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Prediction and characterization of 
protein-protein interaction network 
in Bacillus licheniformis WX-02
Yi-Chao Han*, Jia-Ming Song*, Long Wang, Cheng-Cheng Shu, Jing Guo & Ling-Ling Chen

In this study, we constructed a protein-protein interaction (PPI) network of B. licheniformis strain WX-02 
with interolog method and domain-based method, which contained 15,864 edges and 2,448 nodes. 
Although computationally predicted networks have relatively low coverage and high false-positive rate, 
our prediction was confirmed from three perspectives: local structural features, functional similarities 
and transcriptional correlations. Further analysis of the COG heat map showed that protein interactions 
in B. licheniformis WX-02 mainly occurred in the same functional categories. By incorporating the 
transcriptome data, we found that the topological properties of the PPI network were robust under 
normal and high salt conditions. In addition, 267 different protein complexes were identified and 
117 poorly characterized proteins were annotated with certain functions based on the PPI network. 
Furthermore, the sub-network showed that a hub protein CcpA jointed directly or indirectly many 
proteins related to γ-PGA synthesis and regulation, such as PgsB, GltA, GltB, ProB, ProJ, YcgM and two 
signal transduction systems ComP-ComA and DegS-DegU. Thus, CcpA might play an important role in 
the regulation of γ-PGA synthesis. This study therefore will facilitate the understanding of the complex 
cellular behaviors and mechanisms of γ-PGA synthesis in B. licheniformis WX-02.

Bacillus licheniformis (B. licheniformis) is a gram-positive spore-forming bacterium widely used in industry 
and agriculture1. For example, it can be used to produce many commercial enzymes2, biofuels and chemicals 
by fermentation, including poly-gamma-glutamic acid (γ -PGA)3, acetoin4 and antibiotics5, and even can be 
directly used to convert plumage into nutritious food for livestock6. Currently, the studies of B. licheniformis 
are mainly focused on one specific protein or several proteins in a single pathway7–10, while no comprehensive 
protein-protein interaction (PPI) network has been reported.

Proteins seldom perform their biological functions independently, and most complex cellular processes must 
be understood via large-scale PPI networks11,12. The availability of B. licheniformis strain WX-02 genome makes it 
possible to perform genome-scale analysis based on PPI network13,14. Genome-wide PPI networks have become 
powerful tools to study the cellular behaviors with a global view, and they can reveal the relationships between 
different kinds of proteins with various functions. Proteins involved in important biological processes and con-
trolling the entire network can also be detected with the organization of the interactome11,15,16. In addition, the 
constructed PPI network is conducive to elucidating some protein functions that are poorly characterized with 
genome annotation17,18.

Currently, a large number of PPI networks have been constructed with high-throughput experimental meth-
ods, such as yeast two-hybrid system and tandem affinity purification19. However, these methods are quite costly 
in time and money20,21. With the increasing number of experimentally-determined PPIs and 3D-structures of 
proteins, a series of computational methods have been developed and attracted researchers by economical, rapid 
and convenient characters. In this study, we predicted the PPI network of B. licheniformis WX-02 by using two 
independent computational methods (interolog method and domain-based method) and analyzed the network 
from different perspectives. Finally, a PPI network containing 15,864 edges and 2,448 nodes was obtained. Based 
on this network, we investigated some species-specific properties of the network to explore the features of B. 
licheniformis WX-02 and dissected the functional modules related to γ -PGA biosynthesis to provide insights into 
its regulatory mechanism. The predicted PPI network can be used as a valuable resource for studying the physiol-
ogy and metabolisms of B. licheniformis WX-02.
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Results and Discussion
Construction of the genome-scale PPI network. The PPI network was constructed by interolog 
method and domain-based method (Fig. 1A). These two methods predicted 1,740 and 14,378 PPIs respectively, 
and shared 254 PPIs. Finally, the merged non-redundant PPI network contains 15,864 edges and 2,448 nodes (see 
Supplementary Table S1 online). As homomeric interactions may cause bias in subsequent analysis, we excluded 
them from the network when investigating the relationships of interacting proteins22,23. As a result, the remained 
network comprised 13,664 interactions among 2,165 proteins.

The network was visualized by Cytoscape24 and nodes were colored according to their cluster of orthologous 
groups (COG) functional categories (Fig. 1B). The distribution of COG in PPI network is shown in Fig. 1C. 
Proteins involved in ‘transcription (K)’ accounted for the largest proportion (12%), which are highlighted in deep 
blue; while the proteins related to ‘intracellular trafficking, secretion, and vesicular transport (U)’ accounted for 
the smallest proportion (less than 1%), which are marked with light yellow. The above results suggest that many 
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Figure 1. Flowchart for constructing PPI network in B. licheniformis WX-02 and overview of the network. 
(A) Flowchart for constructing PPI network. (B) Nodes of the network are colored according to their COG 
categories, and therefore nodes with the same color belong the same functional category. (C) The proportions of 
COG functional categories in the PPI network.
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transcriptional regulation processes in B. licheniformis can be performed through the PPI network, which is sim-
ilar to some cases reported in Bacillus subtilis (B. subtilis)25,26.

Quality assessment of the PPI network. The accuracy of the predicted PPI network was evaluated 
from three perspectives: local structural features, functional similarities and gene transcription correlations. 
Firstly, we evaluated 1,000 randomly selected PPIs with a structural context method27,28. As well-characterized 
structural templates in available databases are limited, 43% of the selected PPIs contained at least one protein 
that had no structural features. Surprisingly, 54% of the PPIs could be confirmed and only 1% were classified as 
non-interacting pairs (Fig. 2A), indicating that more than half of our PPIs can be validated by local structural 
features and the PPI network is relatively reliable.

Figure 2. Validation and topological properties of the B. licheniformis WX-02 PPI network. (A) 1,000 
randomly selected PPIs validated by iLoop web server. (B) Comparison of the GO similarity between the 
predicted PPI network and random networks with same topology. (C) Comparison of the PCC of gene 
transcription profiles between protein pairs derived from the PPI network and random networks with same 
topology. (D) Topological properties.
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Functional similarities of interacting proteins can also be used to evaluate the quality of PPIs, since interacting 
proteins are prone to have similar functions29,30. We calculated the functional similarities of protein pairs in the 
PPI network and in random networks with the same topology according to their semantic similarities of gene 
ontology (GO) annotations based on reference31. Figure 2B shows that the functional similarities of protein pairs 
in the PPI network (mainly falling within 0.65 ~ 1) are significantly higher than those in random networks (most 
of which are less than 0.4).

In addition, we compared the Pearson correlation coefficient (PCC) of normalized transcription profiles 
between interacting and random protein pairs. Previous studies have demonstrated that interacting proteins tend 
to have similar transcription patterns32. Hence, an accurate PPI network should contain significantly more inter-
acting protein pairs with similar transcription patterns than random networks. Based on gene transcription, 
we calculated the PCC between protein pairs in the PPI network and those in random networks with the same 
topology, respectively. Figure 2C demonstrates that the PCC value of transcription profiles of protein pairs in the 
PPI network is significantly higher than that in random networks.

Despite the fact that the resolution of theoretical methods is lower than that of some structural modeling 
methods33,34, and the PPIs detected in our study do not cover all the actually existing PPIs, the above results indi-
cate a high accuracy of the predicted B. licheniformis PPI network.

Properties of the PPI network. We calculated and analyzed the topological parameters of PPI network 
with Network Analysis plugins in Cytoscape24. As the case for many complex networks35, degree distribution 
of the PPI network in B. licheniformis WX-02 follows the power law, which characterizes the PPI network as 
a scale-free network (Fig. 2D). The average degree of this network is 12.6 and the degrees of 70% proteins are 
lower than 10. The average path length, cluster coefficient and the number of sub-networks are 4.7, 0.61 and 150, 
respectively. The largest sub-network contains 13,057 interactions and 1,718 proteins. Figure 2D shows that the 
distribution of average short path length, clustering coefficient and closeness centrality has two peaks, indicating 
the existence of many small sub-networks, whose topological parameters are quite different from those of the 
largest sub-network.

For the predicted PPI network, the degree exponent γ  was calculated as 1.6 by the maximum likelihood esti-
mate. It is well known that if the degree exponent is smaller than 2, relatively fewer nodes are needed to control 
the entire network36. These nodes were identified by minimum dominating set (MDS), since a previous study 
has reported that they play an important role in controlling the network16. In the present study, we determined a 
MDS in the B. licheniformis WX-02 PPI network by solving an integer-based linear programming problem. The 
resulting MDS contains 406 nodes, which account for less than 20% of the total nodes. To further analyze these 
important nodes, we performed COG enrichment analysis for them, finding that the proteins in MDS are signif-
icantly enriched in ‘carbohydrate transport and metabolism (G, fisher’s exact test, P <  0.05)’, ‘replication, recom-
bination and repair (L, fisher’s exact test, P <  0.05)’ and ‘unknown function (S, fisher’s exact test, P <  0.01)’ (see 
Supplementary Table S2 online). Since the proteins in MDS are enriched in essential functional categories, such 
as cancer-related and virus-targeted genes in the PPI network of Homo sapiens and Saccharomyces cerevisiae16, 
the proteins with unknown function belonging to MDS in our PPI network might be involved in some important 
biological processes.

Heat map of COG functions in the PPI network. In this study, we performed PPI enrichment analysis 
by presenting the PPI network as a heat map based on different COG categories (Fig. 3)32,37–39. The PPI networks 
of other three model species (B. subtilis 168, E. coli K12 and H. pylori 26695) and their corresponding heat maps 
were constructed for comparison. To ensure the reliability of the comparative results, we used the same compu-
tational methods and reference PPI data to establish their PPI networks as B. licheniformis. Finally, the networks 
of B. subtilis, E. coli and H. pylori include 15,862, 23,900 and 2,965 PPIs, among which 15,304, 22,945 and 2,287 
have COG annotations respectively. From Fig. 3, it can be observed that the PPI data of these four strains are 
mainly enriched in diagonal regions, suggesting that most of the interactions occur within the same functional 
categories.

Nevertheless, the differences among the four heat maps are obvious, indicating the species-specific functional 
features of these bacterial strains. In E. coli, the majority of PPIs are related to ‘translation, ribosomal structure 
and biogenesis (J)’ or ‘posttranslational modification, protein turnover, chaperones (O)’, while in the other three 
strains, most PPIs are not dominated by one or two classes of proteins. In Bacillus species, the proteins related to 
‘defense mechanisms (V)’ tend to interact with the proteins from ‘Intracellular trafficking, secretion, and vesicular 
transport (U)’, while this phenomenon was not observed in other two gram-negative bacteria. Therefore, it can be 
speculated that Bacillus species might have specific defense mechanism to protect themselves. Moreover, several 
specific functional features were discovered in B. licheniformis WX-02. For instance, we found that the proteins in 
‘signal transduction mechanisms (T)’ category are highly connected with those in ‘transcription (K)’ category and 
‘cell motility (N)’ category. On the other hand, it is interesting that the interactions between ‘Cell wall/membrane/
envelope biogenesis (M)’ and ‘Signal transduction mechanisms (T)’ proteins are all enriched in the networks of B. 
subtilis, E. coli and H. pylori, except for in that of B. licheniformis. These different features suggest that there might 
be unique complex regulatory mechanisms in B. licheniformis WX-02, which provide an effective way to explain 
its physiological characteristics and complex cellular behaviors.

Analysis and comparison of the PPI networks under normal and high salt conditions. To 
investigate the dynamics of the PPI networks under normal and high salt conditions, we incorporated the 
strand-specific RNA-seq (ssRNA-seq) data into the PPI network and obtained three sub-networks with expressed 
genes at different time points (network1 for normal condition at 11th h, network2 for early long-term salt adap-
tion at 22th h and network3 for late long-term salt adaption at 33th h)14. In order to explore the differences and 
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similarities of these three networks, we performed analysis from two perspectives: topology and transcription dif-
ferences between the interacting proteins. Firstly, we analyzed their topological properties by calculating 5 local 
topology metrics for each node in the corresponding networks, including degree, clustering coefficient, average 
shortest path length, betweenness centrality and closeness centrality. Interestingly, no significant differences were 
detected in the distributions of these local topology metrics for the three networks (Fig. 4A). These comparative 
results suggest that though the transcription levels and phenotypes are significantly different under normal and 
high salt conditions14, the topological properties of the PPI network are robust.

On the other hand, we investigated the absolute transcription levels between the interacting proteins, because 
their relative stoichiometrical amounts can affect productivity and efficiency. To this end, we defined the nor-
malized transcription difference as the proportion of the difference value between the reads per kilobase of ORF 
per million mapped reads (RPKM) of two interacting proteins to the sum of their RPKM values40. Figure 4B 
shows the normalized difference distribution of the protein pairs at three time points for four groups i.e., ‘control’ 
group (all possible protein pairs in the network), ‘all PPI’ group (all interacting protein pairs in the network), 
sub-networks related to ‘amino acid transport and metabolism (E category)’ and ‘inorganic ion transport and 
metabolism (P category)’. From Fig. 4B, it is observed that the normalized difference distribution of ‘control’ 
group (all possible protein pairs in the network) is higher than that of ‘all PPI’ group (all interacting protein pairs 
in the network), revealing that the transcription levels of the interacting proteins are more approximate. By com-
paring the normalized difference distribution of PPI networks for three time points, we found that the median 
of the normalized difference distribution of network1 was smaller than that of network2 and network3 (Fig. 4B), 
demonstrating that the normalized difference distribution of PPIs is affected under high salt condition, which is 
consistent with the analysis of transcription profiles. Interestingly, sub-networks of ‘E category’ and ‘P category’ 
exhibit opposite trends. The normalized difference distribution of interactions between the proteins related to 
‘E category’ is decreased at 22th h and then is restored to the normal level at 33th h. These changes might result 
in a more rational ratio of interacting proteins that are responsible for amino acid metabolism and acceleration 
of amino acid synthesis. However, the normalized difference distribution of interactions between the proteins 
related to ‘P category’ proteins is increased at 22th h relative to the normal condition. This change might contrib-
ute to the weakening of ion transport processes, the diminishing of ion-exchange amount and the maintaining of 
a stable osmotic pressure under long-term salt adaption. At 33th h, the transcription levels of many ‘P category’ 
proteins decrease to the levels under normal condition. The above results might explain the change of colony 
forming units (CFU), as the CFU decreased rapidly after the addition of 6% NaCl solution to the medium at 11th 
h, then the strain slowly resumed growth at about 22th h and the biomass reached almost the same level as in 11th 
h at 33th h14.

Figure 3. Heat map of COG functional categories of PPIs for four organisms (B. licheniformis, B. subtilis, 
E. coli and H. pylori). The numbers of PPIs among various COG functional categories were normalized by 
Z-score from a statistical model. The color indicates the enrichment degree of interactions between COG 
function categories.
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Identification of the protein complexes and prediction of the functions for uncharacterized pro-
teins. PPI network is a powerful tool to predict the functions of poorly characterized proteins. In this study, 
we proposed a two-step approach to determine the protein functions: identifying the protein complexes in the 

11th h 22th h 33th h

D
eg

re
e

0

50

100

150

200

11th h 22th h 33th h

C
lu

st
er

in
g 

co
ef

fic
ie

nt

0

0.2

0.4

0.6

0.8

1

11th h 22th h 33th h

Av
er

ag
e 

sh
or

te
st

 p
at

h 
le

ng
th

1

2

3

4

5

6

7

8

11th h 22th h 33th h

B
et

w
ee

nn
es

s c
en

tr
al

ity

0

0.2

0.4

0.6

0.8

1

11th h 22th h 33th h

C
lo

se
ne

ss
 c

en
tr

al
ity

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

11th h 22th h 33th h

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

11th h 22th h 33th h

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

11th h 22th h 33th h

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

11th h 22th h 33th h

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Controls E categoryAll PPIs P category

N
or

m
al

iz
ed

 D
iff

er
en

ce
s D

ij

A

B

Figure 4. Comparison of local topological properties and normalized difference under normal and high 
salt conditions. (A) Comparison of degree, clustering coefficient, average shortest path length, betweenness 
centrality and closeness centrality by Wilcoxon rank sum test. (B) Comparison of normalized differences for 
three time points and four groups of protein pairs. ‘Control’ represents all the pairwise proteins in the PPI 
network; ‘All PPI’ represents all the interacting protein pairs in the PPI network. ‘E category’ represents the 
interacting protein pairs belonging to ‘amino acid transport and metabolism (E)’; ‘P category’ represents the 
interacting protein pairs belonging to ‘inorganic ion transport and metabolism (P)’.
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PPI network, and then predicting the protein functions based on these protein complexes. By using a clustering 
algorithm TSN-PCD41, we finally obtained 267 different protein complexes (see Supplementary Table S3 online). 
After obtaining the protein complexes, the functional category entropy for each protein complex was calculated 
according to COG functional categories. As expected, the functions of proteins belonging to the same protein 
complex are prone to be consistent (Fig. 5A), indicating that the protein function within a certain complex can 
be predicted through the enriched COG functional categories. With this module-assisted method42, we finally 
annotated 117 proteins with unknown functions (see Supplementary Table S4 online).

Analysis of the sub-network related to γ-PGA synthesis and regulation. Some studies have 
reported that B. licheniformis WX-02 can produce γ -PGA under normal condition and has a much higher yield 
under high salt environment14,43. Up to now, genes (pgsB, pgsC, pgsA and pgsE) related to γ -PGA synthesis have 
been reported in B. subtilis and B. licheniformis. Although a series of molecular and cellular studies have been 
performed on B. licheniformis, the regulation mechanism of γ -PGA is still not clear. Here, we analyzed the 
sub-network related to γ -PGA synthesis and regulation. Figure 5B shows that a hub protein CcpA directly or 
indirectly joints many proteins related to γ -PGA synthesis (PgsB) and regulation, such as GltA and GltB (which 
together encode glutamate-oxoglutarate amidotransferase), proteins related to proline metabolism (ProB, ProJ, 
YcgM) and two signal transduction systems ComP-ComA and DegS-DegU (Fig. 5B).

The CcpA transcriptional regulator is a central regulatory factor in the intersection between carbon and nitro-
gen metabolism44, and can regulate the metabolisms by interacting with other proteins45. According to Fig. 5B, 
it can be inferred that CcpA might also be related to γ -PGA synthesis through the PPI network. To illustrate 
this point, we further analyzed the sub-network. First of all, the γ -PGA synthesis protein PgsB can interact indi-
rectly with CcpA through UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-2,6-diaminopimelate ligase (murE). 
Also, CcpA can interact directly with proteins GltA and GltB encoding glutamate-oxoglutarate amidotransferase 
(GOGAT), which play an important role in the upstream pathway of γ -PGA synthesis46. Thus, it can be specu-
lated that CcpA might affect the γ -PGA synthesis by regulating the GOGAT through protein interactions. In 
addition, CcpA is connected with several chemotaxis proteins, and further interacts with two signal transduction 
systems ComP-ComA and DegS-DegU. It is well known that the synthesis of γ -PGA is under the control of 
these two signal transduction systems47,48. These results suggest that CcpA might first interact with chemotaxis 
proteins and regulate their expression, and then these chemotaxis proteins affect the regulation of ComP-ComA 
and DegS-DegU to regulate the γ -PGA synthesis of B. licheniformis WX-02. Based on the above analyses, CcpA 
can play an important central role in the regulation of γ -PGA synthesis through interacting with some related 
proteins.

Conclusions
In this work, we presented a genome-wide PPI network with 15,864 edges and 2,448 nodes of B. licheniformis 
WX-02 by combining interolog method and domain based method. The PPI network was subsequently verified 
from three perspectives: local structural features, functional similarities and transcription correlations. Although 
the predicted PPI network is far from perfect, it can provide new insights into the research of B. licheniformis 
WX-02. By analyzing and comparing the networks under normal and high salt conditions based on transcrip-
tome data, we found that the topological properties of the PPI network are robust to tolerate fluctuations in 
transcription levels as well as changes in environmental conditions. In addition, we predicted 267 different pro-
tein complexes and annotated 117 poorly uncharacterized proteins based on the network. Further analyses of 
the sub-network show that the hub protein CcpA interacts directly or indirectly with many proteins involved 
in γ -PGA synthesis and regulation, indicating that CcpA might play an important role in regulating γ -PGA 

Figure 5. Functional category entropy distribution of protein complexes and sub-network related to 
γ-PGA synthesis and regulation. (A) Functional category entropy distribution of protein complexes. (B) The 
proteins are colored based on their COG functional categories.
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synthesis through the PPI network. The predicted PPI network will provide a significant foundation for exploring 
the molecular mechanisms of B. licheniformis WX-02 and developing optimized industry strains for producing 
chemicals.

Material and Methods
Data source. To construct the PPI network of B. licheniformis, we collected both the experimental interacting 
protein pairs and domain pairs from the databases. Totally, 44,648 experimental PPIs among 11,196 proteins for 
bacteria were downloaded from BioGRID49, IntAct50, DIP51 and MINT52 databases (Table 1). 9,590 domain-do-
main interactions (DDIs) among 5,619 domains were collected from iPfam53 and 3did54 databases. All the protein 
sequences were retrieved from NCBI RefSeq and UniProt. Domain alignment profiles were obtained from Pfam 
database55.

Interolog method. This prediction method is based on the conserved proteins in different species56. We 
detected the potential orthologs between B. licheniformis and reference organisms using BLASTP (E-value ≤  10−5, 
sequence identity ≥ 30%, and alignment coverage ≥ 60%). To ensure the accuracy of the predicted results, protein 
pairs with the highest alignment score were kept if a protein corresponded to multiple homologs in one organism. 
This process might reduce the number of predicted interactions, but it could minimize the false positive rate. For 
any two proteins in B. licheniformis, if their orthologs in the reference genomes had at least one experimentally 
determined interaction, the two proteins were considered to have interaction.

Domain-domain interaction based method. The method attempts to predict protein interactions based 
on the experimentally and structurally determined DDIs. For a protein pair (X and Y) in B. licheniformis, we 
assumed that m and n were one domain in protein X and Y respectively. If m and n were proved to be an experi-
mental interacting domain pair, X and Y were considered to have interaction. Domains of proteins in B. licheni-
formis were predicted based on the Pfam domain database and HMMER program (E-value ≤  10−5, bias ≤  1)57. 
The interacting domain pairs were checked based on the data from iPfam and 3did databases.

Network validation. To confirm the predicted PPIs, we randomly selected 1,000 PPIs and submitted them 
to the PPI prediction web server (http://sbi.imim.es/iLoops.php)28. This web server, which defines protein struc-
tural features based on the loops from ArchDB58 and domains from SCOP59, was used to validate the PPIs by 
evaluating whether loop or domain patterns from two input proteins had interaction signatures with random 
forest classifier.

In addition, we used a method based on GO functional similarities to confirm the PPIs. It is well known that 
two interacting proteins tend to have similar or related functions. Based on this assumption, we compared the GO 
functional similarities between the predicted PPI network and 100 random networks (with the same topology as 
the PPI network). The GO annotations of B. licheniformis genome were downloaded from GO database60. Totally, 
1,682 of 2,165 proteins in the predicted PPI network had GO annotation. Then, the semantic similarities of GO 
terms and functional similarities of proteins in the PPI and random networks were calculated with the algorithms 
proposed by reference31. The comparison of functional similarity distributions between PPI network and random 
networks was performed with Wilcoxon rank-sum test.

Moreover, gene transcription correlations of interacting proteins were also used to access the reliability of the 
PPI network. The ssRNA-seq data of B. licheniformis WX-02 for three time points (11th h, 22th h and 33th h) were 
obtained from the previous study14. The PCC of gene transcription profiles of the protein pairs in the PPI and 
100 random networks was compared. The statistical difference between the predicted PPI network and random 
networks was also measured by P-value from Wilcoxon rank-sum test.

Analysis of COG functional heat map. Based on COG functional categories, the PPI data were presented 
as heat map. Colors in the heat map indicate Z-scores calculated by a statistical model. Considering that a rand-
omized network contained same nodes as the predicted PPI network, the probability for a protein in functional 
class i to interact with a protein in functional class j in the randomized network was calculated as:

=
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Database No. Proteins/Domains No. PPIs/DDIs

BioGRID 70 66

IntAct 10,232 38,758

DIP 4,259 14,595

MINT 1,384 3,782

3did 5,466 8,651

iPfam 4,775 9,516

Table 1.  High-quality PPIs and DDIs obtained from different public databases.

http://sbi.imim.es/iLoops.php
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where n is the total number of proteins in the predicted PPI network and fi is the number of proteins belonging to 
functional class i. In the randomized network, the number of interactions between proteins from functional class 
i and j was assumed to follow a binomial distribution. Finally, the Z-scores were calculated as:

=
−

( − )
,

( )
Z

A N P

N P P1 2
ij

ij ij

ij ij

where Aij, NPij and NPij(1 −  Pij) represent the actual value, expected value and variance of the number of interac-
tions between proteins from functional class i and j, respectively.

Dynamic changes of the PPI network under normal and high salt conditions. The transcription 
profiles were obtained from three sample points: 11th h (0 h after the onset of 6% NaCl), 22th h (11 h after the 
onset of exposure to 6% NaCl) and 33th h (22 h after the onset of exposure to 6% NaCl), which have been reported 
in the previous study14. Firstly, we used RPKM to represent the normalized transcription levels of genes. Then, 
we assigned the RPKM values of each time point to the corresponding nodes in PPI network to obtain three 
networks. Here we defined a rule: if the RPKM value of a gene was lower than 1, this gene was considered to have 
no effect on the PPI network and would be removed from the network. Based on this process, we obtained three 
new PPI networks (network1 for 11th h, network2 for 22th h and network3 for 33th h) for different experimental 
conditions.

We calculated the normalized transcription difference Dij between a pair of proteins i and j as defined in the 
previous study40:

=
−

+
,

( )
D

RPK M RPK M

RPK M RPK M 3
ij

i j

i j

where RPKMi represents the RPKM value of gene i, and this value ranges from 0 to 1.

Prediction of the protein complexes and annotation of the protein functions. Protein complexes 
in the PPI network were identified using a clustering algorithm named TSN-PCD41. The inputs of TSN-PCD 
were PPIs and gene transcription data, which were used to generate time-series sub-networks. Then the clus-
tering was performed based on these subnetworks. In this algorithm, the threshold of gene transcription level 
(RPKM value), λ  (a parameter affecting the clustering results) and size value were set as 1, 1 and 3, respectively. 
In information theory, entropy is used to measure uncertainty or variability of complex systems. In this study, we 
defined the functional category entropy of a protein complex to indicate the function homogeneity of the protein 
complex. The functional category entropy was calculated as follows:

∑= − ⋅ ,
( )=S

n
F
n

F
n

1
log

log
4

i
i

j
m ij

i

ij

i2
1 2

where ni is the number of proteins in the complex i and Fij is the number of proteins annotated with the function 
j in the complex i. The lower entropy means greater homogeneity. The homogeneity is ascribed to a specific func-
tion enriched in a protein complex. Therefore, we could assign functions to the uncharacterized proteins with 
the functions enriched in a protein complex. The function enrichment analysis was performed based on fisher’s 
exact test.
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