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ABSTRACT Here, we report the coding-complete genome sequence of an avian
metapneumovirus from a monk parakeet (Myiopsitta monachus), identified by metag-
enomic next-generation sequencing during an investigation into a disease outbreak
in a captive parrot breeding facility. Based on divergence from known strains, this
sequence represents a new subgroup of avian metapneumovirus.

Metapneumoviruses (genus Metapneumovirus, family Pneumoviridae) cause disease in
birds and mammals, including humans. Avian strains are important pathogens of

commercial poultry, causing acute upper respiratory illness that is often complicated by
secondary bacterial infections in chickens and turkeys (1, 2). We observed an unusual cluster
of morbidity and mortality among young parrots at a captive breeding facility that could
not be explained by routine diagnostics. Difficult-to-control bacterial infections and persis-
tent cryptosporidium infections suggested immunosuppression. This prompted our inves-
tigation into underlying infectious etiologies using metagenomic next-generation sequencing.

At necropsy of an affected monk parakeet chick, the lungs, liver, and spleen were
sampled and stored at �80°C. For RNA extraction, �50 mg of combined tissues was
homogenized in 2 ml of DNA/RNA Shield (Zymo Research) using 2.8-mm ceramic beads
(Omni) on a TissueLyser II instrument (Qiagen) with 5 cycles of 30 Hz for 30 sec followed
by 1 min on ice. Samples were centrifuged at 16,000 � g for 10 min, and 250 �l of
homogenized tissue supernatant was added to 750 �l of Direct-zol (Zymo Research).
RNA was extracted using a Direct-zol RNA MiniPrep Plus kit (Zymo Research) with
DNase treatment (Qiagen) and quantified by Nanodrop. Sequencing libraries were
prepared from 100 ng of extracted RNA with 25 pg of spike-in control RNA from the
External RNA Controls Consortium (ERCC) collection (Thermo Fisher Scientific), using an
NEBNext Ultra II Directional RNA library prep kit for Illumina (New England Biolabs). A
water sample was processed in parallel. Paired-end 150-nucleotide (nt) sequencing on
an Illumina HiSeq 4000 instrument yielded 35,053,607 raw read pairs.

A representative host database was built using all genome assemblies and mitochon-
drial genomes under taxonomy identifier (TaxID) 9224 (Psittacidae, parrots) available in the
National Center for Biotechnology Information (NCBI) database as of 7 December 2018.
Host subtraction and quality control were performed as described previously (3). The
remaining 1,670,686 unique nonhost read pairs (4.8% of raw) were processed using the
IDseq pathogen detection pipeline v3.2 (reference, NCBI nucleotide and nonredundant
protein (nt/nr) databases, as of 1 December 2018) (4), which identified metapneumovirus
reads in the sample. No other viruses were detected as credible hits by the following
criteria: �10 mapped read pairs per million nonhost read pairs (rpM) at the nucleotide level,
and �1 rpM at the amino acid level.

These metapneumovirus reads were used as seeds for Paired-End Iterative Contig
Extension (PRICE) v1.2 (with the settings “–fpp �R1� �R2 � 350 99 –mol 30 –target 80
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8 2 2 –nc 10 –lenf 500 8”) to assemble the full-length genome (5). Reads were then
mapped back to the genome using Bowtie 2 v2.2.4 (“–very-sensitive-local” mode) (6).
The final consensus sequence is 13,648 nt long, with 26� mean coverage and a GC
content of 39% (Fig. 1). Genome termini were not specifically identified. Consistent with

1

3’ 5’

2000 4000 6000 8000 10,000 12,000 13,648 nt

N P M F M2.1

M2.2

SH G L

80

0
100

Coverage

Identity to AMPV-B

N
 re

ad
s

%
 a

a 
id

en
t

40

0

F (fusion glycoprotein) G (attachment glycoprotein)

L (RdRp) HMPV-A1 (AF371337)
HMPV-A2 (FJ168779)
HMPV-B2 (FJ168778)
HMPV-B1 (AY525843)

MK491499

AMPV-C (AY590688)

AMPV-B (AB548428)

AMPV-A (AY640317)
AMPV-D (HG934339) 

MPV-15 (AY729016)

HRSV-B1 (AF013254)
HRSV-A2 (M74568)

BRSV-Atue51908 (AF092942)0.2 aa subs/site

Human metapneumovirus

Avian metapneumovirus

Murine orthopneumovirus 

Human orthopneumovirus

Bovine orthopneumovirus

100

100

100100

100
98

95

100

100

0.2 nt subs/site 0.2 nt subs/site

100

100

100

100

AMPV-B
(n=10)

MK491499

AMPV-A
(n=7)

AMPV-D
(n=1)

AMPV-C
(n=22)

100

100

100

98

88

71

99

AMPV-B
(n=25)

AMPV-A
(n=15)

AMPV-D (n=3)

MK491499

AMPV-C
(n=13)

A

B

C

FIG 1 Coverage and phylogenetic analysis of sequence representing a new subgroup of avian metapneumovirus. (A)
Top, coverage plot showing number of reads aligning to the consensus sequence (y axis) along the length of the
consensus sequence (x axis, length in nucleotides, corresponding to the diagram of the viral genome below). Middle,
percent identity (y axis) for a 15-amino acid sliding window across an alignment of the consensus sequence and
reference AMPV-B sequence (GenBank accession number AB548428) for each viral protein. Red bars indicate an identity
of �30%. Bottom, representation of likely genomic structure based on open reading frames and homology to other
avian metapneumoviruses. (B) Phylogenetic tree of the Pneumoviridae. Amino acid level alignments of L genes (encoding
RNA-dependent RNA polymerase [RdRp]) from representative viruses were used to construct a maximum likelihood tree.
Multiple-sequence alignment was performed in Geneious (v9.1.8) with default parameters; the phylogenetic tree was
built using PhyML v2.2.3 (LG substitution model, 100 bootstraps) (9). The sequence identified in this study is highlighted
in red. Values at branch points indicate the fraction of trees with this node, based on a bootstrapping method. Bar, 0.2
amino acid substitutions per site. (C) Maximum likelihood trees (PhyML, default parameters) constructed from nucleotide
alignments (Geneious, default parameters) of all available avian metapneumovirus sequences for the fusion glycoprotein
(F gene, left) and attachment glycoprotein (G gene, right). Bar, 0.2 nucleotide substitutions per site.
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active viral replication, we observed reads from both negative-strand (genomic) and
positive-strand (mRNA transcript/antigenomic) RNA.

The most similar sequences in the NCBI nt/nr reference databases identified by
BLAST search were metapneumoviruses (7). Phylogenetic analysis of the L gene (en-
coding RNA-dependent RNA polymerase [RdRp]) at the amino acid level revealed 43 to
49% identity to representative members of the genus Orthopneumovirus and 61 to 66%
identity to representative members of the genus Metapneumovirus, indicating that this
sequence represents a new subgroup of metapneumoviruses (Fig. 1) (8). Analysis of the
fusion glycoprotein (F) gene and attachment glycoprotein (G) gene further supported
this classification.

We have identified the first member of a new subgroup of metapneumoviruses,
distinct from avian metapneumoviruses A, B, C, and D. Despite similarities between this
outbreak and outbreaks of avian metapneumovirus in commercial poultry, it remains
unknown whether the virus identified here directly caused the symptoms observed in
this individual and/or flock.

Data availability. The avian metapneumovirus sequence described here has been
deposited at GenBank under the accession number MK491499.
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