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New white light‑emitting 
halochromic stilbenes 
with remarkable quantum yields 
and aggregation‑induced emission
Farhad Panahi1*, Ali Mahmoodi2, Sajjad Ghodrati2, Ali Ashtiani Abdi3 & Fazlolah Eshghi1

Highly efficient single‑component white light emitters (SWLEs), are attractive candidates for the 
simple and cost‑effective fabrication of high‑performance lighting devices. This study introduced a 
donor–π–acceptor and a donor–π–donor stilbene‑based chromophores, representing pH‑responsive 
fluorescence. The emitters showed yellow and green fluorescence in their neutral form. At the same 
time, protonation of the chromophores caused blue fluorescence color with a strong hypsochromic 
shift. The white light emission (WLE) for these chromophores was observed at approximately pH  3 
due to the simultaneous presence of the neutral and protonated forms of the chromophores, covering 
almost all the emission spectra in the visible region (400–700 nm). These chromophores presented 
exceptional white light quantum yields (Φ) between 31 and 54%, which was desirable for producing 
white light‑emitting devices. Density functional theory (DFT) and time‑dependent (TD)‑DFT were 
applied to study the structural and electronic properties of the chromophores.

Light sources based on white organic light-emitting diodes (WOLEDs), owing to their high efficiency and flex-
ibility, low final price, long lifespan, and good color quality have emerged as a powerful platform to replace the 
traditional lighting devices such as the incandescent bulb, fluorescent lamps, and inorganic light-emitting diodes 
(LED)1–4. Conventional white light emission (WLE) in WOLEDs is obtained by combining three primary red, 
green, and blue emitters or two complementary-color emitters (for example, a yellow and a blue emitter)5–7. How-
ever, employing multiple emitters in fabricating WOLEDs is usually accompanied by several challenges such as 
complicated fabrication methods. Moreover, it is highly problematic to control the emission hue due to the energy 
transfer between different emitters. Additionally, the difference in photo-stability of emitters causes hue alteration 
in the long-term application of lighting  devices8–12. Employing single-component white light emitters (SWLEs) 
whose emission spectra cover the whole visible region ranging from 400 to 700 nm can be an exceptional alterna-
tive for the simple fabrication of WOLEDs without the previously mentioned drawbacks. The sole structure of 
single-component white light emitters (SWLEs) can eliminate charge transfer and stability problems. Moreover, 
SWLE-based lighting devices can enjoy lower fabrication costs and less driving voltage than traditional lighting 
 sources13–15. White fluorescence can be obtained through different photochemical procedures such as excited-
state intramolecular proton transfer (ESIPT)16–19, aggregation-induced emission (AIE)20–22,  halochromism22–30 
or their  combinations31–33. Halochromism is a specific type of ionochromismin which a change in pH value 
can induce the color of a fluorescent compound. White light emission can be generated from pH-dependent 
fluorescent dyes at a specific pH where the emission of neutral and protonated forms is complementary and 
identical. The synthesis of halochromic chromophores is usually straightforward because these compounds are 
comparatively small molecules with a simple chemical  structure34. Moreover, tunable fluorescent devices can be 
easily fabricated by a single halochromic chromophore through pH regulation instead of using multiple emit-
ters in separate layers. They also benefit from better color fastness during multiple voltage cycles and prolonged 
application  time35. Some other applications of halochromic fluorescent chromophores include pH-sensitive 
sensors, biomedical probes, and textile  dyes36–44. However, only a limited number of halochromic white light 
emitters have been synthesized so far, and the low quantum yield is still a critical issue. Herein, in continuation of 
our previous  reports45–50, two highly efficient donor–π–acceptor and donor–π–donor stilbene-based fluorescent 
chromophores (Fig. 1) with white light emission introduced and their photophysical properties investigated.
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Results and discussion
Compounds ASDSB and AADSB were synthesized based on our previously reported procedure in the  literature51.

The solvatochromic effect of the chromophores was investigated from the absorption and emission spectra 
in low to high polarity solvents including xylene, ethyl acetate (ETA), dichloromethane (DCM), ethanol, and 
dimethylformamide (DMF). The corresponding results are shown in Fig. 2 and Table 1.

The ASDSB and AADSB compounds showed a broad and structure-less absorption band ranging from 300 
to 500 nm with a maximum peak at around 400 nm assigned to the intramolecular charge transfer (ICT) process 
from the amine and/or sulfonyl group. The absorption band of thechromophores revealed a negligible solva-
tochromic effect by increasing solvent polarity from low toward high polarity solvents. These observations illus-
trated that the chromophores exhibit low dipole moments at their ground state. Chromophore ASDSB showed a 
strong fluorescent emission in low to medium polarity solvents (i.e., xylene, dichloromethane (DCM), and ethyl 
acetate (ETA)) and a weak fluorescent emission in high polar solvents (i.e., ethanol and dimethyl formamide 
(DMF)). At the same time, AADSB showed intense fluorescent emission in all solvents. Chromophore ASDSB 
experienced a bathochromic shift from 505 nm in xylene to 575 nm in DMF, and its fluorescent color intensely 
changed from greenish-blue to orange. However, this trend was less pronounced for chromophore AADSB. This 
chromophore underwent a bathochromic shift from 451 nm in xylene to 502 in DMF. AADSB showed a blue 
fluorescent color in low polar media that was gradually changed to green with increasing solvent polarity. These 
results showed that the excited state of the chromophores is more polar and had more ICT characteristics than 
that of their ground state. The stabilization of the excited state by solvents with more polarity was the reason for 
the observed  solvatochromism52,53. The more distinct solvatochromic effect for chromophore ASDSB compared 
to that of chromophore AADSB may arise from the difference in their chemical structure. ASDSB with strong 
donor (amine) and acceptor (sulfonyl) substitutions exhibit more intense ICT characters compared to that of 
AADSB. These properties can result in the larger dipole moment and smaller energy bandgap of ASDSB. There-
fore, the compound at its excited state can easily stabilize by polar solvent molecules interactions. An excellent 
fluorescence quantum yield (Φ) with a value of 0.73 was recorded for the chromophore ASDSB. However, the 
fluorescence was significantly decreased with increasing solvent polarity from xylene to DMF corresponding to 
the non-radiative relaxation process. As mentioned earlier, polar solvents can stabilize the excited state of the 
fluorescent compound, narrow the energy gap between its ground and excited state, and induce radiationless 
 decay54–56. In the case of chromophore AADSB, the fluorescence quantum yield (Φ) was found to be high in all 
solvents with a minimum value of 0.34 in DMF and a maximum value of 0.68 in ethanol.

The solvent effects on fluorescence characteristic of a moleculecan be demonstrated by Lippert–Mataga (LM) 
 formalism57:

In this equation, �v , �µ , h, c, a, �f  , ε, and n are Stocks shift, the difference of ground state and excited state 
dipole moments, Planks constant, speed of light, the radius of cavity, solvent polarizability, dielectric constant and 
refractive index respectively. Equation (2) shows the re-orientation of solvent molecules with dielectric constant 
(ε) and refractive index (n). The Lippert-Mataga plot is shown in Fig. 3. The slope of the fitted line on the data 
points indicates the sensitivity of the fluorescence to the solvent polarity. The higher slope of ASDSB compared 
with AADSB (8305 and 6131, respectively) shows that the difference of dipole moment of the ASDSB in the 
excited state and ground state is higher than the AADSB due to the asymmetric structural design. This result 
explains the higher stokes shift and lower quantum yields (Φ) of ASDSB in polar solvents.
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Figure 1.  The chemical structure of halochromic stilbene-based chromophores and the synthetic pathway for 
their preparation. (i) Pd(OAc)2, DPEPhos,  K2CO3, DMF, Ar.
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The absorption and emission spectra of ASDSB and AADSB in DCM upon addition various amounts of 
trifluoroacetic acid (TFA) were recorded to investigate the effect of protonation on photophysical properties of 
the chromophores and the results were shown in Fig. 4.

As seen, both absorption and emission spectra of the chromophores showed minor pH responsivity with the 
variation of pH from 7 to 4. A significant hypsochromic shift was observed for the absorption and emission bands 
of the chromophores with further decreasing pH from 4 to 1. Correspondingly, the color of the solutions was 
changed from yellow to colorless for ASDSB and green to blue for AADSB with decreasing pH. The fluorescent 
hue was also changed from yellow to blue for ASDSB solutions and green to blue for AADSB solutions after 
protonation of the chromophores. The observed hypsochromic shift for chromophores ASDSB and AADSB 
were 63 nm (from 397 nm at pH  7 to 334 nm at pH  1) and 44 nm (from 394 nm at pH  7 to 350 nm at pH  1) for 
their absorption band, respectively. These values were found to be 134 nm (from 563 nm at pH  7 to 429 nm at 
pH  1), and 57 nm (from 475 nm at pH  7 to 418 nm at pH  1) for their emission band, respectively. These results 
can be originated from the protonation of the chromophores with increasing acid concentration interrupting 
the ICT process. In fact, the protonation of the strong electron-donating substitution on the chromophore’s 

Figure 2.  Uv–Vis spectra (a,b) and emission spectra (c,d) of ASDSB and AADSB at concentration of  10–5 M in 
different solvents, respectively. The photographs of the chromophores in different solutions (From left to right, 
xylene, DCM, ETA, ethanol, and DMF) were taken under natural daylight simulator (D65) lamps (top image), 
and irradiation of A-Class UV lamps (bottom image).
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molecular structure in acidic conditions can turn the amine group to quaternary ammonium salt as a strong 
electron-withdrawing group. This procedure weakens electron-donating ability and interrupts the chromophore’s 
push–pull structure, leading to a less ICT  character58,59.

The most surprising aspect of the data in Fig. 4 and Table 2 is that the chromophores can illustrate white 
light emission at pH around 3 with the Commission International de l’Eclairage (CIE 1931) color coordinates of 
(0.33, 0.32) for ASDSB and (0.33, 0.31) for AADSB, respectively. This relatively rare phenomenon in fluorescent 
compounds stemmed from the pH sensitivity of the chromophores. In other words, at a specific pH where the 
identical amount of neural and protonated forms of the compounds are simultaneously present in their solutions, 
white light fluorescence can be observed since the emission bands are broad and complementary colors (Fig. 5).

Another striking observation to emerge from the data was compelling white light quantum yield (Φ) with the 
values of 0.31 and 0.54 for chromophore ASDSB and AADSB, respectively. It was reported that lighting accounts 
for almost 20% of the total electricity produced in the  globe60. Only a small increase in quantum yield of white 
light emitters could substantially decline electricity consumption. Therefore, the observed results highlighted the 
potential application of ASDSB and AADSB as remarkable options in fabricating lighting sources.

The emission spectra of the chromophores in the mixture of DMF (good solubility of chromophores) and 
water (low solubility of chromophores) were obtained to evaluate AIE properties for these compounds. The 
corresponding results are depicted in Fig. 6.

As can be seen, despite the relative similarity in the molecular structure of chromophore ASDSB and AADSB, 
they represented different aggregation characteristics. The main different in the structure of these molecules is 
the presence of hydroxyl group which is act as both hydrogen donor and hydrogen accepting group as important 
moiety in the interaction of molecules with the aprotic solvents like water. Therefore, by increasing the fraction 
of water, the amount of hydrogen bonding between solvent and molecule is enhanced which is directly affects 
the aggregation of molecule due to the decreasing intramolecular interactions. It should be noted that the sulfone 
moiety is a hydrogen accepting group and it interact with hydrogens of water molecules resulting in an increasing 

Table 1.  Optical data of the chromophores. a Calculated from the absorption spectra by using the empirical 
formula of E(eV) = hc/λonset = 1240 (eV nm)/λonset(nm). b  9,10-Diphenylanthracene was used as standard 
(Ф = 0.90 in cyclohexane).

Solvent λab (nm) λem (nm) Stokes shift  (cm−1) ε (L  M−1  cm−1) E (eV)a Φb

ASDSB

Xylene 394 505 5579 9300 2.69 0.73

DCM 394 563 7619 65,200 2.66 0.13

ETA 394 554 7330 62,700 2.69 0.1 > 

DMF 401 575 7546 61,300 2.63 0.1 > 

Ethanol 394 570 7837 23,300 2.66 0.1 > 

AADSB

Xylene 391 451 3403 3400 2.83 0.55

DCM 394 475 4523 49,600 2.82 0.56

ETA 392 471 4344 46,000 2.82 0.52

DMF 404 502 5655 61,200 2.64 0.34

Ethanol 389 477 4611 20,400 2.82 0.68

Figure 3.  Lippert–Mataga plot for ASDSB and AADSB shows the correlation between stokes shifts with 
solvent polarizability characteristics.
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the positive charge on the sulfur center and finally its act as a stronger accepting group. On the other hand, the 
amino group acts as a hydrogen acceptor and its interaction with hydrogen of aprotic solvents like water causes 
a decreasing in the donating power of amino group. Due to these key different in chemical structure of ASDSB 
and AADSB molecules their optical behavior and AIE are different. Overall, by increasing the water fraction the 
electronic nature of the groups, intramolecular polar-polar interactions and solubility of the molecule are changed 

Figure 4.  UV–Vis spectra (a,b) and emission spectra (c,d) of chromophore ASDSB and AADSB in DCM at a 
concentration of  10–5 M upon change of pH from 1 to 7 by TFA, respectively. The photographs of the solutions 
(pH increases from left to right) were taken under natural daylight simulator (D65) lamps (top image), and 
irradiation of A-Class UV lamps (bottom image).

Table 2.  Optical data of the chromophores at pH  3.

Chromophore Solvent (x, y) Φ

ASDSB DCM (0.33, 0.32) 0.31

AADSB DCM (0.33, 0.31) 0.54
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which are the responsible of both AIE and shifts in emission of the molecules. For chromophore ASDSB, upon 
increasing water fraction from 0 to 70%, the intensity of the emission band at 575 nm was steadily decreased, 
accompanied by the disappearance of the shoulder at 473 nm. The observed color change from orange to red 
may be attributed to stabilizing dipole moment at the ground state by increasing solvent interactions such as 
hydrogen bonding. A slight increase in the emission intensity was observed with further increasing water frac-
tions from 70 to 90%, showing the aggregation-induced emission (AIE) phenomenon for chromophore ASDSB. 
These results may originate from the restriction of fluorophore intramolecular motions due to the formation 
of molecular aggregations because of low solubility in the mixture solvent and intramolecular interactions. 
Chromophore AADSB displayed a gradual rise in the emission intensity with the concomitant redshift from 
502 to 513 nm as the water fraction increased from 0 to 60%. Following the increase of water fraction to 70%, a 
significant drop in the emission intensity was observed for this sample. Finally, the fluorescence was quenched 
by further increasing water fraction to 90%, indicative of aggregation-caused quenching (ACQ) for AADSB. The 
increase in the fluorescence of chromophore ASDSB (after addition of more than 70% water) and AADSB (up to 
60% water portion in the solvents mixture) can be explained by the aggregate formation of the chromophores in 
poor solvents restricting the intermolecular  rotations61,62. These results were representative of the AIE character 
in chromophore ASDSB and AADSB.

Quantum mechanical studies. Density functional theory (DFT) and time-dependent density functional 
theory (TD-DFT) were chosen as he most practical ways to investigate the chromophores’ electronic structure 
and vertical transition energies.

Figure 7 shows the resulting optimized geometries of ASDSB and AADSB employingB3LYP/6–311 + g(2d,p) 
in a DCM solvent environment. The side view of both molecules shows a planar geometry of the three phenyl 
rings. However, the bulkiness of the amine moiety induces some degree of dihedral twist between the two adja-
cent phenyl rings. Therefore, in agreement with the higher Stokes shift of ASDSB in experiments, the backbone of 
ASDSB is supposed to be more rigid than AADSB. The frontier orbitals of the molecules are shown in Fig. 7c,d. 
The highest occupied molecular orbital (HOMO) of the ASDSB is located on amine and the two adjacent phe-
nyl rings. At the same time, the electrons in the HOMO of the AADSB are distributed on the entire backbone. 
While the lowest unoccupied molecular orbital (LUMO) in AADSB is somehow localized on the phenyl rings, 
the LUMO of ASDSB is localized on the electron-withdrawing sulfonyl group. The push–pull electronic transfer 
in ASDSB brought a deeper HOMO and LUMO than AADSB (Table 3). A most remarkable result from the data 
is that the HOMO to LUMO transformation in ASDSB and AADSB is almost different, which suggests different 
band gaps and absorption wavelengths (λmax). Still, according to the experiment and the TD-DFT simulation 
(Table 3), both molecules show the same λmax. On the other hand, molecular electrostatic potential (MEP) sur-
faces and vectors of dipole moment (Fig. 7e,f) illustrate that the ASDSB compared with the ASDSB, has a more 
polar structure. In other words, replacing the electron-withdrawing sulfonyl group with an electron-donating 
amine grope has no meaningful impact on the absorption characteristics. This is explained by the long system of 
conjugation, which is brought by the sequence of stilbenes in the backbone of the molecules. Putting the donor 
and acceptor in such a far distance led to the same length of conjugation for both molecules and diminishing the 
push–pull effect on the absorption wavelength, yet different solvatochromic and fluorescence characteristics, as 
seen in experiments and Lipppert–Mataga study.

Figure 5.  A schematic representation the chemical structure of ASDSB beside the emission spectra in both 
neutral and protonated forms to produce white light emission at pH  3.
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Conclusion
In conclusion, two stilbene-based chromophores were introduced, which showed yellow and green emission 
fluorescence in their neutral form and blue fluorescence color with a strong hypsochromic shift in the proto-
nated forms. These chromophores showed WLE at pH  3 due to the simultaneous presence of the neutral and 
protonated chromophores, representing pH-responsive fluorescence. Remarkable white light quantum yields (Φ) 
were observed for producing white light-emitting devices in these chromophores, suggesting a high potential 
application of the compounds in the preparation of high-performance lighting devices.

Experimental
General. Chemicals were purchased from Fluka and Aldrich companies and used without further purifica-
tion. The known products were characterized by comparing their spectral and physical data with those reported 
in the literature. 1H NMR (250 MHz) and 13C NMR (62.5 MHz), spectra were recorded on a Brucker (250 MHz) 
Avance DRX. FT-IR spectroscopy (Shimadzu FT-IR 8300 spectrophotometer), were employed for the charac-

Figure 6.  UV–Vis (a,b) and emission (c,d) spectra of chromophore ASDSB and AADSB at concentration 
of 1 ×  10–5 M in DMF/water mixtures with water fraction from 0 to 90%, respectively. The photographs of the 
solutions (water fraction increases from 0% (left) to 90% (right)) were taken under natural daylight simulator 
(D65) lamps (top image), and irradiation of A-Class UV lamps (bottom image).



8

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2385  | https://doi.org/10.1038/s41598-022-06435-w

www.nature.com/scientificreports/

terization of the products. Melting points were determined in open capillary tubes in a Buchi melting point 
B-545. The reaction monitoring was accomplished by TLC on silica gel PolyGram SILG/UV254 plates. Column 
chromatography was carried out on columns of silica gel 60 (70–230 mesh).

Procedure for the synthesis of compounds ASDSB and AADSB. 1-(Methylsulfonyl)-4-(4-vinyl-
styryl)benzene (C). A sealed Schlenk tube was charged with1-bromo-4-methanesulfonyl-benzene (A; 5 mmol, 
1.17 g), and  K2CO3 (10.0 mmol, 1.4 g), Pd(OAc)2 (1.2 mol%, 14 mg), DPEPhos ligand (2.4 mol%, 65 mg) and 

Figure 7.  Optimized geometry (a,b), HOMO (b), LUMO (c), MEP maps (e), and dipole moment vector 
illustration (f) of ASDSB and AADSB theoretically modeled at the B3LYP/6–311 + g(2d,p) level.

Table 3.  Ground state (DFT) and excited state (TD-DFT) calculated parameters of ASDSB and AADSB. 

ASDSB AADSB

Ground state

HOMO −5.16 −4.90

LUMO −2.39 −1.92

Gap 2.78 (2.66) 2.98 (2.84)

Dipole moment 11.7 3.1

Excited-state

λmax (nm) 404 (394) 401 (394)

Oscillator strength 2.3772 2.5841

Major contributions HOMO → LUMO (78%) HOMO → LUMO (89%)
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it was evacuated and backfilled with argon. Then 1,4-divinyl-benzene (B; 5 mmol, 0.6 mL) and 5 mL of dry 
DMF was added to the reaction mixture under fellow of argon and tube was sealed with a screw-cap and the 
resulting mixture was heated in an oil bath at 120 °C for 6 h. To obtain the pure product its was purified by 
column chromatography (hexane/ethyl acetate: 10/1) (1.04 g, 73%). Yellow solid; mp 182.7 °C. IR (KBr): 3448, 
3016, 1589, 1412, 1311, 1149, 957, 833, 764, 448  cm-1. 1H-NMR (250 MHz,  CDCl3/TMS) δ (ppm): 3.07 (s, 3H), 
5.29 (d, J = 11.0 Hz, 1H), 5.80 (d, J = 17.5 Hz, 1H), 6.73 (dd, J = 17.6, 10.7 Hz, 1H), 7.12 (d, J = 16.5, 1H), 7.24 (d, 
J = 16.5 Hz, 1H), 7.43 (d, J = 8.3 Hz, 2H), 7.51 (d, J = 8.2 Hz, 2H), 7.67 (d, J = 8.5 Hz, 2H), 7.92 (d, J = 8.5 Hz, 2H). 
13C-NMR (62.5 MHz,  CDCl3/TMS) δ (ppm): 44.6, 114.5, 126.3, 126.7, 127.0, 127.1, 127.9, 132.2, 135.7, 136.2, 
137.9, 142.8. Anal. Cal.  C17H16O2S (284.4): C, 71.80; H, 5.67; O, 11.25; S, 11.28; found: C, 71.85; H, 5.71.

2–4- 2-{Ethyl-[4-(2-{4-[2-(4-methanesulfonyl-phenyl)-vinyl]-phenyl}-vinyl)-phenyl]-amino}-ethanol 
(ASDSB). A sealed Schlenk tube was charged with compound C (1 mmol, 0.29 g), 2-[Ethyl-(4-iodo-phenyl)-
amino]-ethanol (D; 1 mmol, 0.29 g), and  K2CO3 (2.5 mmol, 0.35 g), Pd(OAc)2 (1.2 mol %, 2.7 mg), DPEPhos 
ligand (2.4 mol %, 13 mg) and it was evacuated and backfilled with argon. Then 5 mL of dry DMF was added to 
the reaction mixture under fellow of argon and tube was sealed with a screw-cap and the resulting mixture was 
heated in an oil bath at 120 °C for 12 h. After completion of the reaction, the mixture was filtered (in hot form) 
and the remaining solid was washed with DMF (2 mL). Subsequently, water (10 mL) was added to the solution in 
order to precipitate product. The obtained solid was purified by column chromatography (hexane/ethyl acetate: 
10/2) to obtain the pure product (0.4 g, 90%). Orange solid; mp 275.5 °C.1 IR (KBr): 3300, 3000, 1600, 1590, 
1510, 1400, 1350, 1290, 1180, 1130, 1080, 1060, 830, 820, 760, 550  cm−1. 1H-NMR (250 MHz, DMSO-d6/TMS) 
δ (ppm): 1.07 (t, J = 6.8 Hz, 3H), 3.20 (s, 3H), 3.32–3.51 (m, 6H), 4.72 (s, 1H), 6.66 (d, J = 8.6 Hz, 2H), 6.93 (d, 
J = 16.4 Hz, 2H), 7.15 (d, J = 16.4 Hz, 2H), 7.36–7.42 (m, 2H), 7.48–7.62 (m, 6H), 7.81–7.90 (m, 2H). Anal. Cal. 
 C27H29NO3S (447.6): C, 72.45; H, 6.53; N, 3.13; O, 10.72; S, 7.16; found: C, 72.51; H, 6.58; N, 3.19.

2-[Ethyl-(4-{2-[4-(2-{4-[ethyl-(2-hydroxy-ethyl)-amino]-phenyl}-vinyl)-phenyl]-vinyl}-phenyl)-amino]-eth-
anol (AADSB). A sealed Schlenk tube was charged with 2-[Ethyl-(4-iodo-phenyl)-amino]-ethanol (D; 2 mmol, 
0.60 g),  K2CO3 (5 mmol, 0.68 g), Pd(OAc)2 (1.2 mol%, 5.5 mg), DPEPhos ligand (2.4 mol%, 26 mg) and it was 
evacuated and backfilled with argon. Then 1,4-divinyl-benzene (B; 1 mmol, 0.12 mL) and 6 mL of dry DMF 
were added to the reaction mixture under the argon atmosphere. The tube was sealed with a screw-cap, and the 
resulting mixture was heated in an oil bath at 120 °C for 6 h. The reaction was followed by TLC. After completion 
of the reaction, the mixture was cooled down to room temperature and filtered. The remaining solid was washed 
with dichloromethane (3 × 5 mL) to separate the catalyst. After the extraction of dichloromethane from water, 
the organic extract was dried over  Na2SO4. The products were purified by column chromatography (hexane/
ethyl acetate: 10/2) to obtain the pure product (0.4 g, 88%). Yellow solid; mp 216.5 °C. IR (KBr): 3389, 2922, 
1601, 1520, 1360, 1267, 1180, 1051, 964, 823, 550  cm−1. 1H-NMR (250 MHz, DMSO-d6) (δ ppm): 1.04–1.14 (m, 
6H), 3.31–3.53 (m, 12H), 4.70 (m, 2H), 6.55–6.67 (m, 4H), 6.85–7.10 (m, 8H), 7.22–7.66 (m, 4H). m/z (%): 456 
(94.5%, (M)+). Anal. Cal.  C30H36N2O2 (456.6): C, 78.91; H, 7.95; N, 6.13; O, 7.01; found: C, 78.98; H, 7.99; N, 6.18.

Theoretical calculations. The geometry of the molecules in the ground state was optimized by the first-
principles density functional theory (DFT). The calculations carried by B3LYP  functional63 and 6–311 + g(2d,p)
as the basis set. The most stable geometry was found by examining different isomers and configurations and 
examining vibrational frequency calculation. The excited state of the molecules was simulated by time-depend-
ent density functional theory (TD-DFT). The model was the Coulomb attenuating employing the B3LYP hybrid 
functional (CAM-B3LYP)64 and the same basis-set as the DFT method. The polarizable continuum model with 
the integral equation formalism (IEFPCM) was chosen to model the dichloromethane (DCM) as solvent. Calcu-
lations were carried out using Gaussian  0965.

Received: 5 November 2021; Accepted: 31 January 2022

References
 1. Gather, M. C., Köhnen, A. & Meerholz, K. White organic light-emitting diodes. Adv. Mater. 23, 233–248 (2011).
 2. Yin, Y., Ali, M. U., Xie, W., Yang, H. & Meng, H. Evolution of white organic light-emitting devices: From academic research to 

lighting and display applications. Mater. Chem. Front. 3, 970–1031 (2019).
 3. Bernal, W. et al. White organic light emitting diodes based on exciplex states by using a new carbazole derivative as single emitter 

layer. Dyes Pigm. 163, 754–760 (2019).
 4. Wei, X. et al. A new strategy for structuring white organic light-emitting diodes by combining complementary emissions in the 

same interface. J. Mater. Chem. C8, 2772–2779 (2020).
 5. Zhang, H., Chen, S. & Sun, X. W. Efficient red/green/blue tandem quantum-dot light-emitting diodes with external quantum 

efficiency exceeding 21%. ACS Nano 12, 697–704 (2018).
 6. Maiti, D. K., Bhattacharjee, R., Datta, A. & Banerjee, A. Modulation of fluorescence resonance energy transfer efficiency for white 

light emission from a series of stilbene-perylene based donor-acceptor pair. J. Phys. Chem. C 117, 23178–23189 (2013).
 7. Peng, C. et al. Efficient and chromaticity-stable flexible white organic light-emitting devices based on organic–inorganic hybrid 

color-conversion electrodes. RSC Adv. 9, 22577–22585 (2019).
 8. Pati, A. K., Gharpure, S. J. & Mishra, A. K. White light emission in butadiyne bridged pyrene-phenyl hybrid fluorophore: Under-

standing the photophysical importance of Diyne spacer and utilizing the excited-state photophysics for vapor detection. J. Phys. 
Chem. A 120, 5838–5847 (2016).

 9. Xie, Z. et al. White-light emission strategy of a single organic compound with aggregation-induced emission and delayed fluores-
cence properties. Angew. Chem. Int. Ed. 54, 7181–7184 (2015).

 10. Yang, Q.-Y. & Lehn, J.-M. Bright white-light emission from a single organic compound in the solid State. Angew. Chem. Int. Ed. 
53, 4572–4577 (2014).

 11. Jin, X.-H., Chen, C., Ren, C.-X., Cai, L.-X. & Zhang, J. Bright white-light emission from a novel donor–acceptor organic molecule 
in the solid state via intermolecular charge transfer. Chem. Commun. 50, 15878–15881 (2014).



10

Vol:.(1234567890)

Scientific Reports |         (2022) 12:2385  | https://doi.org/10.1038/s41598-022-06435-w

www.nature.com/scientificreports/

 12. Chen, C. et al. Photo-facilitated aggregation and correlated color temperature adjustment of single component organic solid state 
white-light emitting materials. J. Mater. Chem. C3, 4563–4569 (2015).

 13. Wang, L. et al. Highly efficient white organic light-emitting diodes with single small molecular emitting material. Appl. Phys. Lett. 
91, 183504 (2007).

 14. Mazzeo, M. et al. Bright white organic light-emitting devices from a single active molecular material. Adv. Mater. 17, 34–39 (2005).
 15. Chen, Z., Ho, C.-L., Wang, L. & Wong, W.-Y. Single-molecular white-light emitters and their potential WOLED applications. Adv. 

Mater. 32, 1903269 (2020).
 16. Cheng, J. et al. A single 2-(2′-hydroxyphenyl) benzothiazole derivative can achieve pure white-light emission. Chem. Asian J. 9, 

3215–3220 (2014).
 17. Li, B. et al. Dual-emissive 2-(2′-hydroxyphenyl) oxazoles for high performance organic electroluminescent devices: discovery 

of a new equilibrium of excited state intramolecular proton transfer with a reverse intersystem crossing process. Chem. Sci. 9, 
1213–1220 (2018).

 18. Zhao, J., Ji, S., Chen, Y., Guo, H. & Yang, P. Excited state intramolecular proton transfer (ESIPT): from principal photophysics to 
the development of new chromophores and applications in fluorescent molecular probes and luminescent materials. Phys. Chem. 
Chem. Phys. 14, 8803–8817 (2012).

 19. Duarte, L. G. T. A. et al. White-light generation from all-solution-processed OLEDs using a benzothiazole–salophen derivative 
reactive to the ESIPT process. Phys. Chem. Chem. Phys. 21, 1172–1182 (2019).

 20. Molla, M. R. & Ghosh, S. Hydrogen-bonding-mediated J-aggregation and white-light emission from a remarkably simple, single-
component, naphthalenediimide chromophore. Chem. Eur. J. 18, 1290 (2012).

 21. Bhattacharya, S. & Samanta, S. K. Unusual salt-induced color modulation through aggregation-induced emission switching of a 
bis-cationic phenylenedivinylene-based π hydrogelator. Chem. Eur. J. 18, 16632–16641 (2012).

 22. Sharma, C. P. et al. Synthesis of solution-processable donor–acceptor pyranone dyads for white organic light-emitting devices. J. 
Organ. Chem. 84, 7674–7684 (2019).

 23. Li, M., Yuan, Y. & Chen, Y. Acid-induced multicolor fluorescence of pyridazine derivative. ACS Appl. Mater. Interfaces 10, 1237–
1243 (2018).

 24. Täuscher, E. et al. Classical heterocycles with surprising properties: the 4-hydroxy-1, 3-thiazoles. Tetrahedron Lett. 52, 2292–2294 
(2011).

 25. Yamaguchi, K., Murai, T., Guo, J.-D., Sasamori, T. & Tokitoh, N. Acid-responsive absorption and emission of 5-N-arylaminothi-
azoles: emission of white light from a single fluorescent dye and a Lewis acid. ChemistryOpen 5, 434 (2016).

 26. Achelle, S., Rodríguez-López, J., Katan, C. & Robin-le Guen, F. Luminescence behavior of protonated methoxy-substituted diazine 
derivatives: Toward white light emission. J. Phys. Chem. C 120, 26986–26995 (2016).

 27. Huynh, H. V., He, X. & Baumgartner, T. Halochromic generation of white light emission using a single dithienophosphole lumi-
nophore. Chem. Commun. 49, 4899–4901 (2013).

 28. Liu, D., Zhang, Z., Zhang, H. & Wang, Y. A novel approach towards white photoluminescence and electroluminescence by con-
trolled protonation of a blue fluorophore. Chem. Commun. 49, 10001–10003 (2013).

 29. Takahashi, M., Enami, Y., Ninagawa, H. & Obata, M. A novel approach to white-light emission using a single fluorescent urea 
derivative and fluoride. New J. Chem. 43, 3265–3268 (2019).

 30. Chaudhary, J. et al. A new aggregation induced emission active halochromic white light emissive molecule: Combined experimental 
and theoretical study. J. Phys. Chem. C 124, 15406–15417 (2020).

 31. Chen, Y. et al. Color-tunable and ESIPT-inspired solid fluorophores based on benzothiazole derivatives: Aggregation-induced 
emission, strong solvatochromic effect, and white light emission. ACS Appl. Mater. Interfaces 12, 55094–55106 (2020).

 32. Samanta, S., Manna, U. & Das, G. White-light emission from simple AIE–ESIPT-excimer tripled single molecular system. New J. 
Chem. 41, 1064–1072 (2017).

 33. Maity, A., Ali, F., Agarwalla, H., Anothumakkool, B. & Das, A. Tuning of multiple luminescence outputs and white-light emission 
from a single gelator molecule through an ESIPT coupled AIEE process. Chem. Commun. 51, 2130–2133 (2015).

 34. Mukherjee, S. & Thilagar, P. Organic white-light emitting materials. Dyes Pigm. 110, 2–27 (2014).
 35. Park, Y. I. et al. A new pH sensitive fluorescent and white light emissive material through controlled intermolecular charge transfer. 

Chem. Sci. 6, 789–797 (2015).
 36. Yang, Y. et al. An organic white light-emitting fluorophore. J. Am. Chem. Soc. 128, 14081–14092 (2006).
 37. Tydlitát, J. et al. Photophysical properties of acid-responsive triphenylamine derivatives bearing pyridine fragments: Towards white 

light emission. Dyes Pigm. 146, 467–478 (2017).
 38. Giovanella, U. et al. In situ electroluminescence color tuning by thermal deprotonation suitable for thermal sensors and anti-fraud 

labels. Chem. Phys. Chem. 18, 2157–2161 (2017).
 39. Hu, Y. et al. Colorimetric and fluorescent detecting phosgene by a second-generation chemosensor. Anal. Chem. 90, 3382–3386 

(2018).
 40. Shen, J. et al. Fabrication of smart pH-responsive fluorescent solid-like giant vesicles by ionic self-assembly strategy. J. Phys. Chem. 

C 120, 27533–27540 (2016).
 41. Kumar, R., Yadav, R., Kolhe, M. A., Bhosale, R. S. & Narayan, R. 8-Hydroxypyrene-1, 3, 6-trisulfonic acid trisodium salt (HPTS) 

based high fluorescent, pH stimuli waterborne polyurethane coatings. Polymer 136, 157–165 (2018).
 42. Zhang, W., Zhang, Y., Cheng, Y., Qin, C. & Chen, G. A hemicyanine fluorescent reactive cationic dye: Synthesis and applications 

on wool fabrics. Color. Technol. 131, 316–321 (2015).
 43. Nagarasu, P. et al. Structure controlled solvatochromism and halochromic fluorescence switching of 2,2′-bipyridine based donor–

acceptor derivatives. New J. Chem. 44, 14421–14428 (2020).
 44. Siriwibool, S. et al. Near-infrared fluorescent pH responsive probe for targeted photodynamic cancer therapy. Sci. Rep. 10, 1283 

(2020).
 45. Mahmoodi, A., Panahi, F., Eshghi, F. & Kimiaei, E. A novel tetra-stilbene-based fluorescent compound: Synthesis, characterization 

and photophysical properties evaluation. J. Lumin. 199, 165–173 (2018).
 46. Karimi-Alavijeh, H., Panahi, F. & Gharavi, A. Photo-switching effect in stilbene organic field effect transistors. J. Appl. Phys. 115, 

093706 (2014).
 47. Sharbati, M. T., Panahi, F. & Gharavi, A. Near-infrared organic light-emitting diodes based on donor-pi-acceptor oligomers. IEEE 

Photon. Technol. Lett. 22, 1695–1697 (2010).
 48. Sharbati, M. T., Panahi, F., Nekoei, A.-R., Emami, F. & Niknam, K. Blue to red electroluminescence emission from organic light-

emitting diodes based on π-conjugated organic semiconductor materials. J. Photon. Energy 4, 043599 (2014).
 49. Miri, F. S., Kandi, S. G. & Panahi, F. Photophysical properties of a donor-π-acceptor distyrylbenzene derivative in solution and 

solid state. J. Fluoresc. 1, 1–10 (2020).
 50. Panahi, F., Mahmoodi, A., Ghodrati, S. & Eshghi, F. A novel donor–π–acceptor halochromic 2, 6-distyrylnaphthalene chromophore: 

Synthesis, photophysical properties and DFT studies. RSC Adv. 11, 168–176 (2020).
 51. Niknam, K., Gharavi, A., Nezhad, M. R. H., Panahi, F. & Sharbati, M. T. Synthesis of some new 1, 4-distyrylbenzenes using immo-

bilized palladium nanoparticles on silica functionalized morpholine as a recyclable catalyst. Synthesis 2011, 1609–1615 (2011).
 52. Meisner, Q. J. et al. Fluorescence of hydroxyphenyl-substituted “click” triazoles. J. Phys. Chem. A 122, 2956–2973 (2018).



11

Vol.:(0123456789)

Scientific Reports |         (2022) 12:2385  | https://doi.org/10.1038/s41598-022-06435-w

www.nature.com/scientificreports/

 53. Carlotti, B. et al. Evaluation of hyperpolarizability from the solvatochromic method: Thiophene containing push–pull cationic 
dyes as a case study. J. Phys. Chem. C 122, 2285–2296 (2018).

 54. Song, H. et al. Solvent polarity dependent excited state dynamics of 2′-hydroxychalcone derivatives. J. Phys. Chem. C 122, 15108–
15117 (2018).

 55. Maffeis, V., Brisse, R., Labet, V., Jousselme, B. & Gustavsson, T. Femtosecond fluorescence upconversion study of a naphthalim-
ide–bithiophene–triphenylamine push-pull dye in solution. J. Phys. Chem. A 122, 5533–5544 (2018).

 56. Zhang, Y. et al. Solvent effect and two-photon optical properties of triphenylamine-based donor–acceptor fluorophores. J. Phys. 
Chem. C 119, 27630–27638 (2015).

 57. Nourmohammadian, F., Alikhani, M. Y., Gholami, M. D. & Abdi, A. A. Benzothiazole-based bis-azo cationic fluorescent dyes with 
extended conjugated systems: synthesis and properties. J. Appl. Solut. Chem. Model. 4, 83–94 (2015).

 58. Dou, C., Han, L., Zhao, S., Zhang, H. & Wang, Y. Multi-stimuli-responsive fluorescence switching of a donor−acceptor π-conjugated 
compound. J. Phys. Chem. Lett. 2, 666–670 (2011).

 59. Tolosa, J., Solntsev, K. M., Tolbert, L. M. & Bunz, U. H. F. Unsymmetrical cruciforms. J. Org. Chem. 75, 523–534 (2010).
 60. Wu, H., Ying, L., Yang, W. & Cao, Y. Progress and perspective of polymer white light-emitting devices and materials. Chem. Soc. 

Rev. 38, 3391–3400 (2009).
 61. Wang, Y. et al. Twisted donor-acceptor cruciform luminophores possessing substituent-dependent properties of aggregation-

induced emission and mechanofluorochromism. J. Phys. Chem. C 122, 2297–2306 (2018).
 62. Vasu, A. K., Radhakrishna, M. & Kanvah, S. Self-assembly tuning of α-cyanostilbene fluorogens: Aggregates to nanostructures. J. 

Phys. Chem. C 121, 22478–22486 (2017).
 63. Beck, A. D. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5656 (1993).
 64. Yanai, T., Tew, D. P. & Handy, N. C. A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-

B3LYP). Chem. Phys. Lett. 393, 51–57 (2004).
 65. Frisch, M. et al. Gaussian 09, Revision d. 01. Vol. 201. (Gaussian Inc., 2009).

Acknowledgements
Financial support from the research councils of Shiraz University and Amirkabir University of Technology are 
gratefully acknowledged.

Author contributions
The work was conceptualized by F.P. Chromophores were prepared by F.P. A.M. and S.G. performed the photo-
physical experiments. A.A. and F.E. performed the computational analysis. The manuscript was prepared and 
edited by all the authors.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to F.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2022

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	New white light-emitting halochromic stilbenes with remarkable quantum yields and aggregation-induced emission
	Results and discussion
	Quantum mechanical studies. 

	Conclusion
	Experimental
	General. 
	Procedure for the synthesis of compounds ASDSB and AADSB. 
	Theoretical calculations. 

	References
	Acknowledgements




