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Influenza virus infection causes 3–5 million cases of severe illness and 250,000–500,000
deaths worldwide annually. Although pneumonia is the most common complication
associated with influenza, there are several reports demonstrating increased risk for
cardiovascular diseases. Several clinical case reports, as well as both prospective and
retrospective studies, have shown that influenza can trigger cardiovascular events
including myocardial infarction (MI), myocarditis, ventricular arrhythmia, and heart failure.
A recent study has demonstrated that influenza-infected patients are at highest risk of
having MI during the first seven days of diagnosis. Influenza virus infection induces a
variety of pro-inflammatory cytokines and chemokines and recruitment of immune cells as
part of the host immune response. Understanding the cellular and molecular mechanisms
involved in influenza-associated cardiovascular diseases will help to improve treatment
plans. This review discusses the direct and indirect effects of influenza virus infection on
triggering cardiovascular events. Further, we discussed the similarities and differences in
epidemiological and pathogenic mechanisms involved in cardiovascular events
associated with coronavirus disease 2019 (COVID-19) compared to influenza infection.

Keywords: influenza, heart, immune mechanism, myocardial infarction, atherosclerosis, myocarditis, SARS-CoV-2,
COVID-19
INTRODUCTION

Influenza virus infection causes approximately 36,000 deaths and 200,000 hospitalizations each year
in the United States. During influenza epidemics, research focuses on lung disease as the main cause
of death. However, epidemiological studies reported significant mortality associated with
cardiovascular diseases during influenza virus infection (1, 2). Influenza vaccination reduces
cardiovascular events associated with influenza virus infection (3–5). Pandemic outbreaks of
novel, highly virulent influenza strains can have an even larger impact on healthcare settings.
Pandemics increase both the cardiovascular morbidity and mortality rates compared to those
associated with seasonal influenza. During the recent H1N1 influenza pandemic, mortality
associated with heart disease was higher in children and young adults than adults (6). Dawood
et al. estimated that the 2009 influenza A H1N1 pandemic caused 201,200 respiratory deaths
worldwide, with an additional 83,300 deaths associated with cardiovascular complications. 80% of
these fatalities were in people younger than 65 (7).
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During viral infection, the innate and adaptive immune
systems activate a variety of signaling pathways that induce
type I (IFNa/b), type II (IFNg), and type III (IFNl)
interferons (IFNs), and a large number of inflammatory
cytokines and chemokines (8–11). These IFNs and
inflammatory mediators recruit monocytes, neutrophils, and
macrophages to the lungs for viral control. However, an
excessive influx of innate immune cells and the dysregulated
production of inflammatory cytokines results in host-
mediated pathological responses during viral infection (8,
11–14).

In the heart, influenza-associated injury can occur either
directly by viral entry or indirectly through induction of
inflammatory mediators, acute phase proteins, and coagulation
factors. Atherosclerosis is a common cause of coronary artery
disease (CAD), including MI, stroke, and heart failure. The
innate and adaptive immune responses to modified lipids in
subendothelial space cause a series of events that result in plaque
formation in medium- to large-sized arteries. If the inflammation
continues, plaques become vulnerable to rupture, leading to
myocardial infarction (MI). A variety of cells, including
vascular endothelial cells (VE), macrophages, T cells, and
vascular smooth cells play a significant role in atherosclerosis.
Understanding the impact of influenza infection on these cells
will help to identify therapeutic targets. In this review, we
analyzed the direct and indirect effects of influenza infection
on these cells in the aspects of atherosclerotic progression, plaque
rupture, and thrombosis that subsequently cause acute coronary
events. We further discussed the potential mechanism involved
in influenza associated myocarditis, ventricular arrhythmia, and
heart failure.

COVID-19, caused by severe acute respiratory distress
syndrome coronavirus 2 (SARS-CoV-2), has emerged as a
global pandemic and has caused significant mortality and
morbidity worldwide. SARS-CoV-2 is a highly contagious virus
that enters the respiratory epithelium through angiotensin-
converting enzyme II (ACE2) receptor and causes pneumonia.
The effects of SARS-CoV-2 infection vary from mild
asymptomatic infection to lethal disease. Clinical presentation
in severely infected patients includes acute respiratory distress
syndrome, acute cardiac injury, and secondary illness (13).
Studies have shown that COVID-19 patients with one or more
underlying conditions, including diabetes, hypertension, and
cardiovascular diseases, are more likely to be severely ill (13,
15, 16). COVID-19 also contributes to cardiovascular events
such as myocarditis, acute coronary syndrome, cardiomyopathy,
and arrhythmias. Influenza virus infection and SARS-CoV-2
infection have similarities in pulmonary immune responses,
cellular recruitment, and inflammatory cytokine production.
Unlike influenza infection, SARS-CoV-2 causes an abnormal
vascular coagulopathy in severely infected COVID-19 patients
and multi-systemic inflammatory syndrome with cardiac
damage in children. In this review, we discuss the possible
mechanisms involved in cardiovascular events associated
with COVID-19 in comparison with influenza-associated
cardiovascular diseases.
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ASSOCIATION BETWEEN INFLUENZA
VIRUS INFECTION AND
CARDIOVASCULAR DISEASES

Several studies have shown that influenza virus infection can
trigger detrimental cardiovascular events (3, 15–21). The
association between influenza virus infection and non-
respiratory causes of death was first identified in the 1930s
(22). A case series analysis from 1959 to 1999 showed that
mortality from ischemic heart disease (IHD), cerebrovascular
disease, and diabetes was highly correlated with influenza and
pneumonia cases (23). Another study collected autopsy data
between 1993 and 2000 in patients who died from MI and IHD
and identified that the odds for MI (1.3, 95% confidence interval
(Cl): 1.08–1.56) and chronic IHD (1.10 (95% CI; 0.97–1.26) were
increased during influenza seasons (1). A time-series analysis has
shown that seasonal influenza virus infection-associated
emergency visits correlated with an increase in MI-related
mortality, especially in individuals 65 and older (24). Further, a
recent study has confirmed that the risk of MI is six times higher
during the acute phase (days 1–7) of laboratory-confirmed
influenza virus infection (2). These data show the association
between influenza infection and MI.

Several groups have analyzed antibody and cellular responses
to influenza virus infection in MI patients. Guan et al. found a
positive association between IgG and influenza A/B in patients
with MI when compared to patients without MI (18, 25). A
recent study has shown that influenza-associated cardiovascular
excess mortality, including ischemic heart disease, is higher with
influenza B virus infection than pandemic influenza A strains
(H1N1 and H3N2) (26).

Multiple studies have analyzed whether seasonality impact
influenza-associated cardiovascular diseases. A report from
central Bohemia has shown that increased influenza epidemics
in February positively correlated with a peak in MI incidence
(16). A time-series study from 1998 to 2008 has shown that the
increase in MI cases associated with influenza virus infection is
similar in both temperate and subtropical climates (27).

Studies have also analyzed whether influenza or other
respiratory viral infections have a similar impact on triggering
cardiovascular diseases. Kwong et al. have shown that the
incidence ratio for MI is higher with influenza virus than with
respiratory syncytial virus and other viral infections (2). Warren-
Gosh et al. (28) have shown that, when compared to other viral
infections, influenza has a stronger correlation with triggered MI
(28). These studies suggest that the effect of influenza virus
infection on triggering cardiovascular events is greater than that
of other viral infections.

ST-segment myocardial infarction (STEMI) is a severe
condition when the coronary artery is completely blocked in
which the patient requires immediate reperfusion therapy and
percutaneous coronary intervention (PCI). A non-STEMI
(NSTEMI) presentation of MI is due to partial blockage of the
coronary artery. Vejpongsa et al., 2019 observed STEMI (9.7%)
and NSTEMI (90.3%) cases among MI patients with influenza
viral infection. Another study analyzed cardiac injury markers in
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143 veterans who were positive for influenza within the previous
30 days showing that 25% of patients had NSTEMI, and 24% had
probable STEMI. These studies suggest that both STEMI and
NSTEMI presentations of MI are present among influenza-
infected MI patients (29).

Influenza infection can trigger myocarditis (29–31),
ventricular arrhythmia (32) or heart failure (33). The
frequency and damage of myocardium caused by pandemic
H1N1 is higher than the seasonal influenza infection (29).
ECG reports from H1N1 influenza-infected patients has shown
the ventricular dysfunction is associated with influenza infection
(34). Another study has shown abnormal ECG findings on days
1, 4, 11, and 28 days after the influenza disease presentation in
young adults (35). Some groups also have shown an association
between influenza infection and ventricular arrhythmias and
hospitalizations of heart failure (32, 33, 36, 37).

Studies have shown elevation of cardiac injury markers and
acute phase proteins are indicators of cardiovascular events
associated with influenza virus infection (38, 39). Myocardial
injury can be determined by serum biomarkers including the MB
form of creatine kinase (CK-MB), lactate dehydrogenase (LDH),
and troponin (TnT) (40, 41). Cardiac injury markers are shown to
be elevated in influenza-positive veterans within 30 days of
laboratory confirmation (42). Acute phase proteins are also
potential biomarkers for cardiovascular diseases. B-type natriuretic
peptide (BNP) and N-terminal proBNP (NT-proBNP) are the
biomarkers in diagnosis of heart failure (40, 41). Increased levels
of C-reactive protein (CRP) and NT-proBNP, along with increased
leukocyte numbers, correlated with mortality rate in elderly patients
with 2009 H1N1 infections and cardiovascular diseases (43).

Several clinical reports have shown that influenza vaccination
reduces influenza-associated cardiovascular events (4, 36, 44–53).
Gwini et al. identified that the influenza vaccine-induced protective
effect is greater in those receiving the vaccine before mid-November
(49). In another study, Hung et al. found that dual pneumococcal
and influenza vaccination reduced respiratory, cardiovascular, and
cerebrovascular disease (54). Influenza vaccination has beneficial
effects not only against influenza virus infection, but also for other
diseases. A study has shown that elderly patients with COPD are
protected against acute coronary syndrome if they received
influenza vaccination (55). Similarly, influenza vaccination
decreased hospitalization rates due to heart failure or acute
coronary syndrome in elderly patients with chronic kidney
disease (CKD) (56). All these studies suggest a possible link
between influenza virus infection, cardiovascular diseases, and a
protective role for flu prevention.
PATHOGENIC MECHANISM INVOLVED IN
INFLUENZA-ASSOCIATED
CARDIOVASCULAR DISEASES

Immune Response to Influenza
Virus Infection
Influenza virus enters the lung through airway and alveolar
epithelial cells. Viral binding to host cells induces a variety of
Frontiers in Immunology | www.frontiersin.org 3
innate immune signaling, leading to induction of type I and type
III IFNs, and pro-inflammatory cytokines (IL-1b, IL-6, and
TNFa) and chemokines (CCL2, CCL4, CCL5) (8–11). Type I
and type III IFNs bind to their receptors, resulting in activation
of Janus kinase (JAK) and signal transducer and activation of
transcription (STAT) signaling pathways resulting in the
induction of interferon stimulated genes (ISGs), thereby
controlling the virus (10, 57, 58).

Pathology during influenza virus infection can be caused by
direct viral infection, or indirect damage due to the inflammatory
cytokine storm. Influenza virus infection triggers apoptosis or
necrosis of alveolar epithelial cells, disrupts tight junction
proteins, and damages the endothelium (59–61). Influenza also
induces epithelial cell release of a variety of cytokines and
chemokines, including TNFa, IL-8, IL-6, CCL2, CCL5,
CXCL1, and CXCL10, which attract macrophages and
neutrophils to the infection site. These recruited immune cells
produce nitric oxide (NO) and reactive oxygen species (ROS)
which increase lung injury (62, 63). Further, the inflammatory
cytokines may enter the vessel through lung leak or
inflammatory cell migration to the circulation (64, 65).
Together, these responses increase the accumulation of
proteinaceous material in the alveoli, impairing gas exchange
and subsequently causing severe respiratory insufficiency
(62, 63).

Following the innate immune response, the adaptive immune
system plays a role in viral clearance. During influenza virus
infection, dendritic cells capture viral antigens and traffic to the
draining lymph nodes, presenting antigens to T cells. Antigen
presentation occurs on MHC-I and MHC-II molecules to
cytotoxic and helper T cells, respectively. Activated effector
cytotoxic CD8+ and helper CD4+ T cells migrate from the
draining lymph nodes to the lungs and kill viral infected cells.
Cytotoxic CD8+ T cells clear the virus or infected cells through
induction of IFNg, release of perforin or granzymes, and
triggering of apoptosis by Fas/FasL interactions (66–68). CD4+
T cells facilitate IFNg production by CD8+ T cells and virus
neutralizing antibody production by B cells (69–72). CD4+ T
cells differentiate into Th1, Th2, Th17, T regulatory, or T
follicular cells based on the polarizing cytokines produced by
dendritic cells. These subsets have specific effects on antiviral
responses, promoting B cell responses, and regulation of host
immune responses during influenza virus infection.

Pathophysiology of Atherosclerosis
Atherosclerosis is the most common cause of acute coronary
syndrome. A variety of cells, including vascular endothelial cells,
macrophages, T cells, and vascular smooth muscle cells are
important in atherosclerosis plaque formation. Systemic
inflammatory responses, along with direct viral effects on
vascular endothelial cells or atherosclerotic plaques during
influenza virus infection, may be possible mechanisms in the
progression of atherosclerosis or plaque rupture, which can cause
subsequent acute coronary events.

The atherosclerotic process is initiated by endothelial
dysfunction and accumulation of low-density lipoprotein
(LDL) in the sub-endothelial space (73–77). LDL is oxidized
October 2020 | Volume 11 | Article 570681
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(to ox-LDL) by myeloperoxidases and lipoxygenases from
immune cells (78). Ox-LDL stimulates the vascular
endothelium to increase the expression of adhesion molecules
and chemokines that recruit macrophages and T cells into the
sub-endothelial space (79–82). Macrophages increase their
expression of scavenger receptors, engulf ox-LDL, and become
foam cells (83–88). Over time, foam cells undergo apoptosis or
necrosis, thus leading to the accumulation of cell debris and the
formation of a necrotic core within the intima. Smooth muscle
cells then synthesize collagen and elastin to form the fibrous cap
that covers the necrotic core. If the fibrous cap is fragile, it may
rupture and cause coronary artery disease including MI, stroke,
and heart failure (89, 90).

Direct Effect of Influenza on
Atherosclerosis
Influenza-associated effects on atherosclerosis can occur directly
by infection of vascular endothelial cells or atherosclerotic
plaques, or indirectly through systemic inflammatory
responses. Studies have shown the presence of influenza viral
antigens in the aorta by PCR and immunohistochemistry (91).
Influenza virus has been shown to induce host cell proteases,
such as trypsin and matrix metalloprotease 9 (MMP-9), in
various organs. This may be a possible mechanism for
increased vascular permeability and viral entry in different
organs (92). Animal models, including atherosclerotic Apoe−/−

mice infected intranasally with influenza virus, have shown
antigen localization and influenza viral activity in the aorta
(91). However, the cells that potentially carry the virus from
the lungs to the aorta are unknown.

Normal vascular endothelial homeostasis is maintained by
nitric oxide (NO)-induced relaxing and contracting factors. In
normal vascular homeostasis, NO prevents adhesion of
leukocytes to the endothelium. In vascular endothelial
dysfunction, increased expression of adhesion molecules favors
leukocyte binding. It has been shown that HL-60 cells adhere to
influenza-infected human umbilical vein endothelial cells
(HUVEC) in a viral dose dependent manner (93). Further,
adherence depends on the surface hemagglutinin (HA) protein
from influenza virus (93).

Systemic and endothelium-induced inflammatory mediators
play a role in interrupting endothelial homeostasis. Studies
have shown that influenza virus infection increases expression
of the chemokines CCL2, CCL5, and IL-8, and the adhesion
molecules ICAM1, VCAM-1 and E-selectin in human coronary
endothelial cells (HAEC) (91) and increases CXCL10
and CXCL9 in HUVEC cells (94). Another study has shown
that, similar to live virus, viral particles also upregulate the
expression of chemokine transcripts (95). These data suggest
that both whole virus and viral particles contribute to increased
antiviral and inflammatory mediators, thereby potentially
increasing atherosclerosis.

Accumulation of oxidized LDL (ox-LDL) in the sub-endothelial
space is the crucial factor in the development of atherosclerosis. Ox-
LDL synergistically increases the expression of pro-inflammatory
molecules such as IL-1b, IL-6, TNFa, and MMP-9 in response to
Frontiers in Immunology | www.frontiersin.org 4
H1N1 PDM 2009 influenza in HUVEC cells (96). Both influenza
and ox-LDL have been shown to increase apoptosis in vascular
endothelial cells, the latter through caspase-9 and caspase-3 cascades
(87–91). One study has shown that influenza virus infection
synergistically increases ox-LDL-induced apoptosis when
compared to apoptosis caused by influenza or ox-LDL alone (97).
These influenza-induced effects are possible mechanisms involved
in atherosclerotic progression (Figure 1).

Indirect Effect of Influenza Virus Infection
on Atherosclerosis
The indirect effect of influenza virus infection on atherosclerosis
is likely through systemic inflammatory mediators and cell
trafficking induced by the virus.

Influenza-Induced Inflammatory Mediators and
Atherosclerosis
Influenza virus infection induces interferons and a variety of
inflammatory cytokines both systemically and locally. Type I,
type II, and type III IFNs play an indispensable role in
controlling influenza virus (9, 10, 57). In mouse models of
atherosclerosis, influenza virus infection increases the
expression of ISGs including Mx1 and OAS in the aorta (91).
These studies suggest that the influenza viral infection in aorta
that induces IFN response.

Studies have shown that type I IFNs promote atherosclerotic
plaques by inducing chemotactic factors such as CCL2, CCL3,
CCL4, and CCL5, resulting in macrophage accumulation (98),
foam cell formation in macrophages (99), and proliferation of
smooth muscle cells (100). Type II IFN promotes atherosclerosis
by multiple mechanisms (101, 102). IFNg promotes
atherosclerosis by inducing inflammatory mediators such as
CCL2, CXCL9, CXCL10, CXCL12, CXCL16, and VCAM1 in
vascular endothelial cells, increasing inflammatory cytokines
production by macrophages and T cells, promoting foam cell
formation by increasing scavenger receptor expression on
macrophages, and increasing smooth muscle migration
[reviewed in (102)]. Also, IFNg induces MMP production from
macrophages and vascular smooth muscle cells, which favors
plaque rupture (102).

In addition to interferons, influenza virus infection induces a
variety of inflammatory cytokines and chemokines. Pro-
inflammatory cytokines (IL-1b, IL-6, and TNFa) have been
shown to play a pro-atherogenic role by increasing vascular
endothelial adhesion and chemokine production (103). IL-17
promotes plaque formation by either driving type 1 responses or
increasing the levels of IL-6, G-CSF, CXCL1, and CCL2 (104–107).
In contrast, some studies have shown that IL-17 has a protective role
in atherosclerosis by increasing IL-10 (108). Chemokines (CCL2,
CCL3 and CCL5) play proatherogenic roles by increasing cellular
recruitment and vascular endothelial adhesion [reviewed in
(109–112)].

In the Apoe−/− mouse model of atherosclerosis, influenza
virus infection increases the levels of IL-1b, IL-6, G-CSF, GM-
CSF, CCL2, CCL3, and CCL5 in the serum (91). Also, it has
been shown that levels of IL-2, IL-6, IL-18, TNFa, IFNg, ET-1,
October 2020 | Volume 11 | Article 570681
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sICAM-1, and sVCAM-1 are increased in influenza-infected
MI patients (25). Collectively, these studies indicate that
soluble inflammatory mediators from influenza virus
infection may favor atherosclerotic plaque progression
(Figure 1).

Effect of Cellular Trafficking During Influenza Virus
Infection on Atherosclerosis
In atherosclerosis, endothelial dysfunction increases adhesion
molecules, causing monocytes to migrate into the sub-
endothelial space and differentiate into macrophages.
Monocytes, especially Ly6Chi monocytes, play an important
role in atherosclerotic lesion progression (113, 114). During
this process, CCR2, CCR5, and CX3CR1 assist in the
recruitment of Ly6Chi monocytes in the lesion (113, 114).
Ly6Chi subsets express high levels of CCR2 and resemble
inflammatory macrophages, whereas Ly6Clow monocytes
express high levels of CX3CR1 and resemble tissue repair or
resolving-type macrophages. In acute inflammatory conditions,
such as MI, increased accumulation of Ly6Chi monocytes
accelerates atherosclerosis (115). Ly6Chi monocytes are a key
mechanistic player involved in lung pathology during influenza
virus infection (116, 117). Due to the high trafficking rates of
Frontiers in Immunology | www.frontiersin.org 5
these cells, it may be possible that Ly6Chi monocytes carry the
influenza virus or viral antigen from the lungs to the aorta and
favor atherosclerotic lesion progression.

Once the monocytes enter the sub-endothelium, they
differentiate into macrophages with the help of growth factors.
Further, macrophages increase scavenger receptor expression and
engulf ox-LDL becoming foam cells. The local environment is a
crucial determinant of the inflammatory (M1) or resolving (M2)
macrophage phenotype. IFNg and LPS favor macrophage
differentiation into M1 macrophages, while IL-4 drives
macrophages towards the M2 phenotype. It has been shown that
influenza virus infection in Apoe−/− mice increases macrophage
infiltration in the sub-endothelium (118). Another study has
shown that influenza virus infection in LDLR−/− mice increases
macrophage infiltration into the aortic arch (119). Based on these
results, it is possible that an increased proportion of inflammatory
(M1) type macrophages favor atherosclerotic lesion progression.

T cells also play a crucial role in the outcome of atherosclerosis.
Driven by antigen-specific responses, T cells differentiate into
inflammatory effector T (Teff) cells or anti-inflammatory
regulatory T (Treg) cells. One study has shown influenza-specific
proliferative responses in T cells isolated from atherosclerotic
plaques in patients undergoing endarterectomies, suggesting that
A B

D

C

FIGURE 1 | Potential immune mechanisms of influenza-induced exacerbation of atherosclerosis. (A) During influenza virus infection, the innate and adaptive immune
systems induce interferons and a variety of inflammatory mediators to recruit macrophages, neutrophils, and natural killer (NK) cells to the site of infection to control
the virus. Excess influx of innate immune cells and dysregulated production of inflammatory cytokines and chemokines results in pathological responses during
influenza virus infection. (B) Systemic and local interferons and pro-inflammatory cytokines increase chemotactic factors and adhesion molecules on vascular
endothelial cells that increase inflammatory cell recruitment in atherosclerosis. (C, D). Influenza-induced inflammatory mediators increase foam cell formation, activate
smooth muscle proliferation, plaque rupture, and thrombosis that exacerbates atherosclerosis and subsequently can cause acute myocardial infarction. This figure
was made in ©BioRender—biorender.com.
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influenza viral antigens may increase T cell activation and
subsequent exacerbation of atherosclerosis (Figure 1).

Effect of Influenza Virus Infection on Vascular
Smooth Muscle Cells
In normal healthy conditions, vascular smooth muscle cells
(VSMCs) maintain a contractile or quiescent form and express
smooth muscle actin (ACTA2), tangelin (TAGLN), smooth
muscle myosin heavy chain (MYH11), and smoothelin
markers [reviewed in (86, 120–122)]. In atherosclerosis,
inflammatory mediators induced by immune cells and vascular
endothelial cells transform these contractile VSMCs into a
synthetic or dedifferentiated form. The synthetic form of
VSMCs acquires the capacity to proliferate and migrate from
media to intima and produce extracellular matrix proteins
collagen and elastin, which form the fibrous cap that covers
the necrotic core [reviewed in (86, 120–122)]. The transition of
VSMC phenotypes may be due to the induction of growth
factors, such as platelet derived growth factors, fibroblast
growth factors, and matrix metalloproteinases by macrophages
and vascular endothelial cells [reviewed in (86, 120–122)]. The
dedifferentiated VSMCs can also induce pro-inflammatory
cytokines and chemokines (91). In an Apoe−/− mouse model
of atherosclerosis, influenza virus infection increased VSMC
infiltration into the sub-endothelium (118). Also, an in vitro
study using human coronary smooth muscle cells has shown that
influenza virus infection increases the expression of adhesion
molecules (VCAM1 and ICAM1) and production of chemokines
(CCL2, CCL5, and IL-8) (91). These studies suggest that
influenza virus infection increases smooth muscle cell
migration and induction of inflammatory chemokines and
adhesion molecules in VSMCs (Figure 1).

Effect of Influenza Virus Infection on Plaque Rupture
The transition of fatty streak to fibro atheroma occurs with
VSMC migration and proliferation (122). The formation of
stable or unstable plaques depends on the pro- or anti-
inflammatory status of the plaque. Studies have shown that
increased levels of IL-4 and IL-10 are associated with stable
plaques (123). In contrast, increased levels of IFNg and TNFa are
associated with unstable plaques that are highly prone to rupture
(102, 124, 125). Increased accumulation of dead macrophages
and smooth muscle cells, along with increased matrix
degradation products, results in an enlarged necrotic core.
These products weaken the fibrous cap, favoring plaque
rupture leading to MI (102).

MMPs are known to be among the factors that increase fibrin
degradation (MMP1, MMP3, MMP7, MMP9, MMP13, and
MMP14) (126–128). An in vitro study using HUVEC cells has
shown that influenza virus infection increases the expression of
MMP9. Another study has shown that the expression of MMP-
13 is increased in the atherosclerotic plaques of Apoe-/- mice
infected with influenza A virus (129). These studies suggest that
influenza virus infection-induced inflammatory mediators may
increase plaque destabilization and rupture, leading to MI. One
study has shown that the risk of MI is six times higher during the
Frontiers in Immunology | www.frontiersin.org 6
acute phase (days 1–7) of influenza virus infection (2). These
results correlate with the excessive inflammatory response
during the acute phase of influenza virus infection in the lung,
which may increase the chances of plaque rupture and
subsequent triggering of MI. Accordingly, a study has shown
that influenza vaccination induces stable atherosclerotic lesions
in Apoe−/− mice (130). Also, the study showed that influenza
vaccination reduces the levels of IFNg, IL-2, and TNFa
production and increases the levels of IL-4 in serum (130).
These results positively correlate with anti-influenza IgG
production from vaccination suggesting that flu prevention by
vaccination may limit indirect atherosclerotic damage induced
by infection (130) (Figure 1).

Role of Influenza Virus Infection in Activation
of Thrombosis
Plaque rupture releases necrotic components, rich in lipid-laden
macrophages, tissue factor, and collagen, into the circulation
triggering thrombus formation and leading to acute coronary
events. Various mechanisms, including coagulant and
anticoagulant factor dysregulation, increased fibrinolysis
protease inhibitors, and inflammatory cytokine responses due to
vascular infection or injury, increase intravascular coagulation.

The clotting mechanism is initiated once tissue factor and
collagen are exposed in the bloodstream and release von
Willebrand factor (vWF) [reviewed in (131)]. Tissue factor
forms a complex with coagulation factor VII, which in turn
activates the extrinsic pathway, whereby collagen release in the
blood initiates the intrinsic pathway (131). Activation of both
pathways resulting in fibrin deposition and subsequent thrombus
formation [reviewed in (131)]. It has been shown that influenza
virus infection increases tissue factor and vWF expression in the
vascular endothelium (132, 133). Pro-inflammatory cytokines
(IL-1b, TNFa, and IL-6) were shown to increase tissue factor in
endothelial cells (134). Hypoxia also increases tissue factor
expression in the vascular space (135, 136). All these studies
suggest that influenza infection directly or indirectly induces
clotting factors that may enhance thrombus formation
in atherosclerosis.

In contrast, dysregulation of anticoagulant factors such as
protein C, antithrombin, and tissue factor pathway inhibitor
(TFPI) also enhance thrombus formation. The expression of
protein C is activated through a cell surface receptor,
thrombomodulin (TM). Studies have shown that influenza
virus infection decreases protein C activity, thereby inducing
the clotting cascade (137, 138).

Plasminogen activator inhibitor (PAI), a serine protease
inhibitor, regulates fibrinolysis and enhances clot formation.
Pro-inflammatory cytokines (IL-1b, TNFa, and IL-6) are
known to increase PAI-1 activation (139, 140). Influenza virus
infection has been shown to increase PAI-1 levels in plasma
(137). D-dimer, one of the commonly used markers of fibrin
degradation, is also used in the diagnosis of venous
thromboembolism. Wang et al. has shown that increases in D-
dimer levels correlate with hypoxemia during influenza virus
infection (141).
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Immunothrombosis, a mechanism involved in the interaction
of leukocytes with platelets increases the clot formation.
Inflammatory cytokines in the circulation increase receptors on
vascular endothelial cells for platelet binding and activation. The
activated platelets interact with neutrophils to form neutrophil
extracellular traps (NETs) to kill microbes. These neutrophil-
platelet aggregates in the circulation may also increase
thrombosis (142). Influenza infection has been shown to
increase NETs that may favor thrombus formation (143, 144).
These studies collectively suggest that influenza virus-induced
coagulation factors, fibrinolysis protease inhibitors, and pro-
inflammatory immune responses increase thrombosis that
subsequently increases the possibility of coronary heart
diseases (Figure 1).

Pathogenic Mechanism Involved in
Influenza-Associated Myocarditis,
Ventricular Arrhythmia, and Heart Failure
Influenza can trigger myocarditis, ventricular arrhythmia
and heart failure through systemic and local inflammatory
mediators (29, 145–153). Pan et al. have shown induction of
trypsin during influenza virus infection as a mechanism to
explain the presence of virus in the heart. They have also
shown that influenza virus infection up regulates IL-6, IL-1b,
TNFa, and MMPs in the myocardium, and trypsin inhibitors
alleviate these effects (146). Kotaka et al. have shownmacrophage
and lymphocytic infiltration in cardiomyocytes (145). A recent
study has shown influenza viral replication in cardiomyocytes
and purkinje cells in mice (154). Further, Kenny et al. have
shown that interferon-induced transmembrane protein-3
(IFITM3) is crucial in controlling influenza viral replication in
the heart (155). These studies suggest that influenza-induced
pro-inflammatory cytokines and proteases are a possible
mechanism in infection-associated myocarditis. Inflammatory
cytokines and chemokines, acute phase proteins, and coagulation
factors are shown to be possible mechanisms involved in MI
that can cause subsequent heart failure and/or ventricular
arrhythmias (147–150, 152, 153). All these studies suggest that
there is a direct and indirect effect of influenza virus infection on
triggering cardiovascular events.
COMPARISON OF CARDIOVASCULAR
CONDITIONS ASSOCIATED WITH SARS-
COV-2 AND INFLUENZA INFECTION

Several prospective and retrospective analyses have shown the
association between influenza and MI. However, information
regarding the link between the SARS-CoV-2 infection and MI is
limited. A retrospective case series analysis from COVID-19
patients with STEMI during the initial period of pandemics in
New York has shown that out of 18 patients, eight patients had
an obstructive coronary artery lesion, and ten patients had a non-
obstructive myocardial injury (156). Similarly, a study of 28
COVID-19 patients with STEMI from Italy has shown that
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39.3% of patients did not show an obstructive lesion (157).
Another report of 79 patients with COVID-19 and STEMI
from four hospitals from Italy, Lithuania, Spain, and Iraq from
February to April 2020 has shown that patients had stent
thrombosis, and they were managed with fibrinolytic and PCI
therapy (158). These studies suggest that there is an association
between COVID-19 patients and MI. However, the sample sizes
are small, and the observation period is too short to draw
finite conclusions.

Similar to 2009 pandemic H1N1 influenza infection; several
cases of myocarditis have been reported in COVID-19 patients.
A meta summary analyzed 31 studies with a total of 51
myocarditis cases (159). Out of these, 12 patients were
diagnosed based on cardiac magnetic resonance imaging
(MRI) or histopathology, and 39 patients were diagnoses
based on the inflammatory markers and electrocardiogram
(ECG) (159). Also, comparable to 2009 H1N1 influenza
infection, several fulminant myocarditis cases were observed
in COVID-19 patients (160–168). These data suggest that there
are similarities in pandemic H1N1 influenza infection and
SARS-CoV-2 infection in triggering myocarditis. However, the
incidence of myocarditis due to seasonal influenza is rare and
for SARS-CoV-2 unknown.

Unlike influenza infection, SARS-CoV-2 infected children
sometimes present with a condition called a multisystemic
inflammatory syndrome (MIS-C). In April 2020, the first few
cases were observed in the United Kingdom, and later a case in
the United States was observed with Kawasaki disease with
concurrent COVID-19 (169, 170). Further, a study has
shown that 76% of 21 children with Kawasaki disease
show evidence of myocarditis (171). Also, a case series
analysis of 58 hospitalized children with SARS-CoV-2 has
shown 22% with Kawasaki disease and 14% coronary artery
dilatations (172). Another systemic review from 39 observational
studies from 662 patients showed that the patients presented
with gastrointestinal symptoms and abnormal inflammatory,
coagulation, cardiac markers, and ECG with decreased heart
ejection fraction (173). These data demonstrate aberrant
systemic inflammatory responses in children due to MIS-C
with COVID-19.

Similar to influenza, studies have shown the association
between COVID-19 and cardiac arrhythmias (174–177). Early
reports from Wuhan have reported that out of 138 patients,
16.7% patients had arrhythmia, and 44% of these patients were
transferred to an intensive care unit (ICU) due to arrhythmia
(178). Another study has observed ventricular fibrillation in 5.9%
of COVID-19 patients (174). A retrospective case series analysis
of five COVID-19 patients with ARDS has shown that
ventricular arrhythmia was a primary cause of death of these
patients (179). These studies suggest that cardiac arrhythmia is
among the most common complications in severely ill COVID-
19 patients.

Comparable to influenza infection, reports have also shown
heart failure is associated with COVID-19. Zhou et al., 2020 has
shown that 23% of 191 COVID-19 patients had heart failure
(14). Takotsubo cardiomyopathy, a reversible condition, occurs
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due to physical and emotional stress that affects the left ventricle.
Several reports have shown Takotsubo cardiomyopathy in
COVID-19 patients (180–185). Correspondingly, this condition
is also reported in influenza-infected patients (186–189). These
reports suggest that cardiomyopathy, especially stress-induced
cardiomyopathy is reported in influenza viral infected and
COVID-19 patients.

Like influenza infection, cardiac injury markers and acute-phase
proteins are elevated in critically-ill patients with COVID-19 (174,
190). Shi et al. have shown that out of 416 hospitalized patients, 82
(19.7%) had increased levels of cardiac injury markers, including
CRP, procalcitonin, CK-MB, myohemoglobin, troponin (TnT), and
N-terminal pro-B-type natriuretic peptide (NTproBNP). Increased
mortality rate (51.2%) was observed in patients with cardiac injury
when compared to those without cardiac injury (4.5%) (190). Guo
et al. demonstrated that in fatal cases of COVID-19, TnT levels rose
over time from patient admission to shortly before death (174).
Further, TnT levels had a significant correlation with CRP and
plasma NTproBNP levels. Cao et al. has shown that 11% of the
COVID-19 patients had increased TnT levels, and these patients
had no preexisting cardiovascular conditions (191). These data
suggest that increased cardiac injury markers are likely due to
viral-induced cardiac injury.

Coagulopathy is one of the most concerning sequelae in
COVID-19 patients. Several reports have shown mortality
associated with pulmonary emboli and venous thrombosis in
severely ill COVID-19 patients (192–199). Interestingly, a study
by Wichmann et al. described the results of 12 mandatory
autopsies of COVID-19, PCR confirmed patients. Of these
patients, seven had deep venous thrombosis that was not
known before the autopsy (200). Further, four patients died as
a result of pulmonary embolism (200). Several studies also have
shown changes in coagulation parameters. Increased D-dimer
levels, CRP, Factor VIII, vWF, fibrin degradation product
(FDP), longer PT, and activated partial thromboplastin time
(APTT) was observed in critically ill COVID-19 patients (13,
178, 201, 202). A report has shown 69% patients were positive
for venous thromboembolism, and 23% were positive for
pulmonary embolism out of 26 COVID-19 patients tested
from ICU (202). In a study of autopsy samples from 38
patients who died from COVID-19, 86% showed platelet-
fibrin thrombi in small arterial vessels in the lung (203). In
influenza case series analysis, fewer number (5.9%) of
pulmonary thrombosis and embolism cases were only
reported when compared to COVID-19 (204). Another study
from autopsy samples from COVID-19 patients and H1N1
patients have shown nine times more numbers of alveolar
capillary microthrombi in COVID-19 patients when
compared to influenza-infected patients (205). These studies
suggest that the COVID-19 associated pulmonary vascular
thrombosis is more pronounced when compared to influenza
infection and that may be a possible mechanism involved in
increased cardiovascular events.

The preceding studies demonstrate cardiovascular events
during acute COVID-19 infection. However, a recent report
has shown the cardiovascular consequence of COVID-19 after
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the recovery. A study of 100 convalescent patients 64–92 days
after COVID-19 diagnosis by cardiac magnetic resonance
imaging showed ongoing myocardial inflammation in 78% of
the patients, and 60% out of these patients had no preexisting
conditions (142). These data suggest that cardiac inflammation
brings long term cardiovascular sequelae. Future studies with a
large sample size with various time points after recovery will
provide valuable information on the long-term effects of
COVID-19 on the heart.

The discussed studies show similarities and dissimilarities
between cardiovascular complications associated with
influenza and SARS-CoV-2 infection. Cardiovascular
conditions such as MI, myocarditis, cardiomyopathy,
arrhythmia, and thrombosis are present in both influenza
and SARS-CoV-2 infection. However, the multisystemic
inflammatory syndrome is only present in SARS-CoV2
infection. The morbidity and mortality rate due to
microvascular thrombi and vascular occlusion are high in
COVID-19 patients compared to influenza-infected patients.
Further, the incidence rate is higher in SARS-CoV-2 infection
than the influenza virus infection. There are several possible
explanations for the differences in the incidence rates among
influenza and SARS-CoV-2 infections. The number of cases
analyzed in SARS-CoV-2 is small, and the observation period
is short. Most of these data from COVID-19 patients were
analyzed from severely ill patients. The available reports are
also in a population in the absence of vaccine for SARS-CoV-2
infection versus a population with available vaccines for
influenza virus infection. The incidence rate in COVID-19
may change when the analysis is carried out with large sample
size and vaccine availability.
PATHOGENIC MECHANISM OF
CARDIOVASCULAR EVENTS ASSOCIATED
WITH COVID-19 IN COMPARISON WITH
INFLUENZA VIRUS INFECTION

Direct Effect of SARS-CoV-2 on Vascular
Endothelium and Cardiomyocytes
Like influenza, SARS-CoV-2 may increase risks of cardiovascular
events through direct infection or systemic inflammatory
responses. A recent report has shown ACE2 receptor
expression in the lung, heart, kidney, and gastrointestinal tract
(206). The presence of ACE2 receptor in vascular endothelial and
VSMCs and myocytes may favor direct viral entry (206, 207). A
study has shown viral particles, cellular accumulation, and
apoptotic cells in vascular tissue sections from autopsy samples
from COVID-19 patients (208). Another report has shown viral
RNA in the myocardium in autopsied patients who died from
COVID-19. The study also shows increased expression of TNFa,
IFNg, CCL-5, IL-6, IL-8, and IL-18 in patients with >1,000 RNA
viral copies compared to SARS-CoV-2 negative patients (209). A
case report of a child with MIS-C who had cardiac failure
demonstrated interstitial and perivascular myocardial cellular
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infiltration and cardiomyocyte necrosis (210). Further, electron
microscopy analysis has shown viral particles in cardiomyocytes
and endocardial endothelial cells (210). An in vitro study has
shown that SARS-CoV-2 virus enters cardiomyocytes and
multiplies and transduces a cytopathic effect (211). These
reports show the direct effect of the SARS-CoV-2 virus on
myocardium and vascular endothelial cells to induce
cardiovascular diseases including MI, myocarditis, arrhythmias
and heart failure (Figure 2).

Indirect Effect of SARS-CoV-2 Infection on
Triggering Cardiovascular Events
In influenza infection, pulmonary induction of type I and type II
IFN is a possible mechanism involved in MI. However, in SARS-
CoV2 infection, the induction of type I IFN and type III IFNs in
respiratory epithelial cells is low (212). The defective IFN
responses may lead to an increase in viral multiplication and
subsequent increases in inflammatory monocyte accumulation
in the lung (213). Also, a study has shown the impaired type I
IFN response leads to enhanced pro-inflammatory responses
(214). These data suggest that the differences in IFN production
and viral control in influenza versus SARS-CoV-2 infection may
influence the outcome of cardiovascular diseases associated with
these viral infections.
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During influenza infection, increased production of
inflammatory cytokines and increased cellular recruitment may
be associated with triggering of cardiovascular diseases.
Similarly, Huang et al. have shown increased levels of IL-1b,
IL-1RA, IL-7, IL-8, IL-9, IL-10, GCSF, CM-CSF, basic FGF,
IFNg, IP-10, MCP-1, MIP-1a, MIP-1b, PDGF, TNFa, and
VEGF in COVID-19 infected patients versus healthy controls
(13). Also, Qin et al. have shown increased levels of TNFa, IL-2R,
IL-6 in serum in severe disease compared to mild cases of
COVID-19 (215). Studies have shown higher numbers of
leukocytes and neutrophils and fewer lymphocytes in the blood
of critically ill COVID-19 patients (13, 215). Another study has
shown decreased numbers of CD4+ and CD8+ T cells in the
blood of severely infected patients than moderately infected
patients (216). These dysregulated and hyper-inflammatory
cytokine storms may cause increased vascular permeability,
decreased gas exchange, activation of pro-coagulation
pathways, and subsequently ARDS. Defective gas exchange
may increase myocardial injury due to oxygen supply/demand
mismatch (217). Like influenza infection, these inflammatory
cytokines may trigger cardiovascular diseases such as MI,
myocarditis, arrhythmia, and heart failure. Also, these
cytokines and dysregulated inflammatory cellular responses
may be a possible mechanism in MIS-C in children. These
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FIGURE 2 | Potential immune mechanisms of COVID-19 associated cardiovascular diseases. (A) SARS-CoV-2 enters the respiratory epithelium through the angiotensin-
converting enzyme II (ACE2) receptor. The innate immune response induces various cytokines and chemokines to recruit macrophages and neutrophils to control the
virus. (B, C) The hyperinflammatory cytokine storm increases vascular permeability, decreases gas exchange, stimulates pro-coagulation pathways, and subsequently
causes ARDS. (D, E) Direct viral entry and inflammatory mediators can activate endothelial adhesion and clotting factors in the vascular space. Inflammatory cytokine
storm, oxygen supply/demand mismatch due to hypoxia, endothelial activation, and dysregulation of clotting factors are likely mechanisms involved in triggering
myocardial infarction in COVID-19 patients. (F) Direct viral entry, along with viral-induced inflammatory mediators increase myocarditis. All these pathological effects lead to
arrhythmia, heart failure, and myocardial inflammation in multisystemic inflammatory syndrome. This figure was made in ©BioRender—biorender.com.
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studies suggest that, similar to influenza, cytokine storm induced
by SARS-CoV-2 infection is possibly involved in triggering
cardiovascular sequelae.

Like influenza, SARS-CoV-2 infection also activates clotting
factors, fibrinolysis proteases, and immunothrombosis that favor
coagulopathy in COVID-19 patients. A study has shown that
platelet-monocyte aggregates were observed in severely ill
COVID-19 patients, associated with tissue factor induction
(218). SARS-CoV-2 viral entry decreases the expression of
ACE2 that enhances the levels of Angiotensin II (Ang II).
Further, Ang II is shown to increase tissue factor in monocytes
(219). The other major clotting factor, vWF antigen was shown
to be increased (mean 565%, SD 199) in ICU and (278%, SD 133)
non-ICU COVID-19 patients (220). However, during influenza
infection, the levels of vWF antigen (123 to 211%) are lower
when compared with COVID-19 patients (221, 222). These
studies suggested that induction of the clotting factors is
comparatively high in COVID-19 patients versus influenza
virus infected patients.

Similar to influenza virus infection, reports have shown
increased levels of PAI1 in COVID-19 patients. Zhou et al.
have shown that the presence of at least 1 µg/ml of D-Dimer is
associated with 18 times higher mortality rate in COVID-19
patients (14). Out of 172 COVID-19 patients analyzed, 68%
patients showed >0.5 µg/ml of D-Dimer levels suggestive of
increased mortality rate among these patients (26). However,
in 2009 H1N1 influenza-infected patients, a study has shown
concentrations of 1.13 ± 1.09 µg/ml of D-Dimer in patients from
non-respiratory failure group versus 6.74 ± 5.11 µg/ml in patients
in the respiratory failure group (141). Another study has shown
levels of D-Dimer from 0.3 to 0.5 µg/ml in seasonal influenza-
infected patients. These studies suggest that the D-Dimer level-
associated mortality risk is different in influenza virus infected
and COVID-19 patients. The differences may be due to the effect
of other coagulation factors and inflammatory mediator
difference between these two infections.

Studies have also shown that endothelial injury due to SARS-
CoV-2 infection increases coagulation marker levels. An autopsy
report showed the presence of viral particles and apoptotic
bodies in the vascular endothelium (208). Studies have shown
elevated expression of endothelial and platelet activation markers
ICAM1, VCAM1, P-selectin, sCD40L and thrombomodulin in
COVID-19 patients when compared to controls (220, 223).
These data suggest that the direct SARS-CoV-2 viral infection
also induces procoagulant factors that favor vascular thrombosis.
Studies also have shown influenza virus infects vascular
endothelial cells, but the thrombotic events are more
pronounced in COVID-19 patients.

Several reports have also shown that NET-platelet aggregates
favor vascular coagulation in COVID-19 patients. A recent
report has shown microvascular thrombi associated with
platelet-neutrophil aggregates in the lungs, kidney and the
heart (224). Another study has shown NETs in the heart by
electron microscopy (EM) in an autopsy sample from COVID-
19 patient with MIS-C (210). These studies suggest that similar
to influenza infection, immunothrombosis is one of the
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mechanisms involved in vascular thrombosis in COVID-19
(Figure 2).
CONCLUSION

Influenza contributes to cardiovascular diseases through a
number of different mechanisms. Influenza virus infection
increases immune cell recruitment, adhesion, and/or apoptosis,
leading to atherosclerotic plaque progression. VSMCs can
transform into synthetic VSMCs during the course of infection
that then proliferate and migrate into the intima, favoring plaque
rupture. The inflammatory response generated during influenza
virus infection greatly increases the risks of plaque rupture.
Also, influenza-induced coagulation factors may increase
thrombosis that can cause acute coronary events. Interactions
between influenza-induced pro-inflammatory cytokines and
proteases may be a mechanism involved in influenza-induced
myocarditis. The highlighted studies illuminate direct and
indirect effects of influenza virus infection on triggering or
exacerbating cardiovascular diseases.

Based on the presence of ACE2 in various tissues including the
lung epithelium, vascular endothelium, and cardiomyocytes, direct
SARS-CoV-2 viral-induced effects may trigger cardiovascular
events. Several clinical reports from COVID-19 patients show
dysregulated production of inflammatory mediators, coagulation
factors, and the effect of hypoxia due to ARDS as possible indirect
mechanisms involved in triggering cardiovascular events in
COVID-19 patients. Epidemiological and pathogenic studies
showed similarities and differences between influenza virus and
COVID-19 associated cardiovascular diseases. However, the
sample sizes analyzed in COVID-19 patients are small, and the
observation period is short. The studies are carried out in severely
or moderately infected patients. However, identifying the
pathogenic mechanisms with the severely ill patients may help to
identify therapeutic targets. Animal models will be helpful to
understand viral-induced effects on various cells that are
involved in triggering cardiovascular events associated with
SARS-CoV-2 infection. Potential site and/or cell-specific gene
deficient mouse models will help to understand the role of
specific cellular responses to pulmonary viral infection on
triggering cardiovascular diseases.
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