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Abstract

Intratumour heterogeneity is increasingly recognized as a frequent problem for cancer treat-

ment as it allows for the evolution of resistance against treatment. While cancer genotyping

becomes more and more established and allows to determine the genetic heterogeneity,

less is known about the phenotypic heterogeneity among cancer cells. We investigate how

phenotypic differences can impact the efficiency of therapy options that select on this diver-

sity, compared to therapy options that are independent of the phenotype. We employ the

ecological concept of trait distributions and characterize the cancer cell population as a col-

lection of subpopulations that differ in their growth rate. We show in a deterministic model

that growth rate-dependent treatment types alter the trait distribution of the cell population,

resulting in a delayed relapse compared to a growth rate-independent treatment. Whether

the cancer cell population goes extinct or relapse occurs is determined by stochastic dynam-

ics, which we investigate using a stochastic model. Again, we find that relapse is delayed for

the growth rate-dependent treatment type, albeit an increased relapse probability, suggest-

ing that slowly growing subpopulations are shielded from extinction. Sequential application

of growth rate-dependent and growth rate-independent treatment types can largely increase

treatment efficiency and delay relapse. Interestingly, even longer intervals between deci-

sions to change the treatment type may achieve close-to-optimal efficiencies and relapse

times. Monitoring patients at regular check-ups may thus provide the temporally resolved

guidance to tailor treatments to the changing cancer cell trait distribution and allow clinicians

to cope with this dynamic heterogeneity.

Author summary

The individual cells within a cancer cell population are not all equal. The heterogeneity

among them can strongly affect disease progression and treatment success. Recent diag-

nostic advances allow measuring how the characteristics of this heterogeneity change over

time. To match these advances, we developed deterministic and stochastic trait-based
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models that capture important characteristics of the intratumour heterogeneity and allow

to evaluate different treatment types that either do or do not interact with this heterogene-

ity. We focus on growth rate as the decisive characteristic of the intratumour heterogene-

ity. We find that by shifting the trait distribution of the cancer cell population, the growth

rate-dependent treatment delays an eventual relapse compared to the growth rate-inde-

pendent treatment. As a downside, however, we observe a refuge effect where slower-

growing subpopulations are less affected by the growth rate-dependent treatment, which

may decrease the likelihood of successful therapy. We find that navigating along this

trade-off may be achieved by sequentially combining both treatment types, which agrees

qualitatively with current clinical practice. Interestingly, even rather large intervals

between treatment changes allow for close-to-optimal treatment results, which again hints

towards a practical applicability.

Introduction

Cancers are composed of genetically and phenotypically diverse cell populations [1–6], reflect-

ing evolutionary and ecological processes that occur during cancer progression. So far, this

heterogeneity has mostly been attributed to the genomic level, where mutations and chromo-

somal changes are by now routinely detected by diverse molecular techniques. In addition,

there are also non-genetic drivers of heterogeneity, such as epigenetic changes, cell differentia-

tion, stochastic gene expression or effects of the microenvironment [4]. The resulting intratu-

mour heterogeneity has to be taken into account, as it can lead to the treatment of only some

subclones [7] or the selection of resistant phenotypes [8], which may explain the frequent

relapses in many cancer types. Additionally, incomplete sampling of a heterogeneous tumour

may hinder the prediction of disease dynamics [5, 9, 10]. However, if intratumour heterogene-

ity is exhaustively determined, it may be used as a prognostic factor and guide treatment deci-

sions [5, 11, 12].

Currently, a strong focus lies on the genetic components of intratumour heterogeneity, and

only recently the phenotypic heterogeneity re-gained clinical interest, mainly after the rise of

targeted therapies, a suitable treatment approach only for defined phenotypes [3]. However,

genetic heterogeneity does not necessarily map one-to-one to phenotypic heterogeneity [2],

and phenotypic heterogeneity may translate into an incomplete and inhomogeneous response

to phenotype-dependent therapies [5]. It is therefore imperative to characterize the phenotypic

heterogeneity within tumours as well [13, 14]. Understanding and utilizing the phenotypic het-

erogeneity of a tumour can be aided by ecology and the concept of traits and trait distributions

[15, 16]. In this sense, cancer, an evolutionary disease, can indeed be better understood using

ecological concepts [17, 18]. We follow this approach and develop an ecological trait-based

model to understand the effects of phenotypic trait heterogeneity on treatment outcomes.

The presence of phenotypic intratumour heterogeneity may require novel treatment strate-

gies. Determining the existence of phenotypic subpopulations that likely will provide resistance

against phenotype selective therapies is thus a first useful step to decide against exclusive treat-

ment options that would select for these potentially dangerous subpopulations [5]. Secondly, if

such resistant cell types are present in low fractions, there may be mechanisms keeping them

low, such as trade-offs between treatment resistance and other traits [19]. These can be used to

reduce the amount of unfavourable cancer cell types again after intermittently selecting for

them by treatment [14, 17, 20–24]. If there are no mechanisms that can suppress resistance

once it evolved, a containment strategy may be applied to prolong the time until treatment
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failure [25]. Another option is to combine different treatment types to create an evolutionary

double bind, wherein one treatment renders the other more effective [17, 26]. All these adapted

treatment schemes require a regular assessment of tumour cell numbers. Given the recent

advances in next-generation sequencing, single-cell RNA sequencing, flow cytometry and

imaging, however, also obtaining time series for both genetic and phenotypic heterogeneity

may become possible in the near future. Here, we assume that such temporally resolved trait

information is available and ask how it could best be exploited to improve treatment outcome.

Particularly in light of different treatment options that exert different selection pressures on

different traits, such as chemotherapy or immunotherapy, considering the temporal change of

trait distributions may be decisive for treatment evaluation. Even though differences in other

functional traits are possible and likely, differences in the growth rates of individual cancer

cells may be the most obvious aspect of intratumour heterogeneity and also the most decisive

for cancer progression. Diverse growth rate trait distributions have been known for a long

time [27], and also recently received theoretical interest [28]. To study how treatment interacts

with the growth rate trait distribution, we will investigate how two different treatment types,

one that depends on the focal trait and one that is independent of it, result in different treat-

ment outcomes. This allows us to predict how their combination may direct the temporal

change of the trait distribution to optimize the treatment effect.

Our approach is motivated by the current treatment of acute lymphoblastic leukaemia, for

which chemotherapy is the first-line treatment and usually quickly reduces the density of

malignant lymphoblasts below the detection threshold. Frequently, however, a fraction of

these malignant cells is not eradicated by the treatment but remains in the body as minimal

residual disease that causes relapse during or after therapy [29]. We hypothesize that chemo-

therapy targets fast dividing cells preferentially, as most chemotherapeutic drugs target cell

division and thus lead to higher drug-induced death rates in fast-dividing malignant cells.

Thus, chemotherapy may exert a selection pressure on cancer cell’s growth rate, eventually

favouring slower cells. Due to their slower growth, these cells will only be present in low abun-

dance in the cancer cell population at the initiation of treatment. Still, they may dominate the

population in later stages of treatment due to their lower sensitivity to treatment. If the cancer

population is driven to low numbers, it becomes vulnerable to stochastic extinction. These sto-

chastic extinction events will be primarily driven by the traits of the slow-growing subset of

cancer cells, which might create a reservoir of cells that are less vulnerable to treatment, and

eventually grow again once treatment is terminated and cause a relapse. Accordingly, a current

approach for post-chemotherapy relapses is to conduct immunotherapy using the bi-specific

monoclonal antibody Blinatumomab [30]. Interestingly, this second treatment type’s action is

likely independent of growth rate and therefore presents a treatment that is independent of

our focal trait. How these two different treatment types operate and interact is to date empiri-

cally unknown and justifies theoretical investigation.

Using growth rates as a focal trait, we will investigate how trait (in-)dependent treatment

affects the trait distribution of cancer cells, and further how this trait distribution determines

treatment trajectories, relapse dynamics and optimal treatment schemes.

Methods

Deterministic model

We model the cancer cell population as a collection of O subpopulations of size xi that differ in

their growth rates ri, (Fig 1). We assume exponential growth for every subpopulation with

growth rates ri (i = 1, . . .,O). Further, we assume that the growth rates of individual subpopu-

lations increase linearly from rmin = r1 to rmax = rO (Table 1). Genetic and non-genetic drivers
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may generate heterogeneity within the cancer cell population that manifests as a broadened

trait distribution of growth rates [4, 27]. This allows cells to switch to adjacent subpopulations

with different growth rates and maintains the width of the trait distribution. We assume that a

cell’s switching rate is proportional to its growth rate. Switching to the next slower subpopula-

tion thus occurs at rate pS ri and switching to the next faster subpopulation happens at rate pF

ri. We include two different treatment types, one that is growth rate-dependent and one that is

growth rate-independent. The growth rate-dependent treatment is motivated by the idea that

under chemotherapy, the uptake and action of the therapeutic agent is proportional to the

growth rate of the cancer cell. Therefore, the rate at which the chemotherapeutic toxins enter

the cell, stop cell proliferation and induce cell death is assumed to be proportional to the cell’s

growth rate. The growth rate-dependent treatment thus induces a cancer cell mortality δ ri
where δ captures the trait-dependent treatment strength. The growth rate-independent treat-

ment instead causes a cancer cell mortality rate m that is equal for all cells. It could resemble a

type of immunotherapy that targets a surface protein that is present on all cancer cells. These

assumptions result in the following system of differential equations describing the change in

the sizes of the subpopulations,

dx1

dt
¼ ð1 � pFÞr1 x1 þ pS r2 x2 � ðdr1 þmÞ x1

..

.

dxi
dt

¼ ð1 � pS � pFÞri xi|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
proliferation

þ pS riþ1 xiþ1
|fflfflfflfflfflffl{zfflfflfflfflfflffl}
switch from faster

þ pF ri� 1 xi� 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
switch from slower

� ðdri þmÞ xi|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
cell death

..

.

dxO
dt

¼ ð1 � pSÞ rO xO þ pF rO� 1 xO� 1 � ðdrO þmÞ xO:

ð1Þ

Fig 1. Model sketch. Arrows indicate growth, switching and death processes of the different subpopulations. Cells grow at rates ri,
switch to slower growth rates at rate pS ri or to faster growth rates at rate pF ri. Cancer cell mortality from growth rate-dependent

treatment (for example by the uptake of chemotherapeutics) is assumed to be proportional to growth rate and induces a mortality δ ri.
Cancer cell mortality from the growth rate-independent treatment, for example immunotherapy, is captured by the death rate m.

https://doi.org/10.1371/journal.pcbi.1008702.g001

Table 1. Reference parameter set. Deviations from these values are reported where applicable.

Parameter Biological meaning Value

r1 = rmin Growth rate of the slowest subpopulation 0.25 time unit−1

rO = rmax Growth rate of the fastest subpopulation 0.5 time unit−1

pS Factor scaling the switching to slower subpopulations 0.2

pF Factor scaling the switching to faster subpopulations 0.2

δ Cancer cell mortality factor of the trait-dependent treatment 2

m Cancer cell mortality rate of the trait-independent treatment 0.86 time unit-1

https://doi.org/10.1371/journal.pcbi.1008702.t001
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In our model, contributions of individual subpopulations to the whole population, and

therefore also the resulting trait distribution, will converge to a stable distribution in time (S1

Fig). In principle, this distribution can be calculated analytically. Already forO> 2, however,

the resulting expressions become unhandy and provide little further insight. For our purposes,

it is sufficient to know that this stable distribution exists and is reached numerically.

We assume that the growing tumour will have approached this stable trait distribution

before cancer diagnosis. After diagnosis, a period of treatment is applied. After treatment is

halted, the cancer is monitored for an additional period to track the potential relapse dynam-

ics. Before detection and after treatment termination, both the trait-independent and the trait-

dependent treatment parameters (m and δ) are set to zero. Only during the treatment phase,

one of them is set to the reference value from Table 1, depending on whether the trait-indepen-

dent or the trait-dependent treatment is applied. We assume that both treatment types reduce

the tumour load. To allow comparison of the two treatment types, we chose the cancer cell

mortality rate from trait-independent treatment m such that the total cancer cell population

after applying either of the two treatments is approximately equal at the end of the treatment

phase. This ensures that both treatment types result in the same tumour load reduction, allow-

ing a better comparison for our purposes. The slowest and fastest growth rates rmin and rmax,

as well as the switching parameters pS and pF are chosen such that within the simulated treat-

ment phase the slowest subpopulation can exceed the fastest subpopulation under trait-depen-

dent treatment.

The system of differential equations (Eq 1) is numerically integrated forO = 25 subpopula-

tions using the LSODA implementation of the solve_ivp function from the Scipy library [31] in

Python (version 3.7). To equilibrate the ratios of adjacent subpopulations and arrive at the ini-

tial stable trait distribution, we first integrated for 200 time units from an exponential trait dis-

tribution 10� 60e80 vi , where v is an array of O linearly increasing values between 0 and 1. The

result is taken as the initial condition for the pre-detection period.

Treatment schemes

We investigate different predefined treatment schemes, where either only one treatment type

is applied for the whole duration of treatment or the two treatment types are alternating.

Additionally, we study an adaptive treatment scheme where at regular reevaluation intervals

Δt the treatment type that induces the higher mortality on the total cancer cell population

X ¼
PO

i¼1
xi is chosen and continued until the next treatment reevaluation. To make this deci-

sion we consider the rate of change of X

dX
dt

¼
XO

i¼1

dxi
dt
¼
XO

i¼1

ðri � d ri � mÞxi ð2Þ

where the two last terms represent the mortality exerted by trait-dependent and trait-indepen-

dent treatment, respectively. Which of these terms is larger depends on the trait distribution,

which may change over time. For the adaptive treatment scheme, we evaluate those two terms

and set the treatment type that exerts the lower mortality to zero. Maximum mortality is

achieved by continuously reevaluating the treatment type (Δt! 0), which leads to the optimal

adaptive treatment scheme.

Stochastic model

During the treatment phase, the number of cancer cells typically drops drastically. As the can-

cer cell population is driven to low numbers, the population dynamics are affected by
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stochasticity and the mean-field approximation for large cell numbers becomes invalid. A

deterministic model cannot capture true extinctions of the cancer population unless an extinc-

tion threshold is defined, which still fails to capture stochastic effects. To mechanistically cap-

ture this stochastic regime of low cancer cell numbers, we therefore develop a stochastic

formulation in parallel to the deterministic model described above. Importantly, the determin-

istic and the stochastic model are based on the same microscopic processes and therefore

directly comparable. However, for the stochastic model, we constrain ourselves to only the two

extreme subpopulations that grow at rates rmin and rmax, as their dynamics will show the most

pronounced differences. To obtain the stochastic trajectories, we simulate the microscopic

processes stochastically using the Gillespie algorithm implementation in StochKit [32] for 104

replicate populations. Additionally, we solve the stochastic equivalent to Eq 1 numerically

using the sdeint package (Matthew J. Aburn, version 0.2.1). For the derivation of the

stochastic model, we refer to S1 Text. All computational implementations can be found at

[DOI: 10.5281/zenodo.4461667]. The data is available at [DOI: 10.5281/zenodo.4293320].

Results

We represent a tumour as a population with a range of different growth rates. This allows us to

infer how growth rate-dependent treatment affects population decline and relapse dynamics

differently from growth rate-independent treatment. We find that the differential effect of the

growth rate-dependent treatment changes the relative abundances of the subpopulations (Fig

2A) and changes the trait diversity within the population resulting in two diversity peaks: one

during treatment and one during early relapse (Fig 2B). This is different from the trait-inde-

pendent treatment, where diversity is constant. Before detection, fast growth rates are selected

for and dominate the population at detection (Fig 2 and S1 Fig). Growth rate-dependent treat-

ment, while inducing a decline in total cancer cell numbers, selects for slower growth rates

which eventually allows the slowest growing subpopulation to take over the population. The

timing of this take-over depends on the stable trait-distribution, which is determined by the

rates of switching along the trait axis due to phenotypic plasticity or genotypic variability (S2

Text). After treatment termination, all subpopulations resume to grow at their respective

growth rates. Thus, faster subpopulations quickly take over the population again (Fig 2). Cell

switching creates a net influx from faster to slower subpopulations. Thus, also the slow-grow-

ing subpopulations eventually increase at almost the maximum growth rate (Fig 2 and S2 Fig).

However, the subpopulations with the fastest growth rates outnumber the slower cells by

orders of magnitude (S1 Fig). For growth rate-independent treatment, the high relative abun-

dance of fast-growing cells is not affected by treatment.

The growth rate of the most abundant subpopulation sets the speed of relapse. Accordingly,

we observe a biphasic relapse pattern after the termination of the trait-dependent treatment

(Fig 2A). As long as the slowest subpopulation remains most abundant, the total cancer popu-

lation grows at a slow rate, but as soon as the fast subpopulation takes over, also the whole pop-

ulation increases at the maximum growth rate (S2 Fig). This particular relapse behaviour

contrasts with the relapse pattern for a trait-independent treatment. Assuming a comparable

treatment effect, i.e. treatment reduces the total tumour load by the same amount, we see that

here, the fastest subpopulation, although declining, remains dominant throughout treatment

and during relapse. Thus, also the relapse occurs at the fastest growth rate immediately after

treatment termination for trait-independent treatment types. For comparable tumour load

reductions, our model therefore predicts that a potential relapse after growth rate-dependent

treatment occurs substantially later than after growth rate-independent treatment.
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Such relapse, however, is subject to stochasticity. Towards the end of our simulated treat-

ments, cancer cell numbers become low and stochastic extinction of subpopulations, as well as

the eradication of the whole cancer population, can occur. To illustrate this behaviour, we con-

ducted stochastic simulations for a simplified model with only two subpopulations, comparing

growth rate-dependent and growth rate-independent treatment in a large number of repli-

cates. Again, we ensured that the total reduction of tumour cells in both treatments is the

same. We find that for the trait-independent treatment type, the tumour goes extinct in more

replicates (Fig 3), while for the trait-dependent treatment type the slow subpopulations quickly

take over and prevent extinctions in many cases. After the treatment is terminated, the extinct

fast subpopulations of the surviving replicates first need to be repopulated from the slow sub-

population, leading to a further delay of relapses. Only then the tumour regrows at the speed

found in the deterministic model. Accordingly, relapse on average occurs later for the trait-

dependent treatment type in the stochastic simulations, in agreement with the findings from

the deterministic model (Fig 4). For the extreme case of no switching between subpopulations,

Fig 2. Population dynamics for a typical treatment scenario. Starting from a cancer population that reached the stable distribution before detection at

t = 0 treatment is applied between t = 0 and t = 150. After t = 150 relapse is monitored until t = 300. (A) Splitting the total cancer population (thick lines)

into different subpopulations (thin lines) with different growth rates (colour gradient) allows for tracking the differential selection pressure that trait-

dependent and trait-independent treatment types impose on different growth rates and how this selection affects the subsequent relapse dynamics. Insets

show the growth rate trait distribution at various time points. The cancer cell mortality rate in the trait-independent treatment was set such that the tumour

load at the end of treatment is similar to the tumour load at the end of the trait-dependent treatment. (B) Trait diversity (measured as Shannon evenness) is

affected only by the growth rate-dependent treatment.

https://doi.org/10.1371/journal.pcbi.1008702.g002
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relapse would proceed only at the growth rate of the slow subpopulation. If the switching rate

is very low, it can take a considerable amount of time until relapse proceeds at the rate of the

fast subpopulation again. In the deterministic description, however, the increase of the fast

subpopulation is only speeded up by, but not contingent on, the switching of cells from the

slow into the fast subpopulation. Thus, relapse inevitably proceeds at the growth rate of the

fast subpopulation eventually. Relapse will thus always show a biphasic pattern in a determin-

istic description, but it might not in a stochastic description or when the mean-field approxi-

mation is invalid.

To investigate how the stochastic contributions from the slow and fast subpopulations dif-

fer, we integrated only the stochastic term in the stochastic differential equation (Eq 1 in S1

Text) while setting the deterministic term to zero. We find that the slow subpopulation

explores a smaller state space range by taking smaller steps (S3 Fig). The slow subpopulation

may therefore act as a refuge against extinction as it would require more time to eventually

cross the extinction boundary where the cancer cell number drops to zero. As growth rate-

dependent treatment increases the diagonal entries of the diffusion matrix in Equation 1 in

Fig 3. Stochastic simulations. Shown are 100 replicate populations for a binary trait where the two subpopulations grow with growth rates rmin and rmax,

respectively, for (A) trait-independent and (B) trait-dependent treatments. The black lines represent the deterministic solution of the ordinary differential

equation for the two subpopulations (Eq 1). Note that initial conditions and treatment duration are different compared to Fig 2 to allow for relapse given the

discrete number of cells in the stochastic simulations. The cancer cell mortality by trait-independent treatment was set to m = 0.722 d−1 to ensure equal

tumour load at the end of treatment in the deterministic model for the shorter treatment duration.

https://doi.org/10.1371/journal.pcbi.1008702.g003
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S1 Text proportionally to the growth rates, it also increases stochastic step sizes proportionally

to the respective growth rates. Therefore, under growth rate-dependent treatment, the steps

that the fast subpopulation is taking will be even larger than the steps of the slow subpopula-

tion, making the extinction of the fast subpopulation even more likely than the extinction of

the slow subpopulation. Growing slowly thus reduces a cell’s chance to be killed by growth

rate-dependent treatment. For the trait-independent treatment, however, we find that the dif-

ferences between the stochastic step sizes of the slow and fast subpopulations become smaller

compared to no treatment (S3 Fig). Here, the treatment-induced mortality is equal for both

subpopulations and dominates the diagonal entries of the diffusion matrix in Equation 1 in S1

Text. This decreases the relative differences between the stochastic step sizes of both subpopu-

lations, which undermines the refuge effect of the slow subpopulation.

So far, we have assumed that only a single treatment type may be chosen for the whole treat-

ment duration. Even if toxicity or inhibiting interactive effects may prevent the simultaneous

application of a trait-dependent and a trait-independent treatment, their sequential application

is often feasible. We find that by appropriately choosing the treatment sequences, increased

chances of cure and delay of relapse may be achieved (Fig 5). To increase the chance of cure, a

treatment sequence should be chosen that maximizes cancer cell mortality. To delay relapse,

the trait distribution should be maximally shifted towards slow growth rates. This results in

two different treatment goals, which can only partly be met by the same treatment scheme.

We studied both predefined sequential treatment schemes where trait-independent and

trait-dependent treatment alternate (S4 and S5 Figs) as well as adaptive schemes where the

trait distribution within the tumour is reassessed at regular intervals Δt (realistic adaptive

schemes, S6 Fig). Following the assessment, the treatment is continued with the treatment type

that maximizes the mortality of the cancer cell population given the current trait distribution

(S7 Fig). Additionally, we include an optimal adaptive scheme that employs trait distribution

assessments at a very high frequency Δt! 0 as an extreme case.

Fig 4. Relapse time distributions extracted from the stochastic simulations in Fig 3. Orange represents the trait-

independent and blue the trait-dependent treatment type. The vertical lines indicate the relapse times from the

deterministic simulations. Relapse is defined to occur when the total tumour load of a replicate exceeds 103 cells.

https://doi.org/10.1371/journal.pcbi.1008702.g004
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We find that the optimal adaptive scheme indeed minimizes the tumour load at the end of

the treatment phase. However, the predefined and realistic adaptive schemes can achieve a

slightly longer time to relapse (Fig 5). Interestingly, we find that already intermediate reevalua-

tion periods in the realistic adaptive scheme and even some predefined sequences result in

treatment results close to the theoretical optimum. For the predefined scheme, the latest

relapse is achieved by including a short period of trait-independent treatment in the middle of

an otherwise trait-dependent treatment (S4 Fig). Lower minimum tumour loads are achieved

by a combination of frequent treatment switching and a higher proportion of trait-dependent

treatment. The adaptive scheme with realistic reevaluation periods Δt generally approaches the

optimal adaptive scheme for Δt! 0 and converges to the pure trait-dependent scheme as the

reevaluation period becomes large (S6 Fig). At intermediate Δt we observe multiple peaks in

both the minimum tumour load and relapse time wherever the total treatment duration is an

integer multiple of Δt and the number of possible switches changes. For example, if the treat-

ment reevaluation period is between half of the total treatment duration and the total treat-

ment duration, then only a single switch of treatment type is possible. In contrast, for only

slightly smaller reevaluation periods two switches are possible. If there are only few switches,

they can have strong effects on the trait distribution and thus give rise to discontinuities in the

minimum tumour load and relapse time. At the onset of treatment, the trait distribution is

heavily skewed towards large growth rates (S7 Fig). The optimal and all adaptive sequential

schemes initially apply the trait-dependent treatment, thus driving the mean of the trait distri-

bution to intermediate values, as already observed in Fig 2. This eventually decreases the

Fig 5. Comparison of minimum tumour load during treatment and the relapse time when tumour load surpasses

the pre-treatment maximum for different sequential treatment schemes. Alterations between the trait-independent

and the trait-dependent treatment type are fixed in the predefined sequence scheme (red to blue colour gradient

corresponds to proportion of trait-dependent treatment type). In the realistic adaptive scheme, the currently best

treatment type is determined at regular intervals during the treatment phase (grey colour gradient). In the optimal

adaptive scheme (black dot), the treatment type that, given the current trait distribution, would exert the highest

population mortality is chosen nearly instantaneously (at every step of the numerical solver). Note that these schemes

have a much stronger impact on the minimal tumour load (up to a factor of 1000) than on the relapse time (up to a

factor of 1.3).

https://doi.org/10.1371/journal.pcbi.1008702.g005
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population mortality rate from trait-dependent treatment. Accordingly, the optimal treatment

sequence switches to the trait-independent treatment when the population mortality rates for

both treatment types become equal (Eq 2), which implies

XO

i¼1

d ri xi ¼
XO

i¼1

mxi ð3Þ

As now the trait distribution is freed from trait-dependent selection, the mean of the trait

distribution increases as the faster-growing subpopulations increase in frequency, which even-

tually favours the trait-dependent treatment again. By continued rapid switching of treatment

types, the optimal adaptive scheme modulates the trait distribution and maintains the mean

trait value of maximum cancer cell population mortality ropt , which follows from Eq 3 as

ropt ¼
PO

i¼1
ri xi

PO

i¼1
xi

¼
m
d
: ð4Þ

The mean trait value for the realistic adaptive treatment scheme fluctuates around ropt and

approaches it for small Δt (S7 Fig).

Discussion

Understanding cancer as a population of phenotypically diverse cells suggests representing

this population by a trait distribution of considerable variance, on which treatment types can

select. In this study, we have entirely focussed on growth rate as the focal trait. We compared a

growth rate-dependent and a growth rate-independent treatment. The growth rate-dependent

treatment is motivated by chemotherapy: Many chemotherapeutic drugs are cell-cycle specific

and only damage dividing cells. Accordingly, we hypothesized that chemotherapy targets fast

proliferating cells preferentially and exerts higher mortality on them. Our growth rate-inde-

pendent treatment is motivated by immunotherapy: This therapy targets cancer cells irrespec-

tive of their proliferation rate, for example by using bi-specific antibodies that specifically label

cancer cells, which are then recognized and killed by the immune system. Slow and fast cells

are therefore equally targeted by the immune system. Even though these hypotheses are likely

to hold in many cases, they might not generally apply, but depend on specifics of the particular

cancer, treatment types and patient.

In the case of acute lymphoblastic leukaemia, where tracking the proportion of malignant

cells over time is possible, it was found that chemotherapy often leaves behind a small number

of malignant cells, a situation termed minimal residual disease. The presence of this minimal

residual disease is of high prognostic value and indicates a high likelihood of future relapse

[29, 33, 34]. In such cases, it was found that Blinatumomab, a bi-specific monoclonal antibody,

can often suppress this residual disease below detection levels [35]. For patients with relapsed

or refractory B-cell precursor acute lymphoblastic leukaemia that already underwent multiple

chemotherapy treatments, switching to immunotherapy with Blinatumomab showed signifi-

cantly better treatment outcomes than conducting additional chemotherapy [36]. This seems

reasonable under our assumption that chemotherapy would shift the growth rate trait distribu-

tion to smaller values, where additional chemotherapy only has limited effect. Choosing a dif-

ferent treatment type that does not select for the same trait would allow for a further and

stronger reduction of tumour load. The relapsed/refractory setting thus resembles one of the

close-to-optimal treatment schemes where towards the end of the treatment phase a period of

growth rate-independent treatment is introduced, after prior growth rate-dependent treat-

ment has shifted the trait distribution to values of decreased sensitivity against the trait-
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dependent treatment. Front-line approaches of using combinations of chemotherapy and

immunotherapy are also promising and show improved treatment effects compared to chemo-

therapy alone [37–40]. Complementing reports of overall survival data with time series of

malignant cell counts, as for example in [41], could provide mechanistic insights into why and

how these combination therapies work. Phenotypic trait distributions could be different after

chemotherapy and immunotherapy, despite resulting in the same minimal residual disease.

This may contribute to an explanation of why the prognostic value of minimal residual disease

levels could be different for these two treatment alternatives.

We have found that slower proliferating subpopulations may present a refuge during che-

motherapy, from which relapse may arise. While accounting for the full trait distribution is

essential to understand this pattern, detecting it requires only knowledge about the time course

of the total tumour load. The fingerprint for this scenario of slow populations being sheltered

from treatment are the biphasic dynamics (or multiphasic) of tumour load both during trait-

dependent therapy and relapse [42, 43]. During treatment, the initial tumour load decrease is

driven by the effective growth rate of the fastest-growing subpopulation. In contrast, the effec-

tive growth rate of the slowest-growing subpopulation determines the rate of tumour load

decrease towards the end of treatment. The situation inverts during relapse with the slowest

growing subpopulation setting the rate of increase initially before finally the effective growth

rate of the fastest growing subpopulation determines the speed of relapse. Advances in sam-

pling precision and frequency will eventually provide a temporal resolution of the total tumour

load also in clinical settings. This may also allow the detection of biphasic (or multiphasic)

dynamics, which could act as the fingerprint for phenotypic heterogeneity among cancer cells

and guide appropriate treatment decisions, notably only requiring total tumour load, not the

trait distribution itself.

If such a pattern of changing dominance would be detected, our results predict that switch-

ing to a different treatment type that does not select on the same trait as the previous treatment

will improve treatment effect by allowing stronger tumour load reduction and delayed relapse.

Interestingly, we have seen that also larger and more realistic check-up intervals would suffice

for close-to-optimal treatment effects, a finding that was also observed for other adaptive treat-

ment schemes, such as tumour containment [25]. Since longer check-up intervals would lead

to a substantial growth above the clinical detection limit the precise value of this detection

limit is not a crucial determinant for the success of the adaptive scheme.

On a more abstract level, however, we have combined two treatment types, one indepen-

dent of, the other dependent on a certain characteristic (the focal trait) of the cancer cells, with

the trait-dependent type offering a route for resistance. This creates an evolutionary double

bind by the two treatment types as the resistance mechanism of decreasing growth rate is

countered by relaxing the trait-selective treatment [17]. Then, due to their higher growth rate,

faster-growing subpopulations will increase again, which automatically restores sensitivity.

This alone would correspond to the adaptive treatment approach [20]. Filling the treatment

break with a second, trait-independent treatment does not hinder the favourable overtake by

the more susceptible faster-growing subpopulation and further decreases the tumour cell num-

bers. Building on the established idea of targeting specific phenotypes in cancer treatment [8,

44] and the notion of the prevalence of intratumour heterogeneity, our approach shows how

to tailor personalized treatments to the phenotypic trait distribution of cancer cells.

Supporting information

S1 Text. Derivation of the stochastic model.

(PDF)
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S2 Text. Effect of the switching parameters.

(PDF)

S1 Fig. Relative contribution of every subpopulation for the trait-dependent treatment. Our

model gives rise to a stable trait distribution (see constant ratios prior to the treatment phase).

The trait-dependent treatment type creates another stable trait distribution towards the end of

the treatment phase, where the slowest-growing subpopulations dominate. Note that treatment

phase and relapse phase are prolonged here compared to Fig 2 for better visualization.

(PDF)

S2 Fig. Realized subpopulation growth rates for the trait-dependent treatment. Switching

to the adjacent slower subpopulation limits the realized growth rate of the fastest subpopula-

tion to slightly below rmax. Note that treatment phase and relapse phase are prolonged here

compared to Fig 2 for better visualization.

(PDF)

S3 Fig. Visualization of contributions from only the diffusion term in Eq 1 in S1 Text

(assuming a(x) = 0 and V = 25) for (A) and (B) no treatment, (C) and (D) trait-indepen-

dent treatment with m = 1 d−1, (E) and (F) trait-dependent treatment with δ = 2. The left

column shows the time series for 20 replicates. The right column visualizes the population step

sizes taken in the simulation (numerical solver evaluation intervals dt = 0.01, plotting time

interval 100dt). We use the normalized difference of the standard deviation of the slow and

fast subpopulations Ds=�s to characterize the different widths of the step size distributions.

Large values indicate that the changes of the slow subpopulation are on average smaller than

the changes of the fast subpopulation.

(PDF)

S4 Fig. The best-ranked predefined treatment patterns that either (A) result in the lowest

minimum tumour load during treatment or (B) reach the tumour load at treatment initia-

tion the latest. Best sequences are at the top, trait-dependent treatment type intervals are blue,

trait-independent treatment type intervals are orange. We allowed for 8 different treatment

intervals and investigated all 256 combinations.

(PDF)

S5 Fig. Performance of the predefined treatment scheme for the two treatment goals of

(A) minimum tumour load during treatment and (B) relapse time, defined here as the

time when the tumour load during the relapse phase exceeds the tumour load at treatment

initiation. A maximum of 7 treatment alterations are possible. The blue-to-red colour gradient

indicates the proportion of trait-dependent treatment type in every treatment pattern. Note

that Fig 5 shows the correlation of minimum tumour load and relapse time.

(PDF)

S6 Fig. Performance of the realistic adaptive scheme for different reevaluation periods Δt
ranges between the optimal adaptive and the purely trait-dependent treatment scheme.

Δt/T! 0 corresponds to the optimal adaptive treatment, whereas Δt/T� 1 results in only

trait-dependent treatment. The discontinuities arise at reevaluation periods where the number

of possible treatment alterations changes. Note that Fig 5 shows the correlation of minimum

tumour load and relapse time.

(PDF)

S7 Fig. Time series of the mean cancer cell population growth rate for the different treat-

ment schemes. The grey lines correspond to the realistic adaptive scheme with lighter lines
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showing larger Δt, the difference between them is 10 time units. The optimal adaptive scheme

tracks the mean growth rate ropt (Eq 4) where the cancer cell mortality exerted by trait-depen-

dent and trait-independent treatment is equal. The realistic adaptive scheme aims to track ropt

and thus oscillates around it.

(PDF)
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