
BACTERIAL BLOOMS

The social life of cyanobacteria
The cyanobacterium Synechocystis secretes a specific sulphated

polysaccharide to form floating cell aggregates.
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C
yanobacteria are ancient and extremely

versatile organisms that can be found in

nearly every ecosystem on Earth, in par-

ticular lakes, rivers and oceans. Like plants and

algae, they produce oxygen and use sunlight as

an energy source.

Some cyanobacteria – even single-celled ones

– show striking collective behaviours and form

colonies (or ‘blooms’) that can float on water

and have important ecological roles. For

instance, billions of years ago, communities of

marine Paleoproterozoic cyanobacteria could

have helped create the biosphere as we know it

by burying carbon compounds and allowing the

initial build-up of oxygen in the atmosphere

(Kamennaya et al., 2018). On the other hand,

toxic cyanobacterial blooms are an increasingly

issue for society, as their toxins can be harmful

to animals (Huisman et al., 2018). Extreme

blooms can also deplete water of oxygen and

reduce sunlight and visibility, thereby

compromising the feeding and mating behavior

of light-reliant species.

It has been unclear why and how cyanobacte-

ria form communities. Aggregation must divert

resources away from the core business of mak-

ing more cyanobacteria, as it generally involves

the production of copious quantities of extracel-

lular material. In addition, cells in the centre of

dense aggregates can also suffer from both

shading and shortage of nutrients

(Conradi et al., 2019; Enomoto and Ikeuchi,

2020). So, what advantage does this communal

life bring for cyanobacteria?

Now, in eLife, Masahiko Ikeuchi of the Univer-

sity of Tokyo and colleagues – including Kaisei

Maeda as first author – report new insights into

how cyanobacteria form blooms (Maeda et al.,

2021). Using the widely studied cyanobacterium

Synechocystis, they identified a set of genes that

regulate the production and export of sulphated

polysaccharides, chains of sugar molecules mod-

ified with sulphate groups that can often be

found in marine algae and animal tissue. Many

bacteria generate extracellular polysaccharides,

but sulphated ones have only been seen in

cyanobacteria.

Maeda et al. showed that the sulphated poly-

saccharide in Synechocystis, which they named

Synechan, helps the cyanobacterium to form

buoyant aggregates by trapping oxygen bub-

bles in the slimy web of cells and polysacchar-

ides. This suggests that a major purpose for the

production of Synechan is buoyancy.

Previous studies on Synechocystis have shown

that type IV pili, which decorate the surface of

cyanobacteria, also play a role in forming

blooms (Allen et al., 2019; Conradi et al.,

2019). These retractable and adhesive protein

fibres are important for motility, adhesion to

substrates and DNA uptake (Schuergers and

Wilde, 2015). The formation of blooms may

require both type IV pili and Synechan –

for example, the pili may help to export the

polysaccharide outside the cell. Indeed, the

activity of these protein fibres may be connected
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to the production of extracellular polysacchar-

ides in filamentous cyanobacteria

(Khayatan et al., 2015). A more obvious answer

would be that pili help to build the aggregates

by binding the cells with each other or with the

extracellular polysaccharide. As with other kinds

of bacteria (Adams et al., 2019), certain compo-

nents of the pili may allow cyanobacteria from

the same species to recognise each other and

make initial contacts, which are then stabilised

by building a mass of extracellular

polysaccharide.

The ‘bubble flotation’ mechanism identified

by Maeda et al. joins a range of known strate-

gies that enable cyanobacteria to control their

buoyancy, such as using gas vesicles or accumu-

lating carbohydrate ballasts (Figure 1;

Kromkamp and Walsby, 1990). Type IV pili on

their own could also control the position of

marine cyanobacteria in the water column by

regulating viscous drag (Aguilo-

Ferretjans et al., 2021). Extracellular polysac-

charide appears to be a multipurpose asset for

cyanobacteria, from floatation device to food

storage, defence mechanism and mobility aid

(Khayatan et al., 2015). Cyanobacteria can

make surprisingly complex and diverse lifestyle

choices, and the role of slime in their social life

calls for further exploration.

It remains to be seen if Synechan production

in nature would serve to segregate

cyanobacteria away from other species, includ-

ing dangerous predators; or whether it may help

to build a floating microbial community where

multiple, metabolically diverse species can coop-

erate. We know so little about the real life of

Synechocystis outside the laboratory that both

ideas are equally possible.
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Figure 1. Collective behaviour and lifestyle choices in single-celled cyanobacteria. Bacteria can stay in suspension

as individual cells, adhere collectively to surfaces to form biofilms, passively sediment, or flocculate to form

suspended aggregates. Cyanobacteria are able to produce sulphated polysaccharides (yellow haze surrounding

clumps of cells) that enable them to form floating aggregates. Maeda et al. discovered that the oxygen produced

by the cyanobacteria becomes trapped in the network of polysaccharides and cells, enabling the microorganisms

to form buoyant blooms. It is thought that specific protein fibres known as pili (represented as lines radiating from

the cells) may act as an additional way to link cells to each other or onto surfaces. Some cyanobacteria also use

sophisticated intracellular gas vesicles as floating aids.
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