

Wolter, J. M., Mao, H., Fragola, G., Simon, J. M., Krantz, J. L.,
Bazick, H. O., Oztemiz, B., Stein, J. L., & Zylka, M. J. (2020).
Cas9 gene therapy for Angelman syndrome traps Ube3a-ATS long
non-coding RNA. Nature, 587(7833), 281–284. https://doi.org/10.
1038/s41586-020-2835-2

SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.

How to cite this article: Levin, Y., Hosamane, N.
S., McNair, T. E., Kunnam, S. S., Philpot, B. D.,
Fan, Z., & Sidorov, M. S. (2022). Evaluation of
electroencephalography biomarkers for Angelman
syndrome during overnight sleep. Autism Research,
15(6), 1031–1042. https://doi.org/10.1002/aur.2709

1042 LEVIN ET AL.

https://doi.org/10.1097/WCO.0000000000000181
https://doi.org/10.1097/WCO.0000000000000181
https://doi.org/10.1038/s41380-020-0858-6
https://doi.org/10.1038/s41380-020-0858-6
https://doi.org/10.5665/sleep.4330
https://doi.org/10.1038/ng0197-70
https://doi.org/10.1016/j.jneumeth.2018.08.014
https://doi.org/10.1080/13543784.2021.1939674
https://doi.org/10.1080/13543784.2021.1939674
https://doi.org/10.1177/1550059420973095
https://doi.org/10.1093/hmg/dds130
https://doi.org/10.1038/nature13975
https://doi.org/10.1016/j.clinph.2003.11.004
https://doi.org/10.1016/j.clinph.2003.11.004
https://doi.org/10.1172/jci.insight.145991
https://doi.org/10.1172/jci.insight.145991
https://doi.org/10.1002/acn3.51385
https://doi.org/10.1186/s13229-021-00460-8
https://doi.org/10.1186/s13229-021-00460-8
https://doi.org/10.1172/JCI142574
https://doi.org/10.1172/JCI142574
https://doi.org/10.1186/s11689-017-9195-8
https://doi.org/10.1016/j.pediatrneurol.2012.09.015
https://doi.org/10.1016/j.pediatrneurol.2012.09.015
https://doi.org/10.1155/2016/1796715
https://doi.org/10.1155/2016/1796715
https://doi.org/10.7554/eLife.70092
https://doi.org/10.7554/eLife.70092
https://doi.org/10.1016/j.yebeh.2011.11.027
https://doi.org/10.1016/j.yebeh.2011.11.027
https://doi.org/10.1186/1866-1955-5-24
https://doi.org/10.1186/s13023-017-0716-z
https://doi.org/10.1186/s13023-017-0716-z
https://doi.org/10.1038/s41586-020-2835-2
https://doi.org/10.1038/s41586-020-2835-2
https://doi.org/10.1002/aur.2709

	Evaluation of electroencephalography biomarkers for Angelman syndrome during overnight sleep
	INTRODUCTION
	METHODS
	Subjects and data acquisition
	Sleep analysis
	EEG preprocessing
	Spectral analysis
	Spindle detection
	Statistical analysis

	RESULTS
	Overnight sleep is impaired in individuals with Angelman syndrome
	Delta power is increased during wake and all stages of non-REM sleep in Angelman syndrome
	Increased delta power in Angelman syndrome relative to neurotypical controls is more pronounced during wake than during sleep
	Sleep spindle impairments are difficult to detect in Angelman syndrome EEGs

	DISCUSSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST
	ETHIC STATEMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


