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Tumor-specific molecules are needed across diverse areas of on-
cology for use in early detection, diagnosis, prognosis and ther-
apy. Large and growing public databases of transcriptome
sequencing data (RNA-seq) derived from tumors and normal tis-
sues hold the potential of yielding tumor-specific molecules, but
because the data are new they have not been fully explored for
this purpose. We have developed custom bioinformatic algorithms
and used them with 296 high-grade serous ovarian (HGS-OvCa)
tumor and 1,839 normal RNA-seq datasets to identify mRNA iso-
forms with tumor-specific expression. We rank prioritized isoforms
by likelihood of being expressed in HGS-OvCa tumors and not in
normal tissues and analyzed 671 top-ranked isoforms by high-
throughput RT-qPCR. Six of these isoforms were expressed in a
majority of the 12 tumors examined but not in 18 normal tissues.
An additional 11 were expressed in most tumors and only one
normal tissue, which in most cases was fallopian or colon. Of the
671 isoforms, the topmost 5% (n = 33) ranked based on having
tumor-specific or highly restricted normal tissue expression by RT-
qPCR analysis are enriched for oncogenic, stem cell/cancer stem
cell, and early development loci—including ETV4, FOXM1, LSR,
CD9, RAB11FIP4, and FGFRL1. Many of the 33 isoforms are pre-
dicted to encode proteins with unique amino acid sequences,
which would allow them to be specifically targeted for one or
more therapeutic strategies—including monoclonal antibodies
and T-cell–based vaccines. The systematic process described herein
is readily and rapidly applicable to the more than 30 additional
tumor types for which sufficient amounts of RNA-seq already exist.
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Identifying molecules that are specific to tumors for use in early
detection, diagnosis, prognosis, and therapeutic strategy design

is both a primary goal and a key discovery challenge across di-
verse areas of oncology. Furthermore, the extent of inter- and
intratumor heterogeneity indicates that multiple tumor-specific
molecules will be needed for any of these applications (1–3).
Although DNA alterations constitute the major focus of tumor-
specific discovery efforts to date, in many respects mRNA is
more attractive for this purpose. This is because RNA can
(i) broadly reflect (malignant) cellular phenotypes, (ii) exist in
thousands of copies per cell and thereby enable highly sensitive
early detection and diagnostic assays, and (iii) sensitively and
comprehensively reveal potential candidate antigens for mono-
clonal antibody targeting, vaccines, and adoptive immunother-
apies (4–6). The efficacy of using mRNA for these purposes is
highly dependent on the degree of tumor-specific expression.
One of the main themes of microarray-based experiments that

have been undertaken during the last decade has been the dis-
covery of tumor-specific “genes.” Aside from the class of cancer-
germ-line (aka cancer/testis) genes (7), few have been found. In
retrospect, the “gene” concept critically hindered these efforts to
discover tumor-specific expression because the word “gene” is a
collective term for all mRNA isoforms expressed from a genomic

locus. Malignant and normal tissue types can be distinguished by
patterns of differential isoform use (8, 9), but when measured in
aggregate at the “gene” level the isoform-specific differences are
at best recognized as “gene overexpression” or “gene under-
expression.” Thus, mRNA expression is not commonly considered
to be “tumor-specific”, but “tumor-associated” (via overexpression).
The distinction is important, for “tumor-specific”molecules are an
ideal that is devoid of detection interpretation ambiguity and off-
targeting. So although it has become increasingly clear that there
are few, if any, “genes” only expressed in tumors, aside from fu-
sion transcripts (10) the extent to which tumor-specific mRNA
isoforms exist is unknown.
Transcriptome sequencing (RNA-seq) is a genomics technol-

ogy whose principle purpose is to enable genome-wide expres-
sion measurements of mRNA isoforms—the level at which
distinct tumor-specific mRNA molecules are to be found. To
apply RNA-seq for the purpose of identifying mRNA isoforms
that tumors express and normal tissues do not express, large
databases of RNA-seq data from malignant and normal tissues
are required. The Cancer Genome Atlas (TCGA; cancergenome.
nih.gov) is an NIH-sponsored effort to study the RNA and DNA
in 500 tumors for many cancer types, and the Genotype-Tissue
Expression (GTEx) program (11) is an NIH-sponsored effort to
study the RNA and DNA in thousands of samples from >50 dis-
tinct normal tissue sites. Both of these programs are multicenter
efforts that are generating molecular profiling data at a rate,
scale, and cost that almost certainly could not be borne by any
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single entity. The primary intention of these efforts is to generate
a public resource to catalyze leaps in progress across all aspects
of cancer care, prevention, and therapy. The raw transcriptome
data being produced by these efforts has tremendous discovery
potential, but to date they have not been rigorously evaluated for
tumor-specific molecules for diagnostic and therapeutic appli-
cations. Herein we report on our results to date in using these
RNA-seq data to identify mRNA isoforms that are only ex-
pressed in high-grade serous ovarian adenocarcinomas (HGS-
OvCa) and to evaluate the isoforms’ potential for tumor biology
insights and oncologic applications.

Results
The overall strategy of our tumor-specific isoform identification
process (Fig. 1) is based on (i) computational algorithms we
custom-developed for sensitive and accurate isoform identifica-
tion, (ii) large databases of tumor and normal tissue RNA-seq
data produced by TCGA and GTEx, and and (iii) high-throughput
RT-qPCR experiments. As reported below, we first used our
custom algorithms to efficiently process large amounts of RNA-
seq data and applied one prioritization strategy to produce a list of
mRNA isoforms rank-prioritized by likelihood of being tumor-
specific. We then used our custom-developed software for auto-
mated design of isoform-specific PCR primers and performed RT-
qPCR using pooled tumor RNA and pooled normal tissue RNA.
For isoforms found to only be present in the tumor pool, we
measured their expression by RT-qPCR in a larger set of non-
pooled tumor and normal samples. The isoforms that were
expressed across multiple tumors were then ranked based on
whether they were expressed in zero, one, two, three, four, or
more normal tissues and evaluated for oncologic applications.

Computational Pipeline for RNA-seq. The standard RNA-seq
computational pipeline for organisms with a sequenced genome
has three main components (Fig. 2A): (i) alignments of RNA-seq
reads to the genome, (ii) an isoform model database, and (iii) an

integration algorithm, whose input is the isoform model database
and the read pair alignments and whose output is the expression
level of the supplied isoforms. We developed a pipeline for
isoform identification and expression level estimation that is
distinguished by custom methodologies and software algorithms
in each of these three components.
A major distinguishing feature of our approach to RNA-seq

read alignment is our use of maximally sensitive alignment pa-
rameterizations coupled with nucleotide-resolution read-to-iso-
form correspondence verification. Such parameterizations enable
the thorough detection of all RNA-seq read alignments span-
ning splice junctions, which are especially informative because
they provide exon linkage information that can be crucial for
accurate isoform identification. Current practice sets “minimum
overhangs” of a read’s alignment over a splice junction into an
adjoining exon—often 8 bp or more—to guard against false ge-
nomic alignments. To maximally recover the information in RNA-
seq reads, we consider alignments with even 1-bp overhangs, but
then through nucleotide-resolution read-to-isoform correspon-
dence verification we reject all read pair alignments that do not
exactly match the human genome reference sequence. This
approach has four consequences (Fig. 2B). First, we maximize
the isoform identification information in each set of RNA-seq
data. Second, we identify read pairs that do not correspond to
any known isoform and prevent their subsequent use for iso-
form expression estimation. In practice, these rejected read pairs
constitute 2–3% of the raw data and are indicative of the presence
of isoforms that have not yet been discovered and incorporated
into any public database (12). Third, we explicitly associate each
read pair with a specific isoform or set of isoforms from which it
could have been derived and then use this information in the final
expression estimation stage. Owing to the high overlap of isoforms
at a genomic locus, read pair alignments often overlap isoforms
from which they both could and could not have been physically
derived. In some RNA-seq computational protocols, this distinc-
tion is not addressed and read pair alignments are erroneously
used to estimate the expression of isoforms from which they could
not have been physically derived. As shown in Fig. S1 for an
exemplar RNA-seq dataset, read-to-isoform correspondence
verification markedly reduces the number of isoforms with which
read pairs can be associated. Fourth, we explicitly associate read

Fig. 1. Discovery process overview. We applied custom bioinformatics
algorithms to large public databases of tumor and normal tissue RNA-seq
data to rank-prioritize mRNA isoforms by likelihood of being tumor-
specific. We then used RT-qPCR in two phases to confirm tumor-specific
expression. First we performed RT-qPCR to analyze the RNA of four tumors
pooled together vs. the RNA of four normal tissues pooled together. Then
we selected the most likely tumor-specific isoforms based on expression
profiles in these two pools. Final validation was RT-qPCR on individual
tumor and normal tissues.

Fig. 2. RNA-seq bioinformatics. (A) Our custom RNA-seq computational
pipeline broadly conforms to the standard three-component RNA-seq com-
putational pipeline for organisms with a sequenced genome. (B) In our ap-
proach, we align read pairs (RP) with maximally sensitive parameterizations
and use all known splice junctions, allowing even 1-bp splice junction
“overhangs.” Nucleotide-level read-to-isoform consistency analysis identifies
and records the read pair-isoform tuples that are exactly concordant and
filters out read pairs that are not exactly concordant with some known
isoform (I). (C) We minimize isoform nonidentifications (false negatives)
with our isoform model database that is a merger of the six major isoform
model databases worldwide. Given the read pair-isoform tuples from B, we
use a parsimony principle to subsequently minimize false isoform identifi-
cations (false positives).
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pairs to isoforms to enable our strategy for minimizing both
false positives and false negatives in RNA-seq experiments
(discussed below).
A major distinguishing feature of our approach to isoform

models is the use of a custom isoform model database that we
created by merging all of the major isoform model databases
(Fig. 2C). Although the use of only one particular isoform model
database is standard in current RNA-seq computational pro-
tocols, doing so is a source of false negatives (13); if a particular
isoform is not in the database, then the integration algorithm
(Fig. 2A) cannot know about it and use it for expression esti-
mation. By merging all major isoform model databases, our
approach minimizes the possibility of such false negatives.
Conversely, isoforms in a supplied isoform model database that
are not actually expressed in a sample from which RNA-seq data
were generated represent noise for the integration algorithm and
can lead to the assignment of nonzero expression for un-
expressed isoforms. To minimize the possibility of such false
positives, we use the read-to-isoform verification information
discussed above and our implementation of a greedy solution to
the set cover problem (14) to identify the set of isoforms that most
parsimoniously explains the RNA-seq read alignments. In effect,
we create an isoform model database that is tailored to each
RNA-seq experiment. As shown in Fig. S2, this tailoring reduces
the number of isoforms from loci that are used as input to the
integration algorithm.

Tumor-Specific Isoform Predictions from 2,135 RNA-seq Experiments.
For our study we sought those mRNA isoforms most pervasively
and exclusively expressed in HGS-OvCa. Using 296 curated
TCGA RNA-seq datasets for HGS-OvCa, we first identified
isoforms expressed in 90–100% of tumors. To capture even very
lowly expressed transcripts, we used an expression level cutoff
of 10−6 fragments per kilobase of transcript per million frag-
ments mapped to define whether a transcript was expressed or
not. This first filter yielded 117,108 isoforms (Fig. S3A). We next
used the 1,839 GTEx RNA-seq datasets to count the number of
normal tissues in which the average expression of each of these
117,108 isoforms was equal or higher. As shown in Fig. S3B, most
of the isoforms expressed in 90–100% of the TCGA ovarian
tumors were also expressed in many normal tissues. For each of
the 22,082 isoforms that was equally or more highly expressed in
at most one other tissue, we identified the normal tissue with the
highest average expression and computed two statistics: (i) the
Mann–Whitney P value associated with the two sets of expres-
sion values (i.e., tumor vs. normal) and (ii) the fold change of the
average tumor expression over the average normal tissue ex-
pression. As shown by Fig. S3C, most of the 22,082 isoforms were
not appreciably distinguished in their tumor expression from
their “closest” normal tissue expression by average expression
fold change or the distribution of expression values. Finally,
we rank-prioritized the 22,082 isoforms by likelihood of being
tumor-specific by sorting them by fold change and P value.

High-Throughput mRNA Isoform-Specific PCR Primer Design. The
sequencing technology upon which this study is based has the
limitation of only being applicable to ∼200–250 bp fragments of
cDNA—restricting its ability to unambiguously identify mRNA
isoforms that in the human genome are on average ∼2 kb. For
this reason we used RT-qPCR to confirm the tumor-specific
expression of mRNA isoforms that we rank prioritized by RNA-
seq. To enable a large number of RT-qPCR experiments, we
custom-developed software that could exhaustively identify and
design primers for all unique amplicons of any target mRNA in
the human genome. With this software we attempted to design
primers for 671 of the topmost tumor-specific candidate mRNA
isoforms. The number 671 was chosen so that we could perform
our initial pooled screening (discussed below) with 11 384-well

plate PCR experiments. To reach 671 it was necessary to at-
tempt primer designs for the 1,230 topmost tumor-specific can-
didate mRNA isoforms—corresponding to a 54.6% primer design
success rate. Of the unsuccessful attempts, 320 (26.0%) were due
to the lack of a unique amplicon sequence in the target isoform
and 239 (19.4%) were due to primer design failure. (Primer
design failure can occur for reasons related to Tm requirements,
forward and reverse primer compatibility, primer or amplicon
sequence length constraints, and primer amplification of unin-
tended products.)

Confirmation of Isoform Tumor-Specific Expression by RT-qPCR. We
performed confirmatory RT-qPCR experiments (Fig. S4 and
Table S1) using a two-phase approach. In phase 1 we used
pooled RNA to efficiently filter out isoforms that were not
expressed in tumors and/or were expressed in normal tissues. We
formed a pool of four different tumor RNA samples and a pool
of four different normal tissue RNA samples and then measured
the expression of all 671 isoforms in both pools. As graphed in
Fig. 3, we found that 66.2% (n = 445) of isoforms were detected in
both pools, 18.2% (n = 122) were detected only in the tumor pool,
1.0% (n = 7) were detected only in the normal pool, and 14.5%
(n = 97) were not detected in either pool. Furthermore, our ex-
periments revealed the presence of novel isoforms that are not
documented in any of the isoform model databases that we used to
construct our custom isoform model database. In the group of
isoforms found in both pools, 18.3% of reactions revealed one or
two additional products. For the “tumor only” and “normal only”
groups, the percentages were 5.7% and 0.4%, respectively.
In phase 2 we measured the expression of a subset of the

isoforms in an expanded set of individual, nonpooled RNA
samples. For the subset we selected isoforms that were detected
in only the tumor pool, that were associated with a single peak
melt curve, and that were at least moderately expressed [i.e.,
quantification cycle (Cq) <31–32]. (Low expression of an isoform
in a pool could mean moderate expression in only one sample of
the pool or low expression across all samples in the pool.) These
selection criteria resulted in a subset constituting 86 of the 122

Fig. 3. Categories of pooled RNA RT-qPCR experiment outcomes. For can-
didate tumor-specific mRNA isoforms derived from RNA-seq-based analyses,
we measured their expression by RT-qPCR in a pool of tumor (T) RNA sam-
ples and pool of normal tissue (N) RNA samples. The expression status of the
isoforms in aggregate spanned all possible outcomes. By melt curve analysis,
we observed instances in which just the target product (single) was amplified
and instances in which multiple products (mult) were amplified—indicative
of the presence of novel mRNA isoform structures. The number of isoforms
in each category is displayed atop each bar.
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isoforms only detected in the tumor pool. To expand the set of
RNA samples we added an additional 8 tumor samples and an
additional 14 normal tissue samples—for a total of 12 tumor
samples and 18 normal tissue samples. We then measured by
RT-qPCR the expression of the 86 isoforms in the 30 individual
samples and then ranked the isoforms by the number of normal
tissues in which they were expressed. The top-ranked 33 iso-
forms, shown in Fig. 4 and Table S2, constitute 5% of the orig-
inal 671 isoforms investigated and either have tumor-specific or
restricted normal tissue (normal-restricted) expression. The top
six isoforms, or 0.9% of the original 671, were expressed in 6–12
of the 12 tumors and were undetectable in all 18 normal tissues
examined. An additional 11 isoforms (1.6% of 671) were only
observed in one normal tissue, which in most cases was either
fallopian tube or colon. In the remaining 16 cases (2.4% of 671)
in which the isoforms were present in two, three, or four normal
tissues, fallopian tube and/or ovary were most consistently
among the normal tissues.

Biologic Basis and Applications of Candidate Tumor-Specific Molecules.
Because the 33 mRNA isoforms in Fig. 4 are expressed in 6–12 of
the 12 different tumors and have highly restricted or undetected
normal tissue expression, they are of immediate and high interest
for both understanding tumor biology and for oncologic applica-
tions. A complication that arises when interpreting isoform-level
findings is that most isoforms of most genes have not been ex-
plicitly studied, and even small differences in mRNA or protein
isoform primary sequence from a well-studied canonical isoform
can alter the molecule’s function, localization, lifetime, structure,
and/or interaction network (15). With this caveat in mind, we

highlight below isoforms that are likely to play a causative func-
tional role in the malignant state and that have potential use for
diagnosis and therapy.
Isoforms of genes related to oncogenesis, stem cells, and stem cell-like
cancer cells. A structurally distinct mRNA isoform lAug10 of
ETV4/PEA3 (Fig. 4) was expressed in all studied tumors and was
detectable only in normal heart. ETV4 is a transcription factor
that is active in developing embryos and adult tissues and that
has a demonstrated transforming role in Ewing’s tumors and
prostate, ovarian, breast, and other solid tumors (16). The lAug10
isoform is incompletely known at the 3′ end, but enough of the
transcript has been sequenced to reveal that lAug10 is the only
ETV4 isoform with a truncated N-terminal amino acid sequence
and a skipped exon 5. The functional implications of this dis-
tinguishing structure are unknown.
FOXM1 is a transcription factor that is both a potent onco-

gene and an important molecule for maintaining stem cell re-
newal (17). The gene is highly expressed across a broad range of
different solid tumor types, including ovarian cancer. Integrated
genomic analyses of ovarian cancer performed by TCGA found
the FOXM1 regulatory network to be the most significantly al-
tered in expression level across 87% of the 489 tumors studied.
FOXM1 has multiple isoforms, two of which have been studied
for their transforming potential (18). The study found that iso-
forms FOXM1b and FOXM1c both had transforming potential,
and that FOXM1c was likely to be constitutively active because it
was proteolytically processed to yield a short isoform without
the N-terminal inhibitory domain. The lAug10 and gAug10/
ENST00000536066 isoforms that we identify in Fig. 4 were
neither of the isoforms studied, but interestingly both are short

Fig. 4. RT-qPCR expression measurements for mRNA isoforms. In total, we selected 671 mRNA isoforms for tumor-specific confirmation RT-qPCR experi-
ments. Using pooled RNA, we found a subset of them to be only expressed in the tumor RNA pool (Fig. 3). We selected 86 of these for a second set of RT-qPCR
experiments with 12 tumor and 18 normal tissue RNA samples, which were not pooled. The 33 mRNA isoforms with tumor-specific and the most normal-
restricted expression from the set of 86 are shown, constituting 5% of the original 671.
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isoforms that are missing the N-terminal inhibitory domain.
Thus, it may be that one or both of the FOXM1 isoforms that
we identified are constitutively active transforming isoforms
of FOXM1.
Tetraspanin proteins are increasingly viewed as therapeutic

targets because of their emerging key roles in tumor initiation,
progression, metastasis, and sometimes angiogenesis (19). We
identified isoform iAug10 of CD9/tetraspanin-29 that was ex-
pressed in 10 of 12 tumors and absent from all but one normal
nongynecological tissue sample. CD9 is a cell surface marker for
normal human embryonic stem cells and for cancer stem cells in
non-small-cell lung carcinoma (20). It has various anti- and
protumorigenic roles, with the latter including that of an onco-
gene in an ovarian cancer line (21). The varied and opposing
roles of CD9 have been suggested to be a consequence of its
different interaction partners in the plasma membrane (19). An
additional and compatible reason, though, may be its multiple
protein isoforms.
The lipolysis-stimulated lipoprotein receptor (LSR) is a gene

that in basal-like triple-negative breast cancer cell lines is a
biomarker of cells with cancer stem cell features and with a di-
rect role in driving aggressive tumor-initiating cell behavior (22,
23). These observations are relevant to our study because of the
discovery that basal-like breast cancers and ovarian serous can-
cers exhibit very similar mRNA expression programs and share
critical genomic alterations (24)—indicating related etiology and
therapeutic opportunities. At the gene level LSR is transcribed
in multiple normal tissues, but our investigation revealed LSR
isoform uc002nyp.3 to be expressed across all 12 tumors studied
and undetectable in all 12 normal tissues studied. Intriguingly,
because of this isoform’s structure (Fig. 5D) it has dual thera-
peutic potential; its splice junction forms a unique amino acid
sequence that is a predicted extracellular epitope and is com-
puted to have a high binding affinity for three different MHC I
alleles. Thus, this isoform has the potential of encoding a protein
with one tumor-specific polypeptide that is both an antibody and
T-cell target on ovarian cancer stem cells and that, if found to be
expressed in breast basal-like tumors, could be relevant for mul-
tiple difficult tumor types.
Isoforms for early detection and monitoring of HGS-OvCa. The Papani-
colaou test has recently been demonstrated to be a viable source
of ovarian tumor cells (25). This observation allows for the
possibility of an early ovarian cancer diagnostic test based on the
detection of ovarian tumor-specific mRNA isoforms that are
expressed in tumor cells that have disseminated to the cervix. For
such an early detection strategy to work, one would need to
identify mRNA isoforms that are only expressed in ovarian tu-
mors and not in normal gynecologic tissues. Extensive experi-
mental evidence (26–29) indicates that fallopian tube, and to a
lesser extent the ovary, are the tissue(s) of origin of HGS-OvCa.
Additionally, many studies (30–32) have demonstrated that ex-
pression profiles of tumors are more similar to those of their
tissue of origin than to any other normal tissue, so for HGS-
OvCa fallopian tube and ovary are the most stringent tissues
against which to judge the tumor specificity of an mRNA iso-
form. As shown in Fig. 4, we found that 15 (2.2%) of our original
starting set of 671 isoforms were not expressed in the ovary or
fallopian tube, and so constitute an initial candidate set of
mRNA isoforms upon which a new and innovative strategy for
the early detection of ovarian can be developed.
Isoforms predicted to encode cell surface targets. The parathyroid
hormone receptor 2 gene PTH2R encodes a class B (type II) G
protein-coupled receptor (GPCR) that is predominantly ex-
pressed in endocrine and limbic regions of the forebrain and to a
lesser extent in restricted cell types of peripheral tissues (33). Its
function in nonbrain tissues and in cancer has not been studied.
The mRNA isoform that we identified is highly expressed in 10
of the 12 tumors used herein (Fig. 4). The isoform is distin-

guished by its alternative first exon, which is predicted to retain a
(likely cleaved) signal peptide (Fig. 5A). In addition to the signal
peptide, the first exon would confer on the protein isoform a
unique 12-aa sequence. Because the protein is a class B GPCR,
its N-terminal sequence is expected to be extracellular and thus
amenable to antibody targeting.

Fig. 5. Candidate protein therapeutic targets. (A) The candidate isoform
PTH2R.bAug10 is distinguished from the canonical PTH2R isoform by its al-
ternative first exon, which alters the N-terminal amino acid sequence. Both
protein isoforms are predicted to contain signal peptides (that are likely
cleaved). After signal peptide cleavage, the first exon of PTH2R.bAug10
would still retain a unique 12-aa sequence, which, because the protein is a
class B GPCR, is expected to be extracellular and thus amenable for antibody
targeting. (B) The candidate isoform CD9.iAug10 is distinguished by a
unique exon, which is expected to add 41 uniquely distinguishing amino
acids—some of which project into the extracellular environment and con-
stitute a protein-specific antibody target. (C) The candidate isoform ETV4.
lAug10 has a unique exon structure that creates a unique splice junction
spanning amino acid sequence with high computed binding affinity to two
common MHC 1 alleles. (D) The LSR mRNA isoform ucnyp002.3 contains a
unique splice junction spanning amino acid sequence that is expected to
reside in the extracellular domain of this plasma membrane protein and that
also contains subsequences that are computed to have moderate to high
binding affinity to multiple common MHC 1 alleles. Thus, the single amino
acid sequence is amenable to two therapeutic modalities.
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The CD9 isoform identified herein, which was expressed in
100% of the late-stage 296 TCGA tumors and in 10 of the 12
tumors (Fig. 4), contains a unique exon (Fig. 5B) that imparts
upon the protein a unique, in-frame 41-aa sequence that en-
compasses the first two transmembrane regions of the protein
and the extracellular domain between them—making it amena-
ble to specific antibody targeting if expressed.
Isoforms predicted to encode epitopes for tumor vaccines. Although the
C-terminal portion of the normal-restricted ETV4 isoform iden-
tified herein is incompletely known, the portion that is known
reveals the isoform to have an exon-skipping event that is unique
among all ETV4 isoforms—conferring on the resulting protein at
least 14 unique amino acids (Fig. 5C). We analyzed the epitope
potential of this region using a computational method (34) that
has been recently validated by retrospective prediction against a
large set of bona fide T-cell antigens that induced immune re-
sponses and were associated with tumor regression and long-term
disease stability (35). We identified a 10-mer epitope centered
directly over the unique splice junction and calculated it to have a
very strong affinity (12.9 nM) for the HLA allele A*02:01 and a
moderate affinity (363 nM) for the B*08:01 allele. Because the
A*02:01 and B*08:01 alleles are among the most common HLA
alleles in the Caucasian population of the United States (36), the
ETV4 isoform is a strong candidate for immunotherapeutic ap-
plication for ovarian cancer.

Discussion
We have developed a highly customized RNA-seq bioinformatics
pipeline that is designed for isoform identification and that is
distinct from standard approaches because of (i) its use of an
isoform model database that is a merger of all isoform model
databases available worldwide, (ii) its capability for maximally
sensitive genome-wide read alignment, and (iii) the nucleotide
resolution consistency analysis that is performed for every se-
quencing read–isoform combination. Furthermore, we developed
a workflow for high-throughput, isoform-level RT-qPCR experi-
ments that is distinguished by custom software for automated
design of PCR primers that are specific to individual mRNA
isoforms at complex genomic loci (i.e., loci in which no isoform
may even have a uniquely distinguishing splice junction or exon).
Both the RNA-seq pipeline and RT-qPCR infrastructure have
been developed to the point of being highly automated, requiring
for a new cancer type modest manual involvement and timeframes
(∼6–7 wk) to generate the level of analysis reported herein. We
used our combined computational/experimental pipeline to gen-
erate detailed molecular hypotheses in the form of specific mol-
ecules (i.e., mRNA isoforms and/or the protein isoforms that they
encode) with ovarian tumor-specific expression and with particular
oncologic application(s). Importantly, the hypotheses we gener-
ated would not have been possible with gene-level analyses that by
definition encompass numerous mRNA and protein isoforms
in aggregate.
Analogous to the challenge of distinguishing driver from pas-

senger mutations in cancer genomics (37), cancer transcriptomics
must contend with the challenge of distinguishing those mRNA
molecules that are important for the malignant phenotype from
those that are not. We addressed this challenge by requiring the
mRNA isoforms interrogated in this study to be expressed in 90–
100% of the TCGA ovarian tumors, with the rationale being that a
tumor-specific isoform that is present in most tumors is likely to be
functionally important rather than due to a deregulation side ef-
fect. In support of this rationale, among the topmost 5% (n = 33)
tumor-specific or normal-restricted isoforms are variants of genes
that are demonstrated oncogenes, known to maintain the malig-
nant state, have a direct role in driving aggressive tumor initiating
cell behavior, or are necessary for maintaining a stem-cell phe-
notype. In addition to the cancer genomics goal of identifying
driver mutations is the goal of identifying driver mutations that are

“actionable.” The RT-qPCR experiments revealed 15 mRNA
isoforms that have the tumor specificity required for an early
detection diagnostic of ovarian cancer. Additionally, at least 5 of
the 33 mRNA isoforms confirmed by RT-qPCR to have tumor-
specific or normal-restricted expression encode protein targets
that have unique primary structures that would allow them to be
specifically targeted by one or more therapeutic strategies, in-
cluding monoclonal antibody therapy/chimeric T-cell generation,
and peptide- or T-cell–based vaccines.
Beyond protein, mRNA itself has the potential to be a thera-

peutic target (38, 39). If proven to be so, mRNA has a great ad-
vantage over protein as a class of target molecule because MHC
epitope and cell surface restrictions would not apply. However,
like protein therapeutics, mRNA would need to be targeted iso-
form-specifically because of the high degree of identical nucleo-
tide sequence among the isoforms from a genomic locus. Our
study is pertinent to mRNA therapeutics because we demonstrate
a feasible strategy for finding tumor-specific mRNA targets.
Herein we have proposed the idea—inspired by a DNA-based

approach (25)—of an ovarian cancer detection test based on the
detection of tumor-specific mRNA isoforms from malignant cells
that have disseminated to the cervix and been collected during a
Papanicolaou test. A strategy based on RNA and not DNA could
have distinct advantages. Tumor types have characteristic ex-
pression profiles that are distinctive from both those of other
tumor types and normal tissues. An approach based on RNAs
that are broadly indicative of characteristic expression programs
could be more robust because it would not rely on particular
mutations but on a characteristic cancer cell expression pheno-
type. Furthermore, because somatic DNA mutations occur in
one or a few copies per tumor cell and RNA isoforms can occur
in hundreds to thousands of copies per cell, an assay based on
mRNA is potentially much more sensitive. The first requirement
for such a test is the enumeration of mRNA molecules that in-
dicate the presence of an ovarian tumor. In our experiments, we
identified isoforms that were expressed in most or all tumors and
were not detected in any normal tissues. Furthermore, we
identified additional isoforms that were expressed in most or all
tumors and in only one normal tissue that, importantly, was not
ovary or fallopian tube. These additional isoforms are also can-
didates for a detection test because, not being found in the gy-
necologic tissues tested, they would be indicative of tumor cells if
detected in a Papanicolaou test.
There are a number of hard limitations to the approach for

tumor-specific isoform identification and validation. These hard
limitations are due to the “short read” nature of RNA-seq data
and to the great extent to which mRNA isoforms at a genomic
locus share exons and splice junctions. RNA-seq reads represent,
essentially, 200–250 contiguous base pairs of processed mRNA.
Because most mRNAs are much longer than 250 bp, RNA-seq
reads cannot provide the information that links distant exons and
that is often necessary for unambiguous identification of the
source mRNA isoform. Our RNA-seq computational procedure
was designed for maximum accuracy in identifying those iso-
forms that were, and were not, represented in an RNA-seq
dataset. To achieve this goal, we minimized false negatives by
merging all of the major isoform model databases and then de-
veloped nucleotide-level correspondence and parsimony algo-
rithms to minimize false positives. Nonetheless, determining
which isoforms generated a set of RNA-seq reads is an inference
problem that will always be error-prone and because of this no
isoform identification procedure will be completely accurate.
However, even if one were able to identify the mRNA isoforms
underlying an RNA-seq dataset with complete accuracy, there is
a severe limitation on the rate at which their expression can be
confirmed by PCR. To confirm an mRNA isoform one must de-
sign PCR primers that amplify a uniquely distinguishing nucleo-
tide sequence. At complex genomic loci this is a very challenging
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task because of the extent to which exons and splice junctions are
shared among isoforms. A major component of our study is the
algorithms that we developed for automated design of isoform-
specific PCR primers. Even with our specialty software we found
that we could only design primers for ∼55% of isoforms, meaning
that almost half of the isoforms that we predicted by RNA-seq to
be tumor-specific could not be investigated by RT-qPCR. Fur-
thermore, for ∼25% of the isoforms for which we could design
primers, melt curve analysis revealed the presence of multiple
PCR products (often two or three)—indicating the presence of
new isoforms. These observations are compatible with recent
transcriptome sequencing experiments that have reported on new
isoform discovery rates (12, 40, 41). That RT-qPCR discovers
isoforms at a higher rate attests to its higher sensitivity and lack of
library preparation procedures.
As opposed to the hard limitations that exist for our approach,

there are three “soft” limitations that could be readily addressed
to potentially improve our tumor-specific isoform identification
rate. First, we used only two metrics to rank-prioritize isoforms
by likelihood of being tumor-specific. The output of our RNA-
seq computational procedures has six metrics. Additionally, our
procedures have three threshold values that have not been op-
timized. We expect that the use of more or other metrics for rank
prioritization and of optimized threshold values will yield addi-
tional results of the same qualitative nature as reported herein.
Second, ovary and fallopian tube were the most common normal
tissues in which isoforms were expressed (Fig. 4). As the tissue of
origin and primary tumor site, these are exactly the normal tis-
sues in which a tumor-expressed isoform is most likely to be
expressed. Unfortunately, these are also exactly the normal tis-
sues for which we had the fewest normal control RNA-seq
datasets (three ovary and one fallopian tube). Thus, our ability to
negatively filter tumor-expressed isoforms was limited. The
GTEx project is actively sequencing ovary and fallopian tube, so
this soft limitation will diminish in the near future. Third, we did
not account for the known expression subtypes of HGS-OvCa
(42–44), but instead sought mRNA isoforms that were expressed
in all tumor subtypes (i.e., 90–100% of the 296 TCGA tumors).
Incorporating subtype classification into our procedures could
yield tumor subtype-specific mRNA isoforms.
We note that additional experiments will be required for the

proposed applications of the tumor-specific isoforms that we
identified. Tumor cells that disseminate to the cervix or into the
bloodstream may down-regulate the isoforms that are expressed
in primary tumors, so for utility in a Papanicolaou test-based
early detection diagnostic or in identifying circulating tumor cells

the continued expression of isoforms in these nonprimary tumor
sites will need to be confirmed. Additionally, mRNA expression
does not always equate to protein expression, so for the protein
isoforms with therapeutic target potential their expression and
cellular localization in tumor cells will need to be experimentally
confirmed.
In summary, we have developed and rigorously evaluated a

systematic process for identifying tumor-specific mRNA iso-
forms that leverages the large and growing public databases of
tumor and normal tissue RNA-seq data. We have quantified the
rate at which tumor-specific isoforms can be identified for HGS-
OvCa and have demonstrated that they have the potential to
provide the specificity needed for extremely specific diagnostics
and therapeutics. Our findings are relevant in a larger context
because the procedures we developed can be readily and rapidly
applied to any of the 30 or more tumor types for which large
amounts of RNA-seq data now exist.

Methods and Materials
RNA-seq Bioinformatics. We created a custom isoform model database by
merging the six major isoform model databases available worldwide. We
used the set of all isoform splice junctions from our custom database and
lenient parameterizations to perform highly sensitive genome-wide align-
ment of RNA-seq paired-end reads. We then performed an alignment-fil-
tering step to remove spurious alignments that can be generated by using
lenient parameterization. To filter, we analyzed each read pair alignment to
determine whether or not its implied cDNA fragment was a contiguous
subsequence of any mRNA isoform(s). We then use the filtered read align-
ments to compute the subset of our custom isoform model database that
most parsimoniously accounted for the filtered alignments. In effect, we
created a tailored isoform model database for each RNA-seq dataset. Finally,
we converted read pair genome alignments to transcriptome alignments and
explicitly used the strict correspondence between read pairs and isoforms to
compute isoform-level expression.

RT-qPCR. We performed RT-qPCR experiments according to Minimum In-
formation for Publication of Quantitative Real-Time PCR Experiments (MIQE)
guidelines (45), which among other criteria include the use of multiple ref-
erences for intersample comparison and the calculation of PCR efficiencies
for quantification. Tumor RNA was obtained from the University of California,
San Diego Moores Cancer Center Biorepository and commercially (Origene).
Normal tissue RNA was obtained commercially (Biochain and Origene).

Further details are provided in SI Methods and Materials.
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