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Physical exercise is a planned, purposeful action to keep a healthy lifestyle and improve
physical fitness. Physical exercise has been widely used as a non-pharmacological
approach to preventing and improving a wide range of diseases, including
cardiovascular disease, cancer, metabolic disease, and neurodegenerative disease.
However, the effects of physical exercise on sepsis have not been summarized until
now. In this review, we discuss the effects of physical exercise on multiple organ functions
and the short- and long-time outcomes of sepsis. Furthermore, the molecular mechanisms
underlying the protective effects of physical exercise on sepsis are discussed. In
conclusion, we consider that physical exercise may be a beneficial and non-
pharmacological alternative for the treatment of sepsis.
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1 INTRODUCTION

Sepsis is defined as a life-threatening organ failure caused by a dysregulated host response to
infection and affects approximately 19.4 million individuals each year (Prescott and Angus, 2018). In
recent years, there have been several interventions utilized to improve the survival of patients with
sepsis. As a result, the mortality of in-hospital sepsis patients has declined, from 35% to 18%, making
for many sepsis survivors (Kaukonen et al., 2014; Prescott and Angus, 2018). However, emerging
data suggest that one-third of the survivors die within a year, and one-sixth have clinical sequelae
including cognitive dysfunction, physical incapacity, exacerbation of chronic medical conditions,
and mental problems (Iwashyna et al., 2010; Yende et al., 2014; Prescott and Angus, 2018; Venet and
Monneret, 2018). The reasons for poor long-term outcomes after sepsis are complex and include
residual organ damage. During sepsis, multiple organ systems, including the respiratory, renal,
cardiovascular, neurological, hepatic, and hematological systems, are typically impaired
simultaneously, resulting in poor clinical outcomes (Lelubre and Vincent, 2018). Multiple organ
failure may remain despite successful treatment for sepsis. Therefore, effective interventions that
target multiple organ systems are critical for improving the short- and long-time outcomes of sepsis.

Physical exercise is a planned, purposeful action to maintain a healthy lifestyle and improve
physical fitness (WHO, 2010). Physical exercise has been widely used as a non-pharmacological
approach to preventing and improving a wide range of diseases, including cardiovascular disease,
cancer, metabolic disease, and neurodegenerative disease (Gleeson et al., 2011; Kim et al., 2014). For
example, the obesity-associated metabolic disease was improved by moderate- or high-intensity
exercise (Wang et al., 2017). In addition, physical exercise was able to inhibit cancer metastasis,
ameliorate the side effects of cancer treatment, and prevent cancer-related death. Furthermore, there
is emerging evidence that physical exercise acts on multiple organ systems under various conditions
(Sabaratnam et al., 2022). However, the effects of physical exercise on sepsis have not been
summarized until now. This review outlines the effects of physical exercise on multiple organ
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functions and the short- and long-term outcomes of sepsis. To
clarify the role of physical exercise in sepsis, it is crucial to
understand the molecular mechanisms mediating the
protective impacts of physical exercise. Therefore, the
molecular mechanisms underlying the protective effects of
physical exercise on sepsis are also discussed.

2 EFFECTS OF PHYSICAL EXERCISE ON
MULTIPLE ORGAN FUNCTION AND THE
OUTCOMES OF SEPSIS
2.1 Effects of Physical Exercise on
Cardiovascular Function
The cardiovascular system is frequently impaired in sepsis.
Cardiovascular dysfunction is characterized by a total decrease
in left ventricular diastolic and systolic functions, which leads to
arterial hypotension (Rong et al., 2021). Sepsis patients with
cardiovascular dysfunction have a higher mortality rate than
those with normal cardiovascular function during
hospitalizations (Merx and Weber, 2007). After
hospitalizations, sepsis survivors have a 13-fold increased risk
of cardiovascular events compared with survivors of other
diseases (Yende et al., 2014). Therefore, cardiovascular
dysfunction is the leading problem in sepsis patients during
and after hospitalizations.

Several studies have demonstrated that physical exercise
promotes metabolic flexibility, myocardial remodeling, and
angiogenesis, which have been considered to prevent and treat
cardiovascular dysfunction in various diseases (Wu et al., 2019a).
Mehanna et al. (2007) demonstrated that exercise
preconditioning attenuated the alterations in arterial pressure
and heart rate of Wistar rats at 5 h following lipopolysaccharide
(LPS) injection, suggesting that exercise training alleviated
cardiovascular abnormalities during sepsis. Similarly, Chen
et al. (2007) showed that exercise-trained rats had lower basal
levels of heart rate and arterial pressure, as well as less severe
cardiac injury at 72 h following LPS treatment. This study also
found that exercise training before sepsis reduced plasma levels of
pro-inflammatory cytokines and nitrate, which are potential
mechanisms of the positive effects of physical exercise on
cardiovascular function in sepsis (Chen et al., 2007).
Furthermore, cardiovascular function measured by ejection
fraction after sepsis was alleviated by exercise preconditioning
(Sun et al., 2020; Khoshkhouy et al., 2021). Overall, these animal
studies suggest that cardiovascular dysfunction may be
ameliorated by physical exercise preconditioning in sepsis.

2.2 Effects of Physical Exercise on Renal
Function
Septic patients often develop uropenia with increased serum
creatinine and urea. Those who meet consensus criteria for
acute kidney injury (AKI) are deemed to have sepsis-
associated AKI. A survey suggested that over 60% of patients
with sepsis have AKI (Poston and Koyner, 2019). Sepsis patients
with AKI have a higher mortality rate than patients without AKI.

Therefore, AKI has been long-regarded as an independent risk
factor of mortality in sepsis during hospitalization (Poston and
Koyner, 2019). Furthermore, a study involving 2,617 sepsis
survivors revealed that they have a 2.7-fold increased risk of
readmission for AKI compared with survivors for other diseases
(Prescott and Angus, 2018). Here, we investigate whether
physical exercise acts on AKI in sepsis.

In an ischemic-reperfusion model, physical exercise can
prevent and attenuate renal dysfunction in healthy individuals
(de Lima et al., 2019). In gentamicin-associated acute kidney
injury, physical exercise promotes the recovery of renal structure
and function by restoring redox balance (Oliveira et al., 2017).
Interestingly, several studies have shown that exhaustive exercise
is associated with kidney injury (Wu et al., 2012; Hosoyamada
et al., 2016; Gundlapalli et al., 2021). In mice with sepsis, the
impairment of kidney tubules is less severe with physical exercise
(Sossdorf et al., 2013). In contrast, Húngaro et al. (2020) found
that physical exercise increased the renal tubulointerstitial space
and expression levels of NGAL, a gene related to kidney injury,
and TLR4, suggesting that physical exercise enhances renal
dysfunction after LPS treatment. Therefore, the effects of
physical exercise on renal function are unclear and may
depend on the intensity and duration of physical exercise.

2.3 Effects of Physical Exercise on
Neurological Function
Sepsis-associated encephalopathy is one of the most common
complications in sepsis. Approximately 70% of septic patients
suffer consciousness, delirium, concentration deficiency, anxiety,
depression, and cognitive dysfunction during hospitalization
(Molnár et al., 2018). About 50% of sepsis survivors acquire
long-time cognitive dysfunction, including deficiency in memory,
attention, executive function, verbal skills, and mental problems
after hospitalization (Davydow et al., 2012; Molnár et al., 2018).
Moreover, sepsis-associated encephalopathy is responsible for
poor sepsis outcomes resulting in high hospitalization costs.
Therefore, it is essential to prevent and treat neurological
dysfunction during sepsis.

There is ample evidence that physical exercise alleviates
structural brain abnormalities and cognitive dysfunction in a
wide range of brain diseases, including Alzheimer’s disease,
Huntington’s disease, and Parkinson’s disease (Gubert and
Hannan, 2021). Physical exercise enhances neuroplasticity,
neurogenesis, angiogenesis, and synaptic activity to improve
brain structure and function in various brain disorders
(Sujkowski et al., 2022). In relation to traumatic brain injury,
Morris et al. (2016) reported that physical exercise improved
cognitive dysfunction. In sepsis, the endocannabinoid system and
cyclooxygenase enzyme play central roles in cognitive
dysfunction by regulating neuroinflammation. Moosavi
Sohroforouzani et al. (2020) found that the escape distance
and latency to reach the platform in the LPS treatment group
were longer than those in the LPS+ treadmill aerobic exercise
group, and exercise preconditioning reduced cannabinoid
receptor 2 receptor levels as well as cyclooxygenase-2 levels,
suggesting that treadmill aerobic exercise had a beneficial
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effect on cognitive function by regulating the endocannabinoid
system and cyclooxygenase in sepsis. In Trypanosome cruzi
infection, exercise preconditioning decreases the parasite peak
and contributes to the survival of neurons and neuronal
hypertrophy (Moreira et al., 2014). These results show that
exercise preconditioning ameliorates neurological dysfunction
in sepsis.

2.4 Effects of Physical Exercise on Other
Organ Functions
As discussed above, physical exercise preconditioning has
protective effects on cardiovascular and neurological functions
in sepsis. Here, we discuss whether physical exercise improves
other organ functions in sepsis. de Araújo et al. (2012) firstly
found that physical activity reduced the static elastance of the
lung, alveolar collapse, lung collagen and fiber content, and
neutrophil levels in bronchoalveolar lavage fluid. Subsequent
studies verified that pulmonary surfactant function was
impaired; neutrophil influx in the liver and lung, capillary
plugging, and expression levels of lung interleukin 6 (IL-6)
were increased in sepsis, but voluntary running reversed these
septic responses (Tyml et al., 2017). Similarly, preconditioning
exercise prevented aggravations of lung injury by mediating
purinergic system and oxidative stress under septic condition
(Miron et al., 2019). These animal studies suggest that lung and
liver functions can be improved by exercise preconditioning
during sepsis. In addition, Al-Nassan and Fujino (2018)
demonstrated that a mild exercise preconditioning could
preserve muscle mass and prevent atrophy during sepsis.
Furthermore, exercise preconditioning increased survival,
ameliorated multiple organ damage, and recovered pro- and
anti-inflammatory balance by modifying gut microbiota
composition (Kim and Kang, 2019).

Overall, the above findings indicate that exercise
preconditioning protects against multiple organ failure during
sepsis in experimental models. Clinical research demonstrates
that early physical rehabilitation in septic patients might improve
physical function and reduce the inflammatory response at
6–12 months post-hospital discharge (Kayambu et al., 2011;
Kayambu et al., 2015; Ahn et al., 2018). Therefore, physical
exercise may be a non-pharmacological method to improve
multiple organ dysfunction in sepsis.

2.5 Effects of Physical Exercise on the
Outcomes of Sepsis
Here, we discuss whether physical exercise affects the outcomes of
sepsis. Based on experimental models, several studies have
suggested that regular exercise alters the morbidity of sepsis
and increases the survival rate (Sossdorf et al., 2013; Kim and
Kang, 2019; Wang et al., 2021). In a clinical study, Wang et al.
(2014) indicated an association between physical exercise
preconditioning and susceptibility to sepsis. They concluded
that individuals with low rates of physical exercise and high
rates of watching television presented with higher morbidity and
mortality of sepsis (Wang et al., 2014). However, sepsis survivors

have a significant reduction in exercise capacity and physical
activity that may continue even 3 months after hospitalization
(Borges et al., 2015), and little information is available regarding
the effects of post-hospital exercise on the long-term outcomes of
sepsis.

Although the effects of physical exercise in improving organ
function of sepsis are different in different organ systems, several
studies show that exercise preconditioning can ameliorate sepsis-
mediated multiple organ failure and reduce morbidity and
mortality of sepsis (summarized in Table 1). In conclusion, we
consider that physical exercise preconditioning may be a
beneficial and non-pharmacological alternative for preventing
and treating sepsis and is suitable for any individual.

3 MOLECULAR MECHANISMS OF
PHYSICAL EXERCISE IN SEPSIS
TREATMENT
3.1 Mitochondrial Quality Control
3.1.1 Mitochondrial Biogenesis
Mitochondrial quality is controlled by various processes such as
mitochondrial biogenesis, mitochondrial fusion/fission, and
mitophagy. Mitochondrial biogenesis contributes to the
production of new mitochondria and mitochondrial content.
These processes are controlled by biogenesis signals, such as
PGC-1α, NRF-1, NRF-2, AMPK, SIRT1, and TFAM. PGC-1α
plays a central role in mitochondrial biogenesis and is activated
by the SIRT1-AMPK pathway, which then interacts with NRF-
1 and NRF-2 in both the mitochondria and nucleus (Song et al.,
2021). In the mitochondria, PGC-1α binds to NRF-1 and NRF-
2, coactivating TFAM, which in turn mediates mitochondrial
DNA translation, transcription, and replication (Song et al.,
2021). In the nucleus, PGC-1α binding to NRF-1 and NRF-2
induces nuclear translocation of mitochondrial proteins, which
are then imported into the mitochondria (Song et al., 2021).
During sepsis, the expression levels of PGC-1α, TFAM, NRF-1,
and NRF-2 are increased in multiple organ tissues, including
the liver, heart, brain, and lungs, in the initial stage and
decreased in the late stage (Rayamajhi et al., 2013; Vanasco
et al., 2014; Wu et al., 2019b). Haden et al. (2007) first
demonstrated that mitochondrial biogenesis induction could
restore basal metabolism in Staphylococcus aureus sepsis.
Thereafter, MacGarvey et al. (2012) showed that targeted
induction of mitochondrial biogenesis could attenuate
multiple organ dysfunction in sepsis. In addition, several
studies have repeatedly verified that PGC-1α overexpression
attenuates multiple organ dysfunction in sepsis (Tran et al.,
2011; Yi et al., 2020; Li et al., 2021). Various proteins of
mitochondrial biogenesis have been found to be increased
after exercise. A systematic review showed that physical
exercise increased the expression levels of PGC-1α, NRF-1,
NRF-2, and TFAM and promoted mitochondrial biogenesis in
Parkinson’s disease (Nhu et al., 2021). In addition, Zhang and
Gao (2021) found that physical exercise protects against
cardiovascular disease by promoting mitochondrial
biogenesis. Therefore, physical exercise could enhance
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multiple organ functions through the induction of
mitochondrial biogenesis.

3.1.2 Mitochondrial Dynamics
Mitochondrial fusion and fission regulate mitochondrial number
and size. These processes are mediated by the fission proteins,
Drp1 and Fis1, and the fusion proteins, Mfn2, Mfn1, and OPA1.
In mitochondrial fusion, homo- and hetero-oligomeric structures
are formed by Mfn1 and Mfn2 to link two neighboring
mitochondria for outer membrane fusion, and OPA1 directly
promotes inner membrane fusion (Chan, 2012). During
mitochondrial fission, Drp1 translocates from the cytosol to
the mitochondria and forms Drp1 complexes to constrict the
mitochondrial tubule. The parent mitochondria are then
segregated into two daughter mitochondria (Losón et al.,
2013). In sepsis, the fusion proteins Mfn2 and OPA1 are
decreased, and the fission protein Drp1 is increased in the
liver, heart, and immune cells (Gonzalez et al., 2014; Shen
et al., 2018). Inhibition of Drp1 and overexpression of Mfn2
improve organ dysfunction and poor outcomes in sepsis
(Gonzalez et al., 2014; Deng et al., 2018; Wu et al., 2019b).
Jang et al. (2018) found that physical exercise enhanced the
expression of Mfn2, OPA1, and p-Drp1 Ser637 and balanced
mitochondrial fusion and fission. In addition, treadmill exercise

enhances learning skills and memory in Alzheimer’s disease by
balancing mitochondrial fusion and fission (Yan et al., 2019).

3.1.3 Mitophagy
Mitophagy is the selective elimination of aged and damaged
mitochondria, which can help maintain mitochondrial
homeostasis. The import of PINK1 to the inner mitochondrial
membrane is blocked when a damaged mitochondrion is
detected, resulting in the accumulation of PINK1 on the outer
mitochondrial membrane. PINK1, which is activated through
auto-phosphorylation, can phosphorylate ubiquitin, a substrate
of PINK1, which then induces the recruitment of Parkin to
damaged mitochondria. After that, PARK2 is activated by
phosphorylation, which binds to the outer mitochondrial
membrane and autophagy adaptor proteins, including OPTN
and NDP52, ultimately resulting in autophagosomes (Lazarou
et al., 2015). Finally, autophagosomes fuse with a lysosome,
degrading damaged mitochondria. In sepsis, mitophagy is
induced in the initial stage, but lysosomal degradation is
impaired in the late stage, leading to multiple organ
dysfunction (Chien et al., 2011; Hsieh et al., 2011).
Knockdown of PINK1 or PARK2 exacerbates multiple organ
dysfunction during sepsis (Kang et al., 2016). These suggest that
complete induction of mitophagy presents as a therapeutic target

TABLE 1 | Effects of physical exercise on multiple organ function and outcomes of sepsis.

Organ Effects Molecular mechanisms Reference

Heart Attenuate the alterations in arterial
pressure and heart rate

— Mehanna et al. (2007)

Attenuate basal levels of heart rate,
arterial pressure and cardiac injury

Reduce levels of pro-inflammatory cytokines
and nitrate

Chen et al. (2007)

Ameliorate cardiac injury Reduce levels of pro-inflammation, oxidative
stress and apoptosis

Khoshkhouy et al. (2021)

Ameliorate cardiovascular dysfunction
reflected by ejection fraction

Inhibit GCN2-eIF2α/ATF4 pathway Sun et al. (2020)

Kidney Ameliorate kidney tubular damage Increase lysophosphatidylcholines and
decrease inflammatory cytokines

Sossdorf et al. (2013)

Expand the renal tubulointerstitial space Increase levels of NGAL and TLR 4 Húngaro et al. (2020)

Brain Reduce escape distance and latency to
arrive the platform

Inhibit endocannabinoid system and COX Moosavi Sohroforouzani et al. (2020)

Contribute to survival of neuron and
neuronal hypertrophy

Increased levels of TGF-β and TNF-α Moreira et al. (2014)

Lung Enhance pulmonary surfactant function Reduce levels of pro-inflammation and
neutrophil influx in lung

Tyml et al. (2017)

Ameliorate lung injury Reduce density of purinergic enzymes and
receptors, and oxidative stress

Miron et al. (2019)

Ameliorate pulmonary edema Decrease levels of pro-inflammation and restore
redox balance

Wang et al. (2021)

Reduce static elastance of lung and
alveolar collapse

Decrease content of lung collagen and fiber,
levels of neutrophils in BALF

de Araújo et al. (2012)

Liver — Reduce neutrophil influx in liver Tyml et al. (2017)
Make no effect on liver damage — Sossdorf et al. (2013)

Skeletal
muscle

— Reduce capillary plugging and increase eNOS Tyml et al. (2017)
Preserve muscle mass and prevent
atrophy

— Al-Nassan and Fujino (2018)

Outcomes Alter the morbidity of sepsis and increase
the survival rate of sepsis

Modify gut microbiota Sossdorf et al. (2013), Kim and Kang (2019), Kayambu et al.
(2011), Wang et al. (2014), Ahn et al. (2018), Wang et al. (2021)
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during sepsis. There is evidence that physical exercise enhances
the recruitment of PARK2 to the outer mitochondrial membrane
to stimulate mitophagy in cardiovascular disease (Wu et al.,
2019a; Memme et al., 2021). Furthermore, Hwang et al. (2018)
demonstrated that physical exercise reduced the expression levels
of P62 and enhanced the expression of LAMP2 and cathepsin L,
suggesting that physical exercise promotes lysosomal
degradation. Therefore, physical exercise could reverse sepsis-
induced disruption of the lysosomal degradation and promote
complete induction of mitophagy. Collectively, previous results
have suggested that physical exercise improves organ dysfunction
by regulating mitochondrial quality control (Figure 1).

3.2 Systemic Inflammation
Sepsis is characterized by hyperinflammatory responses and
immunosuppression in the initial and late stages of the
disease, respectively. Hyperinflammatory responses are the
leading cause of organ dysfunction. During sepsis, innate
immune cells recognize pathogen-associated molecular
patterns via pattern recognition receptors, activating numerous
signaling pathways in the cell (Cecconi et al., 2018). Activation of
these pathways results in the downstream activation of MAP3K7,

which then activates the JNK-p38-ERK pathways, IRFs, and NF-
κB (Lawrence, 2009). Finally, inflammatory cytokines, including
IL-6, IL-12, TNF-α, and IL-1β, are released, inducing endothelial
dysfunction and cell damage in multiple organ tissues. Damage-
associated molecular patterns produced by tissue injury have the
same function as pathogen-associated molecular patterns and
amplify immune responses (Timmermans et al., 2016). These
factors induce multiple organ dysfunction in sepsis.

Numerous studies have shown that physical exercise improves
organ dysfunction by reducing systemic inflammation in sepsis
patients. Wang et al. (2021) found that aerobic exercise decreased
lung neutrophil content and the mRNA expression levels of IL-6,
TNF-α, Glu1, CXCL-1, and HMGB1 in the lung to improve
respiratory dysfunction. Shimojo et al. (2019) showed that
swimming decreased serum inflammatory cytokines and
increased anti-inflammatory cytokines by decreasing
dopamine. Miron et al. (2019) demonstrated that physical
exercise decreases serum IL-6 and IL-1β expression following
LPS treatment. Tyml et al. (2017) showed that voluntary running
protects against respiratory dysfunction, hepatic dysfunction, and
neutrophil influx by reducing inflammation in sepsis.
Collectively, these studies conclude that physical exercise

FIGURE 1 | Physical exercise regulating mitochondrial quality control. The figure shows how physical exercise mediates mitochondrial quality control.
Mitochondrial quality is controlled by various processes, including mitochondrial biogenesis, mitochondrial fusion/fission, and mitophagy. Processes of mitochondrial
biogenesis are controlled by biogenesis signals such as PGC-1α, NRF-1, NRF-2, AMPK, SIRT1, and TFAM. PGC-1α plays a central role in mitochondrial biogenesis,
interacting with NRF-1 and NRF-2 in both the mitochondria and nucleus. In the mitochondria, PGC-1α binds with NRF-1 and NRF-2, coactivating TFAM, which in
turn mediates mitochondrial DNA translation, transcription, and replication. In the nucleus, PGC-1α binds with NRF-1 and NRF-2, inducing the nuclear translation of
mitochondrial proteins, which are imported into themitochondria. Mitochondrial fusion and fission aremediated by fission proteins such as Drp1 and fusion proteins such
as Mfn2, Mfn1, and OPA1. PINK1 import to the inner mitochondrial membrane is inhibited when it detects a damaged mitochondrion, resulting in the accumulation of
PINK1 on the outer mitochondrial membrane. PINK1 phosphorylates ubiquitin, a substrate of PINK1, which then induces the recruitment of Parkin to the damaged
mitochondria. Then, PARK2 is phosphorylated and binds to outer mitochondrial membrane proteins and autophagy adaptor proteins, ultimately resulting in mitophagy.
Physical exercise promotes mitochondrial quality control.
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improves organ dysfunction by reducing systemic inflammation
in sepsis.

3.3 Redox Balance
Oxidants and antioxidants are involved in various diseases. The
oxidative burst promotes the production of reactive oxygen
species (ROS) and reactive nitrogen species. To maintain
cellular homeostasis, antioxidant enzymes, including
glutathione peroxidase, superoxide dismutase, and catalase, act
as oxidant scavengers and decrease the cellular level of oxidants
(Mantzarlis et al., 2017). In the past decades, several studies have
suggested that ROS are induced during sepsis and involved in the
development of sepsis-induced multiple organ dysfunction (Jung
et al., 2000; Pleiner et al., 2003; Ritter et al., 2003). A clinical study
showed that the antioxidant potential was increased to a greater
extent in sepsis survivors than in non-survivors (Cowley et al.,
1996). Further research verified that the balance between oxidants
and antioxidants was disrupted in sepsis, resulting in oxidative
stress, cell death, and organ injury (Miliaraki et al., 2022).

Converging studies have suggested that ROS are involved in
mediating the effects of physical exercise. Adams et al. suggested
that physical exercise decreased ROS generation, resulting in
improving acetylcholine-mediated vasodilatation and reducing
Ang II-mediated vasoconstriction (Adams et al., 2005). In
addition, Miron et al. (2019) found that physical exercise
reduces lung lipid peroxidation and reactive species.
Furthermore, Wu et al. (2020) demonstrated that physical
exercise alleviated the increased ROS levels and apoptosis in

kidney tissues. However, Mendonça et al. (2019) found that pre-
infection exercise aggravates acute infections by aggravating
oxidative stress. A review summarized that prolonged
endurance exercise promoted oxidative stress, whereas
moderate physical exercise reduced oxidative stress (Gomez-
Cabrera et al., 2021). Therefore, physical exercise is considered
a double-edged sword for redox balance, depending on the
intensity and duration of physical exercise.

3.4 Gut Microbiome
There are trillions of microbiota in the human gastrointestinal
tract that play diverse roles in health and disease. Recent
breakthroughs in technology, such as metagenome and 16S
ribosomal RNA sequencing, have enabled progress in
understanding the gut microbiome. This has led to an
enormous increase in research elucidating the association
between the gut microbiome and diseases. In sepsis, a study
revealed that the levels of beneficial Lactobacillus and
Bifidobacterium were decreased, and the abundance of
pathogenic Pseudomonas and Staphylococcus was increased
(Shimizu et al., 2006). Disruption of the gut microbiome at
both the functional and compositional levels promoted
multiple organ dysfunction in patients with sepsis (Liu et al.,
2019). Moreover, disruption of the gut microbiome increased the
susceptibility of rats to sepsis (Haak and Wiersinga, 2017). It also
reported that intervention with three microbiota-derived short-
chain fatty acids could improve multiple organ dysfunction in
sepsis (Haak and Wiersinga, 2017). These new insights suggest

FIGURE 2 |Molecular mechanisms involved in the beneficial effects of physical exercise on multiple organ failure in sepsis. The figure shows how physical exercise
regulates multiple organ failure through these potential molecular mechanisms. The potential molecular mechanisms include inflammation, mitochondrial quality control,
redox balance, gut microbiome, and noncoding RNAs. These potential molecular mechanisms regulated by physical exercise ameliorate sepsis-induced multiple organ
failure, including respiratory, cardiovascular, neurological, hepatic, hematological, and muscle systems. The effects of physical exercise on renal dysfunction are
unclear in sepsis. IL-6 interferon 6; TNF-α tumor necrosis factor α; IL-1β interferon 1β; CXCL-1 chemokine (C-X-C motif) ligand 1; HMGB1 high mobility group 1; ROS
reactive oxygen species; SCFAs short-chain fatty acids; miR-135a microRNA 135a; miR-21 microRNA 21; miR-29a microRNA 29a; miR-29c microRNA 29c.
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that the gut microbiome plays an essential role in mediating
sepsis-induced multiple organ dysfunction.

There is evidence that exercise may affect the gut microbiome,
which can then modulate multiple organ dysfunction in sepsis. For
example, physical exercise changes the composition of the gut
microbiome, including an increase in the abundance of beneficial
Lactobacillus and Bifidobacterium (Queipo-Ortuño et al., 2013).
Modifying the composition of the gut microbiome by exercise
preconditioning can increase survival, ameliorate multiple organ
damage, and restore pro- and anti-inflammatory balance in sepsis
(Kim and Kang, 2019). Physical exercise also increases short-chain
fatty acid levels in both humans and rodents, which is beneficial for
multiple organ dysfunction in sepsis (Allen et al., 2018). Physical
exercise enhances SCFA levels by increasing SCFA-producing
bacteria, including the propionate producer Propionibacterium
freudenreichii and the butyrate producers Faecalibacterium
prausnitzii (Húngaro et al., 2020; Ramos et al., 2022).
Furthermore, physical exercise increases the diversity of the gut
microbiome and decreases gut transit time. Therefore, the gut
microbiome may be a bridge between physical exercise and sepsis.

3.5 Noncoding RNAs
Non-coding RNA (ncRNA) is a class of RNA molecules that
cannot encode proteins or peptides, mainly including microRNA
(miRNA), long non-coding RNA (lncRNA), circular RNA
(circRNA), and small interfering RNA (siRNA) (Matsui and
Corey, 2017). ncRNA binds to many molecular targets to form
a regulatory network, initiating specific cellular biological
responses. In addition, ncRNA can regulate gene expression,
influence intracellular signaling, and participate in epigenetic
modifications, thus playing a crucial role in various disease
(Matsui and Corey, 2017). Many studies have demonstrated
that multiple miRNAs, such as mi-R210, miR-23b, and miR-
29a, can suppress NF-κB and IL-6 expression in sepsis by
regulating the function of the immune cells (Qi et al., 2012;
Benz et al., 2016). In addition, a study showed that lncRNA
HOTAIR regulates cardiomyocyte TNF-α synthesis in a murine
sepsis model (Wu et al., 2016). Furthermore, recent research
suggested that mcircRasGEF1B protected cells from infection by
regulating the stability of mature ICAM-1 mRNAs (Ng et al.,
2016). In conclusion, there is growing evidence that ncRNA is
involved in regulating pathophysiological processes in sepsis.

Physical exercise has been reported to regulate various
ncRNA, including circulating miRNAs (Baggish et al., 2011).
For example, exercise training increased cell proliferation via
downregulating the levels of miR-135a (Improta-Caria et al.,
2020). In the traumatic brain injury model, physical exercise
could attenuate cognitive dysfunction via upregulating the levels
of miR-21 (Hu et al., 2015). Interestingly, physical exercise can
improve cardiovascular dysfunction via upregulating the levels of
miR-29a and miR-29c, which are associated with inflammatory
cytokines released in sepsis (Soci et al., 2011).

4 CONCLUSION

Studies have shown that exercise preconditioning can improve
cardiovascular, neurological, respiratory, and hepatic
dysfunction in sepsis, and increase the survival of sepsis
patients. Nevertheless, doubts remain about the
effectiveness of this therapy in sepsis. Thus, there is a need
for more clinical research to evaluate whether physical exercise
can attenuate organ dysfunction in sepsis. Moreover, new
knowledge is needed on the effects of post-hospital exercise
on the long-term outcomes of sepsis. This knowledge can
further our understanding of whether physical exercise can
be a non-pharmacological treatment for sepsis.

In this review, we outlined the potential mechanisms of the
beneficial effects of physical exercise on sepsis (Figure 2). We
illustrated that mitochondrial biogenesis, mitochondrial fusion
and fission, mitophagy, systemic inflammation, redox balance,
the gut microbiome, and noncoding RNA are involved. Despite
existing investigations into these molecular mechanisms, many of
the mechanisms associated with physical exercise and sepsis have
not yet been revealed. There is a need for further research to
systematically screen molecular mechanisms that are associated
with physical exercise and sepsis.
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