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Abstract: Dynamics and functions of the peroxisome proliferator-activated receptor (PPAR)-α are
modulated by the types of ligands that bind to the orthosteric sites. While several X-ray crystal
structures of PPAR-α have been determined in their agonist-bound forms, detailed structural
information in their apo and antagonist-bound states are still lacking. To address these limitations,
we apply unbiased molecular dynamics simulations to three different PPAR-α systems to determine
their modulatory mechanisms. Herein, we performed hydrogen bond and essential dynamics
analyses to identify the important residues involved in polar interactions and conformational
structural variations, respectively. Furthermore, betweenness centrality network analysis was
carried out to identify key residues for intramolecular signaling. The differences observed in the
intramolecular signal flow between apo, agonist- and antagonist-bound forms of PPAR-α will be
useful for calculating maps of information flow and identifying key residues crucial for signal
transductions. The predictions derived from our analysis will be of great help to medicinal chemists
in the design of effective PPAR-α modulators and additionally in understanding their regulation and
signal transductions.

Keywords: PPAR-α; molecular dynamics; apo; agonist; antagonist; hydrogen bond; network theory;
betweenness centrality

1. Introduction

Peroxisome proliferator-activated receptors (PPARs) are members of the nuclear hormone receptor
superfamily that bind to varied signals and transduce them into an ordered set of cellular responses
at the level of gene transcription [1–3]. So far, three mammalian PPAR subtypes, namely PPARα,
PPARβ/δ, and PPARγ have been identified, which are encoded by distinct genes [1]. PPARs are
activated by several endogenous ligands, including cholesterol metabolites, retinoids, saturated and
unsaturated fatty acids, steroids, and pharmacological compounds [4,5]. All PPARs share a common
structural architecture consisting of a DNA-binding domain at the N-terminus and a ligand-binding
domain (LBD) at the C-terminus [6]. Upon ligand binding, PPARs are translocated to the nucleus and
heterodimerize with the retinoid X receptor. This complex then binds to coactivators for interacting
with specific DNA motifs known as peroxisome proliferator-response elements and regulates the
expression of specific target genes [7]. Although PPAR subtypes share uniqueness in their tissue
distribution, they show distinct regulatory and modulatory activities.

PPAR-α is the first PPAR subtype to be cloned from mouse-liver complementary DNA-library as
a nuclear receptor that causes proliferation of peroxisomes [8]. PPAR-α is a transcription factor that
is activated by several natural and synthetic ligands. This receptor subtype acts as a key regulator
of energy metabolism and mitochondrial and peroxisomal function via target gene regulation [9,10].
Furthermore, it is involved in the activation of fatty acid β-oxidation and ketogenesis, and simultaneous
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inhibition of glycolysis and fatty acid synthesis [11–13]. Considering their wide range of actions on
lipid and glucose metabolism, control of inflammatory processes, and vascular integrity maintenance,
PPAR-α and their modulators are recommended for the treatment of metabolic diseases, such as
atherosclerosis, dyslipidemia, and hyperglycemia [6].

Until now, only few crystal structures of PPAR-α LBD with their respective co-crystallized ligands
have been solved. Previous studies suggest that agonists form polar interactions with S280, Y314, A333,
H440, and Y464, whereas antagonists form a polar interaction with Y314, which are responsible for
agonist and antagonist recognition, respectively [14,15]. As crystal structures represent only a snapshot
of the system that has been captured in a particular state, information about other key residues located
in the binding pocket that could participate in covalent or non-covalent interactions with ligands and
could contribute to ligand recognition is still lacking. Therefore, molecular dynamics (MD) simulations
that capture the receptor motions at an atomic scale could help in connecting those dots [16].

Previously, Liu et al. performed 50 ns MD simulation of ligand-bound PPAR-α complexes and
suggested a few key residues involved in ligand-recognition using H-bond and energy decomposition
analyses [17]. However, intrinsic structural information on apo and antagonist-bound forms of PPAR-α
LBD remains inadequate. To the best of our knowledge, no apo-form PPAR-α LBD structure model
has been proposed and no prolonged simulation studies for the three different states of PPAR-α LBDs
(apo, agonist-, and antagonist-bound forms of PPAR-α) have been performed so far. In this study,
we are the first to explore the conformational dynamics for three different states of PPAR-α LBDs using
conventional MD simulations. We performed 300 ns all-atom MD simulations for each PPAR-α LBD in
apo, agonist- (13M), and antagonist-bound (471) forms and analyzed their trajectories using several
structural and network analyses. The structural insights gained from this study opens the gateway for
large-scale virtual screening and could assist medicinal chemists in the design of novel and effective
PPAR-α ligands. This approach could also be extended to other PPAR subtypes and nuclear receptors.

2. Results and Discussion

2.1. Structural Stability of PPAR-α Complexes During Simulations

Initially, we prepared three different states of PPAR-α systems and subjected each one of them to
300 ns MD simulations. To assess the stability of the complexes, we calculated the root mean square
deviation (RMSD) of the protein backbone atoms with respect to the equilibrated structure as a function
of the simulation time. As expected, the apo form showed high structural deviations ranging from
2.5–6 Å (Figure 1A), thus suggesting that the unbound form of PPAR-α may be highly unstable in
physiological conditions. Whereas, the ligand-bound complexes exhibited an overall deviation of less
than 2 Å, signifying their greater structural stability in agonist- or antagonist-bound states. It was
observed that both ligand-bound complexes reached structural stability after 220 ns simulation time
(Figure 1A) and the structural deviation of the agonist-bound was lower than the antagonist-bound
complex. Overall, all three systems deviated from the equilibrated structures in the range of 1.2–6 Å
during production run. Similarly, ligand RMSD (Figure 1B) was calculated for 13M (agonist) and
471 (antagonist). 13M RMSD ranged from 0.5–2.25 Å, whereas 471 RMSD ranged from 1–2.5 Å. Both
ligands showed stability after 200 ns production run.

The root mean square fluctuations (RMSFs) of Cα atoms were calculated for each residue in all
systems. Predictably, the residues in the terminal regions (N- and C-terminal ends) showed high
fluctuations up to 9 Å, especially in the apo form (Figure 1C), since they tend to be more exposed on
the surface with greater mobility. Whereas, the residues involved in ligand binding were relatively
stable and maintained their fluctuations within 1 Å (shown as black arrow in Figure 1C). For clarity,
the residues that were highly fluctuating (> 3 Å) during the production runs are displayed in all three
systems in Figure 1C. Besides RMSD, solvent accessible surface area (SASA) is also employed to assess
the stability of the systems during simulation [18]. We calculated the total SASA for the backbone
atoms of all three systems (Figure 1D). The average SASA for apo, agonist-, and antagonist-bound
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systems were 150.448 nm2, 145.592 nm2, and 160.143 nm2, respectively. In Figure 1D, the agonist-bound
system showed lower SASA compared to the other two systems (apo and antagonist-bound forms),
thus indicating its higher thermodynamic stability. Furthermore, the SASA of the antagonist-bound
form is highly stable and does not change during simulation. Interestingly, the total SASA of apo form
lies between agonist- and antagonist-bound forms. Overall, our trajectory analysis showed the stable
nature of the systems and were thus utilized for further analysis.
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agonist-, and antagonist-bound forms of PPAR-α are shown in gray, salmon, and cyan, respectively. 
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the binding pocket [19]. Practically, it is not possible to check H-bond stability by inspecting the 
crystal, nuclear magnetic resonance, or electron microscopy-solved structures. Therefore, it is 
essential to check the stability of the H-bonds using MD simulations. To identify the polar interactions 
in PPAR-α ligand-bound states, we calculated and analyzed the H-bonds using a gmx hbond tool 
that determines the presence of H-bonds based on a cutoff distance of 3.5 Å and a cut-off angle of 30° 
[20]. Initially, we calculated the number of H-bonds between the ligand and protein (Figure 2A) and 
identified that they varied throughout the simulation. Notably, the maximum number of H-bonds in 
agonist- and antagonist-bound states is 4 and 6, respectively. Moreover, approximately two H-bonds 
were found to be sustained in the ligand-bound complexes throughout the production runs. 

To identify the residues involved in H-bond formation for agonist or antagonist recognition, H-
bond occupancies were calculated. H-bond occupancy refers to the fraction of time in which the 
ligand atom forms H-bonds with any of the interacting residue in the protein. In Figure 2B, it was 
observed that Q277 and A333 were mainly involved in H-bond formation for the PPAR-α/13M 
system, which agrees with a previous report [14]. Other minor residues that are involved in the polar 

Figure 1. Analysis of the 300 ns molecular dynamics (MD) simulation productive phases of apo,
agonist-, and antagonist-bound forms of PPAR-α. (A) Root mean square deviation (RMSD) of the
protein backbone atoms with respect to the equilibrated structure; (B) RMSD of the agonist (13M)
and antagonist (471) molecules with respect to the minimized structures; (C) Root mean square
fluctuations (RMSF) of apo, agonist-, and antagonist-bound forms of PPAR-α and the residues with
high fluctuations are shown. The residues important for ligand binding are labeled in red. (D) Solvent
accessible surface area of apo, agonist-, and antagonist-bound forms of PPAR-α. The data for apo,
agonist-, and antagonist-bound forms of PPAR-α are shown in gray, salmon, and cyan, respectively.

2.2. Hydrogen Bond Analysis

Hydrogen bonds (H-bonds) are facilitators in protein-ligand systems to stabilize the ligand in the
binding pocket [19]. Practically, it is not possible to check H-bond stability by inspecting the crystal,
nuclear magnetic resonance, or electron microscopy-solved structures. Therefore, it is essential to
check the stability of the H-bonds using MD simulations. To identify the polar interactions in PPAR-α
ligand-bound states, we calculated and analyzed the H-bonds using a gmx hbond tool that determines
the presence of H-bonds based on a cutoff distance of 3.5 Å and a cut-off angle of 30◦ [20]. Initially,
we calculated the number of H-bonds between the ligand and protein (Figure 2A) and identified that
they varied throughout the simulation. Notably, the maximum number of H-bonds in agonist- and
antagonist-bound states is 4 and 6, respectively. Moreover, approximately two H-bonds were found to
be sustained in the ligand-bound complexes throughout the production runs.
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To identify the residues involved in H-bond formation for agonist or antagonist recognition,
H-bond occupancies were calculated. H-bond occupancy refers to the fraction of time in which the
ligand atom forms H-bonds with any of the interacting residue in the protein. In Figure 2B, it was
observed that Q277 and A333 were mainly involved in H-bond formation for the PPAR-α/13M
system, which agrees with a previous report [14]. Other minor residues that are involved in the polar
interactions for agonist recognition are T279, S280, Y314, I354, K358, and H440. Similarly, the major
residues involved in H-bond formation for antagonist recognition are S280, Y314, and H440. Previously,
it was shown that Y314 was involved in polar interaction in the PPAR-α/471 system, which agrees
with our analysis [15]. Other minor residues that are involved in H-bond formation for antagonist
recognition are Q277 and T279. Overall, our H-bond analysis signifies the importance of polar
interactions in the selective recognition of agonist and antagonist molecules.
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Figure 2. Hydrogen bond (H-bond) formation of agonist- and antagonist-bound forms of PPAR-α
during 300 ns MD simulations. (A) Number of H-bonds formed between protein-ligand complexes
with respect to the production period; and (B) H-bond occupancy of each interacting residue in their
relevant complexes throughout the simulation. The data for agonist- and antagonist-bound forms of
PPAR-α are shown in salmon and cyan colors, respectively.

2.3. Essential Dynamics Analysis

Principal component analysis (PCA) determines the dominant motions accountable for the
functional behaviors of proteins. The two-dimensional (2D) projection of PC1 and PC2 (between the
largest two eigenvalues) in all PPAR-α systems is plotted in Figure 3A. In Figure 3A, each dot represents
the conformation of PPAR-α in the apo and ligand-bound forms over a trajectory of 300 ns. For larger
conformational changes, the spreading of distribution will be more in the conformational space. It is
observed that the apo form distributions are widely scattered due to the absence of a ligand, whereas
the conformational space of PPAR-α in the ligand-bound forms are limited. The plotted eigenvalues
(nm2) against the eigenvector index showed stabilization in the first seven eigenvectors (Figure 3B).
Additionally, the cumulative percentages of variance in motion obtained from the first 20 principal
components were 88%, 22%, and 35% for apo, agonist-, and antagonist-bound systems, respectively
(Figure 3B). All these principal component analyses suggest that the apo form of PPAR-α shows a large
distribution of structural conformations in comparison to the ligand-bound forms. In ligand-bound
forms, the agonist-bound system shows lesser distribution of structural conformations in comparison
to the antagonist-bound form, thus indicating that PPAR-α is highly stable upon agonist binding.
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The global minimum energy conformation of the protein-ligand complex can be obtained through
free energy landscape (FEL) analysis. The FEL contour maps for all three PPAR-α systems were
derived from PC1 and PC2 (as mentioned in the methodology), which are depicted in Figures 4 and 5.
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Figure 4. 2D free energy landscape (FEL) of PPAR-α apo form (A,B) displayed as a function of two
principal components (PC1 and PC2), whose cosine content was less than 0.2. The minimal energy
clusters are highlighted using black dotted circles.

The 2D-FEL contour maps for apo and antagonist-bound forms showed two minimal energy
clusters and large structural distributions (Figure 4A,B and Figure 5D,F). However, in the
agonist-bound form, there is only a single conformation cluster that indicates strong and stable
interaction of agonist with PPAR-α, which agrees with our structural stability analysis. Furthermore,
the least energy or the most representative conformation from the least minimal energy regions in
ligand-bound forms were extracted for showing the stable interactions between the protein and ligand.
The FEL analysis of the agonist- and antagonist-bound forms revealed that the access to the lowest
energy conformer was at the 64,500 ps and 176,300 ps snapshots, respectively, which were extracted
from the most populated free energy minimum cluster. In agonist-bound conformation, the agonist
13M forms four stable H-bonds with Q277, A333, and Y464 residues (Figure 5B), which is in agreement
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with a previous study [14] and supported well by our H-bond analysis. Likewise, antagonist 471 forms
five stable H-bonds with Q277, S280, Y314, and H440 residues (Figure 5E), which agrees well with a
previous report [15] and our H-bond analysis.
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Figure 5. 2D-FEL of agonist- (A,C) and antagonist-bound (D,F) forms of PPAR-α displayed as a
function of two principal components, whose cosine contents were less than 0.2. The representative
structures of agonist- (B) and antagonist-bound (E) forms with minimal energy are zoomed out to
show the residues critical for ligand binding. The residues important for ligand recognition are shown
as red and slate blue colored sticks and the H-bonds are displayed as black dashed lines. The minimal
energy clusters are highlighted using black dotted circles.

2.4. Generation of PPAR-α Minimal Energy Structures

Selection of a representative structure from the MD trajectory frames for analysis is one of the
biggest challenges in the utilization of large structural ensembles. The choice of the selection criteria
may vary depending on the goal of our subsequent analysis. The representative structure could be
selected based on the RMSD, total conformational energy, or certain known conformational changes,
which may be crucial for protein function. In our protocol, the trajectories of the MD production run for
each system were monitored based on the total conformational energy (Figure 6A) and RMSD relative
to the lowest conformational energy structure (Figure 6B). The lowest conformational energy structures
for apo, agonist-, and antagonist-bound forms were obtained by plotting the total conformational
energy of the system relative to the RMSD of the protein backbone atoms (calculated with respect to
the equilibrated structure), which are highlighted as red circles in Figure 6C. The top 20 structures with
lowest energies were clustered for all three PPAR-α systems. The top minimal energy conformation
structures obtained from the conformational ensembles were selected as the representative structures
for the apo, agonist-, and antagonist-bound forms of PPAR-α, which were subsequently subjected to
network analysis (Figure 6D).
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Figure 6. Structure and dynamics of PPAR-α complexes. (A) Time-dependent total conformational
energy of apo, agonist-, and antagonist-bound forms; (B) RMSD in reference to the minimum energy
structure from the MD trajectories of the apo, agonist-, and antagonist-bound forms; (C) RMSD plot
with respect to the total conformational energies of apo, agonist- and antagonist-bound complexes.
For clarity purpose, minimal energy structures of PPAR-α complexes are illustrated in red circle.
(D) The minimum energy structures of apo, agonist, and antagonist-bound forms are overlaid to
show the significant structural difference between the three forms. Gray represents apo-form, salmon
represents agonist-bound form, and cyan represents antagonist-bound form of PPAR-α.

2.5. Network Centrality Analysis

Measuring centrality is a popular concept in social network analysis, which could increase the
applicability of selecting critical nodes in the network [21–23]. Centrality calculations have been
successfully applied in identifying functionally important residues, such as those present in the active
site or co-factor binding site of a protein, protein allosteric communications, metabolic networks, and
disease networks [24–26]. The three most widely applied centrality measures are betweenness (CB),
closeness (CC), and degree (CD) [21,22]. To identify the crucial residues responsible for agonist or
antagonist signal flow, we used the minimum energy structures of apo, agonist-, and antagonist-bound
states of PPAR-α, constructed the residue interaction networks (as mentioned in methods section),
and computed the centrality measures (Figure 7). Notably, the overall Pearson correlation coefficient
between three different centralities lies in the range of 0.66–0.72, hence a residue with high CC or CD
does not necessarily possess a high CB value. Previous studies have shown that a node with high
CB values correlates well with the functional residues that mediate allosteric signals, protein-protein
interactions, etc., indicating the importance of CB over other two centralities [27,28]. Henceforth, only
CB was calculated to measure the importance of each residue for the signal flow in three different states
of PPAR-α [23].
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Figure 7. Network centrality analysis for three different systems of PPAR-α. (A) Closeness (Cc),
(B) degree (CD), and (C) betweenness (CB) centralities for each residue of the PPAR-α complexes are
shown. (D) Residues with high CB (≥ 0.05) are depicted as spheres on the representative apo structure
of PPAR-α. Gray, red, and slate blue spheres represent the residues with high CB values in apo, agonist-,
and antagonist-bound forms of PPAR-α, respectively.

We mapped the residues with CB ≥ 0.05, which constitute the top 10% of the CB distribution,
onto the minimized apo structure of PPAR-α (Figure 7D). Ten residues were identified using CB ≥ 0.05
and a few residues among them are deemed important for agonist and antagonist signaling (Table 1),
which are in line with previous studies [14,15]. Remarkably, these residues are primarily distributed
contiguously in the active site and C-terminal regions, and thus could be deemed crucial for modulating
the signal flow.

Table 1. List of key residues with betweenness centrality values (CB) ≥ 0.05.

CB
Apo ≥ 0.05 CB

Ago ≥ 0.05 CB
Antag ≥ 0.05

Y311, L321 F290, Y314, F361, Y464 S280, F318, I354, M355

Bold residues represent the key residues identified from previous studies.

Similarly, we also calculated the differences in the CB between apo and agonist-bound forms
(Figure 8A), and between apo and antagonist-bound forms (Figure 8B). The contribution of residues
satisfying the condition |CB

Apo − CB
Ago| ≥ 0.02 and |CB

Apo − CB
Antag| ≥ 0.02 are mainly located in

the orthosteric site and C-terminal ends also satisfying CB ≥ 0.05 (Table 2).
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Table 2. List of key residues satisfying the condition |CB
Apo − CB

Ago| ≥ 0.02 and |CB
Apo − CB

Antag| ≥ 0.02.

|CB
Apo − CB

Ago| ≥ 0.02 |CB
Apo − CB

Antag| ≥ 0.02

L229, I272, F273, Q277, Y311, L321, V324,
M325, M330, I382, Q401, E462, Y464

L229, Q277, S280, L309, Y311, V313, F318,
L321, M325, I354, M355, F378, K448, E451,

E462

Bold residues represent the key residues identified from previous studies.
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Figure 8. Difference of CB values calculated for (A) apo and agonist-bound structures. (C) Residues
with |CB

Apo − CB
Ago| ≥ 0.03 depicted on the apo minimized structure as red spheres, contributed

mainly from the orthosteric pocket and C-terminal region; (B) difference of CB values calculated for
apo and antagonist-bound structures; (D) similarly, residues with |CB

Apo − CB
Antag| ≥ 0.03 depicted

on the apo minimized structure as slate blue spheres, contributed primarily from the ligand binding
pocket and C-terminal region.

Thirteen and fifteen residues were identified using |CB
Apo − CB

Ago| ≥ 0.02 and |CB
Apo − CB

Antag|
≥ 0.02, respectively. Few among those residues are in line with previous studies for agonist or
antagonist recognition (see Table 2 for details) [14,15]. For legibility purpose, the residues that satisfy
the condition |CB

Apo − CB
Ago| ≥ 0.03 and |CB

Apo − CB
Antag| ≥ 0.03 are only depicted in the minimized

agonist- (Figure 8C) and antagonist-bound (Figure 8D) structures of PPAR-α.
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3. Materials and Methods

3.1. Computing and Data Analysis

All computing was carried out on a Linux (CentOS release 7.6.1810) workstation. The trajectories
were analyzed using GROMACS v5.1.4. built-in modules [29,30]. FEL contour maps were plotted
using a trial version of Mathematica 11.3. Network analysis was performed using our in-house
script. The graphical images and plots were produced using PyMOL v2.3.0a0. [31] and Matplotlib
v3.0.3. [32], respectively.

3.2. Preparation of the Apo, Agonist-, and Antagonist-Bound Structures

Prior to MD simulations, both ligand and receptor structures should be prepared. High resolution
crystal structures of PPAR-α/13M (PDB code: 3VI8) [14] and PPAR-α/471 (PDB code: 1KKQ) [15]
complexes were obtained from the Research Collaboratory for Structural Bioinformatics (RCSB) Protein
Data Bank (PDB). Crystal water molecules within 4 Å of ligands were retained. For PPAR-α/471, only
chain A complexed with a ligand molecule was considered for analysis, since this work is focused
on exploring the interactions of PPAR-α with ligands. Although several crystal structures of PPAR-α
are determined in their agonist- and antagonist-bound forms, structural data for apo form is still
lacking. The apo form of PPAR-α was obtained by minimizing the inactive PPAR-α structure (PDB
code: 1KKQ), after the removal of the bound antagonist. The agonist-bound structure of PPAR-α
was modeled using ModBase [33]. We used the structure with PDB ID 2P54 [34] as a template for the
agonist-bound form in order to generate models for the loop regions that were not determined in 3VI8.
Furthermore, ligand molecules were prepared using Open Babel software v2.3.2 [35].

3.3. Molecular Dynamics (MD) Simulations

The prepared systems were subjected to MD simulations using GROMACS v5.1.4. with
CHARMM36-nov2018 force field. The topology and parameter files for the ligands were
generated using CGenFF program v2.2.0 [36]. The systems were solvated with 18,852 (apo),
13,221 (agonist-bound), and 12,915 (antagonist-bound) water molecules using TIP3P water model and
were subsequently neutralized by replacing the solvent molecules with required counter ions. All the
systems were minimized using the steepest descent algorithm, and the tolerance force for convergence
was set to <1000.0 kJ (mol nm)−1. Subsequently, the systems were subjected to first equilibration
phase with the constant volume (NVT) ensemble for 10 ns each using leap-frog integrator to attain the
desired temperature (300 K). Furthermore, the systems were subjected to a second equilibration phase
with the constant pressure (NPT) ensemble for 10 ns each using a Parrinello-Rahman barostat to attain
1 bar pressure. Nonbonded interactions were smoothly switched off between 10 and 12 Å. To handle
electrostatic interactions, the particle mesh Ewald algorithm was employed with a cubic interpolation
order of 4 and a grid spacing of 0.16 nm. Upon the completion of equilibration, the systems were
finally subjected to 300 ns production run with NPT ensemble. We used the integration time step of 2
fs, and for the analysis we saved and sampled the simulated trajectories for every 100 ps.

3.4. Principal Component Analysis (PCA) and Free Energy Landscape (FEL)

PCA could be utilized to identify the high-amplitude concerted motions along the MD
trajectory [37–39]. Firstly, covariance matrices for three different PPAR-α systems were constructed
from protein backbone atomic fluctuations after the removal of rotational and translational motions.
From diagonalization of the covariance matrix, the sum of eigenvalues for apo, agonist-, and
antagonist-bound forms were calculated to be 38.7978 nm2, 11.3491 nm2, and 16.8518 nm2, respectively.
GROMACS tool gmx covar was utilized for calculating and diagonalizing the covariance matrix of
backbone atoms and obtaining the eigenvalues and eigenvectors [40]. The gmx anaeig was utilized for
analyzing the eigenvectors [41]. The first 20 projection eigenvectors of the proteins were extracted from
simulated PPAR-α complexes and analyzed for their cosine content in which the first two eigenvectors,
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PC1 and PC2 having a cosine content less than or equal to 0.2, were used to define the FEL [42]. The FEL
of the three systems were mapped to obtain minimum energy configurations using the gmx sham tool
of the GROMACS package from the two PCs based on cosine content analysis [43]. The contour maps
of the FEL were generated using a trial version of Mathematica 11.3.

3.5. Residue Interaction Network Construction

A weighted residue–residue interaction network was constructed, where each amino acid
and number of H-bonds between two residues respectively represent the node and weight.
Two coarse-grained centers per residue was considered by taking into account the effect of side chain,
i.e., Cα backbone and heavy atoms far away from Cα for the side chains. Basically, we considered the
cases of backbone-sidechain, side chain-side chain, and backbone-backbone contacts. In our network
model, a contact was established if any one of the above defined atoms between two residues was less
than 7 Å.

3.6. Network Centralities

Using residue interaction network, we computed three types of centralities, namely CD, CC,
and CB, the definitions of which are as follows: CD(k) measures the total number of edges linked to a
node k, which is identical to the number of contacts with its neighboring residues.

CD(k) = deg(k) (1)

CC(k) of a node k is the reciprocal of the average shortest path distance from all other nodes to the node
k, basically it measures how fast a signal could be transmitted to other nodes from the node k.

Cc(k) =

(
N

∑
i=1

d(i, k)/(N − 1)

)−1

(2)

where d(i, k) is the minimum number of edges that bridge the node i and k. Dijkstra’s algorithm was
employed to compute d(i, k).

CB(k) is used to identify the central node, which is crucial for signal transduction within the
protein. Brandes algorithm [44] was employed to compute the CB.

CB =
2

(N − 2)(N − 1)

N−1

∑
s=1

N

∑
t=s+1

σst(k)
σst

(3)

where σst is the number of shortest paths connecting the nodes s and t, and σst(k) is the
number of shortest paths connecting the nodes s and t through the node v; 2

(N−2)(N−1) is the
normalization constant.

4. Conclusions

Although the significance of PPAR-α has been widely acknowledged, the conformational changes
observed in three different states is still lacking. Therefore, we utilized unbiased MD simulations
for three PPAR-α systems and performed the analysis on each 300 ns MD trajectory. Structural
stability analysis showed a more stable nature of agonist-bound form of PPAR-α when compared to
the other two systems. H-bond analysis showed the significance of polar interactions in the agonist
and antagonist recognitions and identified both major and minor residues involvement in H-bonds,
which are in line with previous studies. Subsequently, PCA and FEL analyses showed the scattered
distribution of the apo system when compared to the ligand-bound systems of PPAR-α. Additionally,
the lowest energy conformers for agonist- and antagonist-bound forms obtained from the FEL analysis
further strengthen our H-bond analysis. The generated minimal energy structures for the three systems
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were subjected to network analysis, where several crucial residues important for signal flow were
identified. Notably, the predictions from the CB-based network analysis of protein structures should
be of great use not only to this PPAR-α system but also to illuminate the origin of subtype selectivity
and their modulation mechanisms. Overall, our approach is not only applicable for studying the
conformational states of protein-ligand systems and mapping their associated signal flow but could
also be extended to understand the communications in protein-protein, protein-RNA, or protein-DNA
complexes as well.
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