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In silico design and analyses 
of a multi‑epitope vaccine 
against Crimean‑Congo 
hemorrhagic fever virus 
through reverse vaccinology 
and immunoinformatics 
approaches
Akinyemi Ademola Omoniyi1,4,5*, Samuel Sunday Adebisi1, Sunday Abraham Musa1, 
James Oliver Nzalak2, Zainab Mahmood Bauchi3, Kerkebe William Bako1, 
Oluwasegun Davis Olatomide1, Richard Zachariah1 & Jens Randel Nyengaard4,5

Crimean Congo Hemorrhagic Fever virus (CCHFV) is a deadly human pathogen that causes an 
emerging zoonotic disease with a broad geographic spread, especially in Africa, Asia, and Europe, and 
the second most common viral hemorrhagic fever and widely transmitted tick‑borne viral disease. 
Following infection, the patients are presented with a variety of clinical manifestations and a fatality 
rate of 40%. Despite the high fatality rate, there are unmet clinical interventions, as no antiviral drugs 
or vaccines for CCHF have been approved. Immunoinformatics pipeline and reverse vaccinology were 
used in this study to design a multi‑epitope vaccine that may elicit a protective humoral and cellular 
immune response against Crimean‑Congo hemorrhagic fever virus infection. Three essential virulent 
and antigenic proteins (S, M, and L) were used to predict seven CTL and 18 HTL epitopes that were 
non‑allergenic, antigenic, IFN‑γ inducing, and non‑toxic. The epitopes were connected using linkers 
and 50S ribosomal protein L7/L12 was used as an adjuvant and raised a multi‑epitope vaccine (MEV) 
that is 567 amino acids long. Molecular docking and simulation of the predicted 3D structure of the 
MEV with the toll‑like (TLR2, TLR3, and TLR4) receptors and major histocompatibility complex (MCH‑I 
and MCH‑II) indicate high interactions and stability of the complexes, MM‑GBSA free binding energy 
calculation revealed a favourable protein–protein complex. Maximum MEV expression was achieved 
with a CAI value of 0.98 through in silico cloning in the Drosophila melanogaster host. According to 
the immune simulation, IgG1, T‑helper cells, T‑cytotoxic cells, INF‑γ, and IL‑2 were predicted to be 
significantly elevated. These robust computational analyses demonstrated that the proposed MEV 
is effective in preventing CCHFV infections. However, it is still necessary to conduct both in vitro and 
in vivo experiments to validate the potential of the vaccine.

After dengue fever, Crimean-Congo Hemorrhagic Fever (CCHF) is the second most common viral hemorrhagic 
fever and the world’s most widely transmitted tick-borne viral  disease1. It’s characterised by high fever, head-
ache, weakness, nausea, vomiting, and diarrhoea, as well as elevated liver enzymes, elevated levels of creatine 
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phosphokinase (CPK), and lactate dehydrogenase (LDH), and disturbed  haemostasis2. Despite presentation 
as a low fever in the majority of cases, some patients develop severe hemorrhagic  disease3. CCHF was first 
described in humans as a disease in the 1940s when soldiers and farmers in the Crimean Peninsula became ill 
with a hemorrhagic  disease4.

CCHF is an emerging zoonotic disease with a broad geographic spread (much of Africa, Asia, and Europe)5 
and a 40% fatality  rate6. It is caused by the Crimean Congo Hemorrhagic Fever virus (CCHFV), a negative-sense 
RNA arbovirus (Arthropod-borne virus)7 belonging to the genus Nairovirus and family Bunyaviridae, which 
is transmitted by  ticks8. Humans can become infected with CCHFV by tick bites, crushing infected ticks, via 
inhalation, or through unprotected contact with body fluids of infected animals or  humans9.

In the late 1960s, the Crimean-Congo hemorrhagic fever virus was named after the discovery that the causa-
tive agent of hemorrhagic disease in Zaire (the current Democratic Republic of Congo) was similar to that of the 
hemorrhagic disease in the  Crimea10. Based on phylogenetic analysis of the complete genetic sequence of the S 
RNA segment of the genome and geographical origin, up to nine genetically distinct clades have been reported, 
suggesting a high genetic  diversity11,12. Evidence suggests that the viral gene segments are often reassorted, pos-
sibly as a result of animal trade between African and Asian  regions13.

In a variety of mammalian hosts, the virus induces a temporary  viremia14. In comparison to humans, immune-
competent mammals, do not show symptoms of  disease15,16. Animal models and treatment trials against CCHF 
have been delayed as a result of this. Retinoic acid-inducible gene I (RIG-I)17, Toll-like receptors (TLRs)18, and 
nuclear factor-kappa  B19 may act as innate immune sensors of CCHFV. Reduction in the replication of CCHFV 
by treatment with interferon in interferon-signalling competent cells and the ability of CCHFV to cause severe 
disease in mice deficient in the type I interferon system but not wild-type (WT) mice suggests that CCHFV is 
an interferon sensitive  virus20,21. This implies that host innate immune responses in vertebrate species play a 
substantial role in limiting CCHFV  pathogenesis22,23.

The viral genome consists of three RNA segments: small (S) encoding the viral nucleoprotein (NP), medium 
(M) encoding the glycoprotein precursor (GPC) that yields the structural glycoproteins (GN and GC), and large 
(L) encoding the RNA-dependent RNA  polymerase24. Following interaction between its glycoprotein (GN and 
GC) and the host cell’s receptor, CCHFV releases its genome after entering the cell through endocytosis. Once 
within the cell, genomic fragments are uncoated and transcribed into viral mRNA by the L protein, which is 
then converted into NP and L proteins used for genomic RNA replication, resulting in genomic ribonucleopro-
tein complexes (RNP)25. Within the endoplasmic reticulum (ER) and Golgi bodies, newly synthesized CCHFV 
particles are processed and matured before being released via  exocytosis26.

Immunoinformatics in vaccine development provides a quick, reliable, and efficient approach to disease 
vaccine  development27. The antigenicity of pathogen secretory proteins makes them an excellent candidate for 
predicting B and T cell epitopes in vaccine  production28,29. Despite the high mortality rate, no antiviral drugs 
or vaccines for CCHF have been  approved30,31. Although efforts have been made in vaccine development with 
the Bulgarian vaccine, DNA vaccine and viral nucleoprotein, the extensibility and safety issues with this type 
of vaccine have likely prevented widespread use, necessitating the development of new vaccine platforms for 
 CCHFV8,32. This study aims to use in silico immunoinformatics pipeline and reverse vaccinology to design a 
multi-epitope vaccine that may elicit a protective humoral and cellular immune response against Crimean-Congo 
hemorrhagic fever virus infection.

Methodology
The reverse vaccinology and immunoinformatics pipeline used included eight major components: CCHFV 
proteome retrieval, virulence factor screening, epitope prediction (CTL and HTL), multi-epitope vaccine design, 
3D structure modelling, molecular docking and dynamic simulation, in-silico expression, and immune simula-
tion (Fig. 1).

Retrieval of CCHFV proteome. The complete amino acid sequence of the CCHFV large segment (L) 
(NC_005301.3)33, glycoprotein precursor (GPC) (NC_005300.2)34, and nucleoprotein (NP) (NC_005302.1) 
were retrieved from Gene Bank Database, NCBI (https:// www. ncbi. nlm. nih. gov/) in standard FASTA format.

Screening of virulence factor. Based on manually annotated training data consisting of bacterial and 
viral protective antigens and an optimised supervised machine learning model, Vaxign-ML predicts the pro-
tegenicity score that is validated through nested five-fold cross-validation. For the L, GPC, and NP of CCHFV, 
Vaxign-ML (http:// www. violi net. org/ vaxig n2) was used to compute the protective antigenicity (protegenicity) 
score and predict subcellular localization, transmembrane helix, and adhesion  probability35.

Prediction of cytotoxic T lymphocytes (CTL) epitope. CTL epitopes for L, GPC, and NP of CCHFV 
were predicted at a threshold of 0.75 using an online server NetCTL 1.2 (http:// www. cbs. dtu. dk/ servi ces/ 
NetCTL/). It predicts CTL epitopes based on MHC-I binding peptide prediction, proteasomal C-terminal deg-
radation activity using an artificial neural network, and Transporter Associated with Antigen Processing (TAP) 
employing weight  matrix36. Predicted CTL epitopes were subjected to the Class I immunogenicity server (http:// 
tools. iedb. org/ immun ogeni city/) using the default setting to select the best epitopes for 9-mer peptides for class 
I  immunogenicity37.

Prediction of helper T‑cell epitopes. HTL epitopes for seven human alleles (HLA-DRB1*03:01, 
HLA-DRB1*07:01, HLA DRB1*015:01, HLA-DRB3*01:01, HLA-DRB3*02:02, HLA-DRB4*01:01, and HLA-
DRB5*01:01) were predicted for L, GPC, and NP of CCHFV by MHC-II prediction module of the online server 

https://www.ncbi.nlm.nih.gov/
http://www.violinet.org/vaxign2
http://www.cbs.dtu.dk/services/NetCTL/
http://www.cbs.dtu.dk/services/NetCTL/
http://tools.iedb.org/immunogenicity/
http://tools.iedb.org/immunogenicity/
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IEDB (http:// tools. iedb. org/ mhcii/)38,39 based on receptor affinity derived from the IC50 value (binding score) 
given to each epitope. Where IC50 value < 50 nM denotes high binding affinity, IC50 score < 500 nM denotes 
moderate and IC50 value < 5000 nM signifies low binding affinity of predicted epitopes. The score of binding 
affinity of the epitope is inversely proportional to the percentile rank, which means that the higher the bind-
ing affinity, the lower the percentile rank. Predicted HTL epitopes were further subjected to the IFN epitope 
server (http:// crdd. osdd. net/ ragha va/ ifnep itope/ index. php)40 using the SVM hybrid and Motif as the approach 
and IFN-gamma against other cytokines as the model of prediction. This was done to validate the ability of the 
predicted HTL epitopes to cause IFN-γ production which has been reported to minimize host damage, protect 
against infectious diseases and inhibit viral replication after activation of helper T  cells41–43.

Allergenicity prediction. AlgPred (http:// www. imtech. res. in/ ragha va/ algpr ed/)44 an online server that 
uses six different approaches for the prediction of allergenicity was used to predict the allergenic score for the 
predicted CTL epitopes, HTL epitopes and the vaccine construct with high accuracy of 85% at a 0.4 threshold.

Antigenicity prediction. The antigenicity of the predicted CTL epitopes, HTL epitopes, and vaccine con-
struct was done with high accuracy based on the physicochemical properties of a given amino acid sequence 
using the VaxiJen online server (http:// www. ddg- pharm fac. net/ vaxij en/ VaxiJ en/ VaxiJ en. html)45 at a threshold 
of 0.4 (for virus selected as target organism).

Toxicity prediction. ToxinPred an online server (http:// crdd. osdd. net/ ragha va/ toxin pred/)46 that predicts 
the toxicity of epitopes based on the physicochemical properties was used to screen for non-toxic epitopes.

Population coverage and alignment analysis. The frequencies of different Human Leucocyte Anti-
gens (HLA) alleles vary with  ethnicities47, and CCHFV is widely spread in Africa, Asia, the Middle East, and 
Eastern Europe. The HLA-alleles distribution among the endemic population is essential for effective multi-
epitope vaccine development. In this study, the IEDB (http:// tools. iedb. org/ popul ation/) population coverage 
analysis  tool48 was used for population coverage of the potential CTL and HTL epitopes and their MHC binding 
alleles. The Protein Basic Local Alignment Search Tool (BLASTp)49 available at https:// blast. ncbi. nlm. nih. gov/ 
Blast. cgi? was used to evaluate the sequence similarity of the query sequences to other sequences available in 
the National Center for Biotechnology Information (NCBI) database. Multiple alignments of the sequences was 
performed using Clustal Omega available at EMBL-EBI web interface (https:// ebi. ac. uk/ Tools/ msa/ clust alo/)50,51 
and the results were analysed using Jalview version 2.1152.

Multi‑epitopes vaccine sequence construction. Based on the result of the aforementioned procedures, 
the sequence of the vaccine construct was derived from the predicted sequences of the CTL, HTL, and linear B 
cells epitopes. AAY, GPGPG, and KK linkers were used to join the CTL, HTL, and B cells epitopes  respectively53. 
EAAAK linker was used to join the adjuvant to the vaccine  construct54 using Notepad++ version 8.1.

Figure 1.  The overall flow of the work was created using Microsoft Office (PowerPoint) Professional Plus 
2019. The methodology was divided into eight parts: CCHFV proteome retrieval, screening of virulence factor, 
prediction of epitopes (CTL and HTL), multi-epitope vaccine construction, 3D structure modelling, molecular 
docking and dynamic simulation, in-silico expression, and immune stimulation.

http://tools.iedb.org/mhcii/
http://crdd.osdd.net/raghava/ifnepitope/index.php
http://www.imtech.res.in/raghava/algpred/
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
http://crdd.osdd.net/raghava/toxinpred/
http://tools.iedb.org/population/
https://blast.ncbi.nlm.nih.gov/Blast.cgi?
https://blast.ncbi.nlm.nih.gov/Blast.cgi?
https://ebi.ac.uk/Tools/msa/clustalo/
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B cell epitope prediction. B cell lymphocytes produce antibody molecules that are inserted into the 
plasma membrane as part of B-cell  receptors55. B-cell epitopes play a large role in host antibody production by 
binding to the receptors on B cells. B-cell epitopes play a large role in host antibody production by binding to the 
receptors on B cells. BepiPred-2.0 (http:// tools. iedb. org/ bcell/)56 was used to predict these epitopes on an online 
server that employs a random forest algorithm method trained on epitopes annotated from antibody-antigen 
protein structures. To further predict the conformational B-cell epitopes, DiscoTope 2.0 (http:// tools. iedb. org/ 
disco tope/)57 was used. This is an online server that uses 3D structures to predict discontinuous epitopes based 
on amino acid statistics, spatial information, and surface accessibility in an accumulated data set of conforma-
tional epitopes determined by X-ray crystallography of antibody/antigen protein complexes, as well as contact 
distances into its potential B-cell epitope prediction along the length of a protein sequence.

Physiochemical parameters and identification of domain. Physiochemical parameters (theoretical 
PI, the composition of amino acid, in vitro and in vivo half-life, molecular weight, instability index, aliphatic 
index and grand average of hydropathicity GRAVY) and solubility of the vaccine construct were predicted using 
an online server ProtParam (http:// web. expasy. org/ protp aram/)58 and the SOLpro tool in the SCRATCH suite 
(http:// scrat ch. prote omics. ics. uci. edu/)59.

Prediction of secondary structure. PSIPRED (http:// bioinf. cs. ucl. ac. uk/ psipr ed/)60 was used for high 
accuracy prediction of the secondary structure of the amino acid sequence in the vaccine construct. It is an 
online tool that uses position-specific prediction Psi-BLAST to identify and select sequences showing significant 
homology to the vaccine protein.

Tertiary structure prediction. Robetta (http:// robet ta. baker lab. org) an automated tool that predicts 3D 
structure models of protein after parsing the structure into respective domains based on either comparative 
modelling or de novo structure was used for the prediction of the tertiary structure of the construct. For compar-
ative modelling homologs, sequences were used as templates after identification by BLAST, 3D-Jury or FFAS03, 
and PSI-BLAST. De novo structures were generated using the Rosetta fragment insertion method if homologs 
were not  found61.

Tertiary structure refinement. The tertiary structure for the predicted multi-epitope subunit vaccine 
construct was refined using an online web tool Galaxy Refine (http:// galaxy. seokl ab. org/)62 that improves protein 
structure using the CASP10 method for repacking, protein’s side chain reconstruction, as well as MD simula-
tions for relaxation of the global and the local quality of the tertiary structure.

Validation of tertiary structure of vaccine construct. The validation of the tertiary structure of the 
vaccine construct was done on ProSA-web, SAVES v6.0, and PROCHECK.

Firstly, ProSA-web (https:// prosa. servi ces. came. sbg. ac. at/ prosa. php) was used to compute the quality score 
for a specific input structure and displayed it in the context of all known protein  structures63. The 3D molecule 
viewer in ProSA-web results facilitates the detection of the problematic part that is, scores lying outside a range 
characteristic for native proteins. Secondly, another validation server ERRAT in the SAVES v6.0 server (https:// 
saves. mbi. ucla. edu/) was used to generate the overall quality score of the modelled protein by analyzing non-
bonded interactions in comparison to reliable high-resolution crystallography  structures64. Thirdly, analysis and 
generation of a Ramachandran plot for visualization of allowed and disallowed dihedral angles psi (ψ) and phi 
(φ) of amino acid-based on the van der Waal radius of the side chains was done using PROCHECK (https:// 
saves. mbi. ucla. edu/)65.

Molecular docking of the vaccine construct with immune receptors. Interaction of an antigen 
and a specific receptor is required for the initiation of an appropriate immune response. To evaluate the interac-
tion between the vaccine construct and its receptors, a molecular docking approach was used. A 3D structure 
of MHC I (PDB ID: 6P2F), MHC II (PDB ID: 1AQD), TLR2 (PDB ID: 2Z7X), TLR3 (PDB ID: 4G8A), and 
TLR4 (PDB ID: 1ZIW) was retrieved from a protein data bank and used as the receptors. The HDOCK server 
(http:// hdock. phys. hust. edu. cn/)66 was used to dock the vaccine construct with the receptors. It functions by 
sampling and calculating the atomic shape portrayal; coordinating surface fixes as well as separating the surface 
of the putative binding modes between the two proteins using the Fast Fourier Transform-based global search 
 approach67 and appraising the sampled binding modes with an enhanced iterative template-based scoring func-
tion for protein–protein  interaction68. To accurately predict the binding strength of the complexes, the PROtein 
BinDIng enerGY (PRODIGY) server (https:// bianca. scien ce. uu. nl/ prodi gy/)69 was utilised to assess binding 
affinity (ΔG) and the dissociation constant (Kd) in room temperature of the complexes. To visualize the interac-
tions between docked complexes, we used the PDBePisa (https:// www. ebi. ac. uk/ msd- srv/ prot_ int/ cgi- bin/ piser 
ver)70 server and Pymol version 2.371.

Molecular dynamics and free binding energy calculation. Molecular dynamics (MD) simulation 
was done to minimize and evaluate the stability of the 3D structure of the vaccine construct for probing the sta-
bility of the protein–protein complex of the vaccine constructs and the MHC I, MHC II, TLR2, TLR3, and TLR4 
was done using Assistant Model Building with Energy Refinement (AMBER 20)72. The recommended protein 
ff19SB force  field73 with OPC water  model74,75 was used for the simulation. Octahedron box shape was utilised 
with the vaccine or resulting complex at least a distance of 12 Å away from the edge of the water-filled box to 

http://tools.iedb.org/bcell/
http://tools.iedb.org/discotope/
http://tools.iedb.org/discotope/
http://web.expasy.org/protparam/
http://scratch.proteomics.ics.uci.edu/
http://bioinf.cs.ucl.ac.uk/psipred/
http://robetta.bakerlab.org
http://galaxy.seoklab.org/
https://prosa.services.came.sbg.ac.at/prosa.php
https://saves.mbi.ucla.edu/
https://saves.mbi.ucla.edu/
https://saves.mbi.ucla.edu/
https://saves.mbi.ucla.edu/
http://hdock.phys.hust.edu.cn/
https://bianca.science.uu.nl/prodigy/
https://www.ebi.ac.uk/msd-srv/prot_int/cgi-bin/piserver
https://www.ebi.ac.uk/msd-srv/prot_int/cgi-bin/piserver
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achieve at least three-layer of solvation on all sides of the protein  surface76.  Na+ and  Cl− counter ions were applied 
where necessary to neutralize the system using the “tleap” package of Amber. The systems were minimised at 
500 cycles of steepest descent and 1000 steps of a conjugate gradient to remove all constraints atoms. The sys-
tems were heated for a period of 50 ps to maintain a constant temperature of 300 K using Langevin dynamics 
and equilibrated for 5 ns at temperature and pressure with isotropic position scaling to achieve conformational 
stability. All simulation production was carried out for a period of 100 ns in PMEMD.cuda77,78 with the SHAKE 
and Particle-Mesh Ewald (PME) method, and a non-bond contacts cut-off radius of 10 Å was used for long-term 
interactions.

Visual Molecular  Dynamics79 (VMD) and MMPBSA.py80 implemented in Amber20 were used for the post-
simulation trajectories analysis to evaluate the Root Mean Square Deviation (RMSD)-Eq. (1) and Molecular 
Mechanics Generalised Born Surface Area(MM-GBSA)-Eq. (2) binding free energy of the complexes.

where N = number of atoms,  mi = mass of atom i,  Xi = coordinate vector for target atom i,  Yi = coordinate vector 
for reference atom i, and M = total mass. If the RMSD is not mass-weight, all  mi = 1 and M = N.

where ΔH is the enthalpy change as computed as the sum of changes of the gas-phase energy (ΔEMM) and 
solvation free energy (ΔGsol) mean over a conformational ensemble generated by MD simulations. TΔS is the 
entropic contribution.

Optimization and in‑silico cloning of vaccine construct. For the multi-epitope vaccine construct 
expression in a selected expression vector, reverse translation and optimization of codons, were conducted in 
the Java Codon Adaptation Tool (JCat) server (http:// www. jcat. de)81. To ensure expression of the final vaccine 
structure in host Drosophila melanogaster82, codon optimization was performed because the codon usage by 
Drosophila melanogaster is different from that of the native host. The output of JCat consists of a codon adapta-
tion index (CAI) which gives information on codon usage biases. An ideal CAI score is 1.0 but > 0.8 is consid-
ered a good  score83 and the percentage of GC content, ranges between 30–70%. GC content values outside this 
range suggest unfavourable effects on translation and  transcription84, which can be used to ascertain the level of 
protein expression.

Immune simulation. In silico immune simulations were conducted using the C-ImmSim server (http:// 
150. 146.2. 1/C- IMMSIM/ index. php) to further validate the immunogenic and immune response profile of the 
vaccine  construct85. C-ImmSim simultaneously simulates three compartments that represent three separate 
localization of immune cells in mammals: the bone marrow, the thymus, and a tertiary lymphatic organ, such 
as a lymph node. It does this by using a position-specific scoring matrix (PSSM) for immune epitope predic-
tion and machine learning techniques for the prediction of immune interactions. At intervals of four  weeks29,86, 
three injections were given and all simulation parameters were set at default with time steps set at 1, 84, and 168, 
where each time step is 8 h and time step 1 is injection at time = 0. To probe for clonal selection, additional 12 
injections of the designed vaccine construct were given four weeks apart to mimic repeated antigen exposure 
seen in a typical endemic area.

Research involving human participants and/or animals. This article does not contain any studies 
involved with human participants or animals performed by any of the authors.

Results
Retrieval of protein sequences. The viral genome of CCHFV which consists of RNA segments encoding 
the nucleoprotein, glycoprotein precursor, and RNA-dependent RNA polymerase proteins was retrieved from 
the GenBank and used for the prediction of CTL and HTL epitopes for the multi-epitope subunit vaccine design. 
Fifty S ribosomal protein L7/L12 was retrieved from the UniProt database (P0A7K2)87,88 and used as an adjuvant 
for the immune interaction based on its ability to induce antiviral immune  response89.

Screening of virulence factor. The encoded segment for NP, GPC, and L proteins of CCHFV was pre-
dicted by Vaxign sever as protective antigens with a high protegenicity score. All were predicted to be cytoplas-
mic proteins and only NP was predicted to have a high adhesive probability among the three proteins (Table 1). 

(1)
RMSD =

√

∑

N

i=0 [mi × (Xi − Yi)
2]

M

(2)Binding free energy (�Gbind) = �H − T�S

Table 1.  Protegenicity score and adhesion probability score of RNA segments of CCHFV.

RNA segments Protein name Protegenicity score Adhesion probability

S Nucleoprotein 91.2 0.435

M Glycoprotein precursor 89.6 0.195

L RNA polymerase 89.6 0.019

http://www.jcat.de
http://150.146.2.1/C-IMMSIM/index.php
http://150.146.2.1/C-IMMSIM/index.php
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Adhesin plays a vital role in the virus adhering to the host cell and enabling the virus entry to the host  cell90. All 
the predicted proteins were not similar to human, mouse, or pig proteins.

Cytotoxic T lymphocyte (CTL) epitope prediction. The CTL epitopes (9-mer) prediction using the 
NetCTL v2.0 server yielded 146 epitopes out of which 54 epitopes were predicted to be antigenic, immuno-
genic, and non-toxic. From these, seven non-overlapping (GPC = 6 and NP = 1) epitopes of human MCH-I 
alleles HLA-B*35:01, HLA-B*30:02, HLA-A*01:01, HLA-A*02:06, and HLA-B*57:01 were selected based on 
high immunogenicity scores as CTL epitopes for vaccine construction (Table 2).

Helper T lymphocyte (HTL) epitope prediction. The HTL epitopes (15-mer) prediction produced 126 
non-allergenic epitopes from the CCHFV proteome, out of which 26 were further predicted to be antigenic, 
non-toxic, and IFN-γ positive. From these, 18 (GPC = 11, NP = 5, and L = 2) non-overlapping epitopes for human 
alleles HLA-DRB1*03:01, HLA-DRB1*07:01, HLA-DRB1*15:01, HLA-DRB3*01:01, HLA-DRB3*02:02, HLA-
DRB4*01:01 and HLA-DRB5*01:01 were considered for vaccine construction based on high percentile rank 
scores, non-allergenic, antigenic, and non-toxic as HTL epitopes (Table 3).

Allergenicity and antigenicity prediction of the multi‑epitope vaccine construct. The aller-
genicity of the vaccine construct was predicted by using the AlgPred server, which found the multi-epitope vac-
cine construct to be non-allergenic (Allergenicity score − 1.028). While an antigenic score of 0.593 was derived as 
predicted by the VaxiJen server. These results suggest that our multi-epitope vaccine candidate possesses strong 
antigenic and non-allergenic properties that will provoke the immune response.

Theoretical population coverage and alignment analysis. The HLA allele distribution varies 
between different geographical and ethnic regions around the globe. Hence, population coverage analysis of 

Table 2.  Selected cytotoxic T-lymphocyte (CTL) epitopes for multi-epitope vaccine construction.

ID Peptide seq Combine score Antigenicity MCH I score Toxicity

1 QSAQIDTAF 1.005 0.588 0.102 Non-toxic

2 FLFWFSFGY 1.080 1.100 0.338 Non-toxic

3 LKDDEETGY 0.982 0.667 0.274 Non-toxic

4 STANIALSW 0.929 1.314 0.067 Non-toxic

5 GLDCDDTFF 0.915 0.533 0.097 Non-toxic

6 YTSICLFVL 0.816 0.615 0.140 Non-toxic

7 TTMAFLFWF 0.756 0.608 0.314 Non-toxic

Table 3.  Selected helper T lymphocyte (CTL) epitopes for multi-epitope vaccine construction. IFN-γ 
interferon-gamma.

S. no Allele Peptide Allergenicity Antigenicity Toxicity IFN-γ

1 HLA-DRB5*01:01 FRATMEVSNRALFIR − 0.419 0.438 Non-toxic Positive

2 HLA-DRB5*01:01 CKLMCFRATMEVSNR − 0.449 1.150 Non-toxic Positive

3 HLA-DRB3*02:02 FYLLIIVGTLGKRLK − 0.426 1.205 Non-toxic Positive

4 HLA-DRB1*07:01 APIGQGKTIEAYRAR − 0.502 0.698 Non-toxic Positive

5 HLA-DRB3*02:02 FLFWFSFGYVITCIL − 0.424 0.721 Non-toxic Positive

6 HLA-DRB5*01:01 AIFYLLIIVGTLGKR − 0.523 1.084 Non-toxic Positive

7 HLA-DRB3*02:02 EHPESLTQSATPGLM − 0.543 0.476 Non-toxic Positive

8 HLA-DRB5*01:01 ELGCYTINRVRSFKL − 0.607 0.950 Non-toxic Positive

9 HLA-DRB4*01:01 ESTGVALKRSSWLIV − 1.149 1.431 Non-toxic Positive

10 HLA-DRB1*03:01 GLQLINITRHSTRIV − 0.468 0.853 Non-toxic Positive

11 HLA-DRB1*03:01 GVALKRSSWLIVLLV − 0.487 1.362 Non-toxic Positive

12 HLA-DRB3*01:01 GRSGIALVATGLAKL − 0.512 0.850 Non-toxic Positive

13 HLA-DRB3*01:01 MHPAVLTAGRISEMG − 1.438 1.133 Non-toxic Positive

14 HLA-DRB3*01:01 RIYMHPAVLTAGRIS − 1.030 0.785 Non-toxic Positive

15 HLA-DRB1*03:01 SFQQNRIYMHPAVLT − 0.598 0.546 Non-toxic Positive

16 HLA-DRB1*07:01 NKSGRSGIALVATGL − 0.762 1.008 Non-toxic Positive

17 HLA-DRB1*15:01 AVEDLILMLTGRAVK − 0.751 0.624 Non-toxic Positive

18 HLA-DRB1*15:01 DLILMLTGRAVKPSA − 0.233 0.815 Non-toxic Positive
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the selected CTL and HTL epitopes with their corresponding HLA alleles used in the construction of the multi-
epitope subunit was considered. The selected HTL and CTL epitopes had widespread coverage of the endemic 
population of CCHF. The HTL epitopes cover 58.1%, 58.3%, and 56.3% of the Czech Republic, Saudi Arabia, and 
Poland population, while the CTL epitopes cover 53.6% and 54.3% of the Czech Republic and Poland popula-
tion, respectively (Fig. 2).

The BLASTp returned a total of 100 sequences for each of the query sequences [nucleoprotein (NP) 
(NC_005302.1), glycoprotein precursor (GPC) (NC_005300.2), large segment (L) (NC_005301.3)] out of which 
2 sequences for not being related to CCHFV. Each of the sequences has an average of 99% sequence coverage 
and the nucleoprotein has an average of 89.4% identical sequences, glycoprotein was 89.6 and RNA polymerase 
sequence was 91.8%. 83.3% of the CTL epitopes selected are conserved and HTL epitopes were 62.5% conserved.

CCHFV multi‑epitope chimeric vaccine construction. The construction of the CCHFV chimeric 
vaccine was done in Notepad++ version 8.1 text editor, the adjuvant protein (50S ribosomal protein L7/L12) 
retrieved with UniProt ID: P0A7K2 was joined with the first CTL epitope through EAAAK linker. With adju-
vant connected to the first CTL epitope, eight CTL and eighteen HTL epitopes were joined using AAY and 
GPGPG linkers. The respective linkers were introduced to generate sequences with minimised junctional immu-
nogenicity, a high level of expression, and improved bioactivity of the fusion protein (Supplementary Fig. 1). The 
CCHFV chimeric vaccine is 567 amino acid sequences long.

B‑cell prediction. The BepiPred server predicted twenty linear B-cell epitopes of varying lengths ranging 
from 1 to 28 amino acid sequences long and the DiscoTope server yielded six discontinuous B-cell epitopes of 
varying residue length with propensity and Discotope scores ranging from − 4.07 to 1.96 and − 3.66 to 1.72, 
respectively (Supplementary Fig. 2).

Prediction of physiochemical parameters. The result from the ProtParam server showed that the 
multi-epitopes vaccine has a molecular weight of 58.3 kDa and a theoretical protrusion index (PI) of 9.09, which 
shows the vaccine construct is basic. The estimated in vitro half-life in human mammalian reticulocytes was 
30 h and the instability index was computed to be 32.1 revealing that the vaccine construct is a stable protein. 
The aliphatic index was calculated to be 90.1 indicating a thermostable nature at different temperatures, and the 
grand average of hydropathicity (GRAVY) was 0.232, thus, indicating that the vaccine construct is hydrophobic 
(Table 4).

Prediction of secondary structure. The secondary structure of the vaccine construct as predicted by 
the PSIPRED server shows that the multi-epitopes vaccine is composed of a high percentage of the coil (44.4%) 
when compared with alpha-helix (34.4%) and beta-strand (21.2%). The vaccine construct also contains small 
polar residues (24.2%), hydrophobic (24.2%), polar (20.1%), and aromatic plus cysteine (9.2%) (Fig. 3).

3D structure modelling, refinement, and validation. Based on a multi-templates approach, the Rap-
torX server-generated five 3D structure models of the multi-epitopes construct with RMSD ranging from 11.1 
to 15.5 Å. The best model was selected based on its RMSD for further analysis.

Using the GalaxyRefine server for the refinement of the 3D structure of the chimeric vaccine, five models 
were produced. Model 1 was selected based on its model quality score including GDT-HA (0.917) and RMSD 
(0.50 Å) for molecular dynamic (MD) simulation.

The validation of the 3D structure was done to check for quality and potential errors. Following the MD 
simulation, the 3D structure analysis by ProSA-web indicates that the structure had a Z-score of − 6.1, and SAVES 

Figure 2.  Theoretical population coverage of selected CTL and HTL epitopes allele distribution.
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ERRAT showed the overall quality factor to be 92.6%, and VERIFY 3D reveals that 81.5% of the amino residues 
have an average score of ≥ 0.2 in the 3D/1D profile. The Ramachandran plot through PROCHECK indicates that 
82.2% of the residues are in the most favoured regions, 17.1% are within the additional allowed regions and 0.7% 
generously allowed regions with no residue in the disallowed regions (Fig. 4).

Molecular docking of vaccine construct with receptors. Molecular docking (MD) was performed to 
study the interaction of the final subunit multi-epitopes vaccine construct, with TLRs and major histocompat-
ibility complexes (MHC 1 and MHC II). The HDock server yielded hundreds of model complexes and the best 
were selected based on their docking score.

The complex of the multi-epitope vaccine (MEV) with TLR2, TLR 3, and TLR 4 had a binding affinity of 
− 16.8 kcal/mol, − 19.5 kcal/mol, and − 16.6 kcal/mol also with a dissociation constant at 25 °C of 4.7 ×  10−13 M, 
4.7 ×  10−15 M, and 6.5 ×  10−13 M, respectively. Also, the complex of MEV with MHC I and MHC II had a bind-
ing affinity of − 11.7 kcal/mol and − 8.11 kcal/mol with a dissociation constant at 25 °C of 2.5 ×  10−9 M and 
1.1 ×  10−6 M.

The interactions between the docked complexes were analysed using the PDBePISA server. It showed 
13 hydrogen bonds and two salt brides within MEV–TLR 2 complex, 13 hydrogen bonds interaction within 
MEV–TLR 3 complex, and eight hydrogen bond interactions between MEV–TLR 4 complex. The MEV–MHC I 
complex had 10 hydrogen bond interactions and a salt bridge and the MEV–MHC II complex had six hydrogen 
bond interactions and a salt bridge.

The structural evaluation is illustrated in Fig. 5 and the hydrogen bond interactions of the MEV with TLR2, 
TLR3, and TLR4 are shown in Table 5. The hydrogen bond interactions of the MEV with MHC-I and MHC-II 
are shown in Table 6.

Table 4.  Physiochemical properties of the subunit multi-epitopes vaccine construct.

S. no. Physiochemical properties Results

1 Number of amino acids 567

2 Molecular weight 58.3 kDa

3 Theoretical protrusion index (PI) 9.09

4 Estimated half-life (mammalian reticulocytes, in vitro) 30 h

5 Estimated half-life (yeast, in vivo) > 20 h

6 Estimated half-life (Escherichia coli, in vivo) > 10 h

7 Instability index 32.1

8 Aliphatic index 90.1

9 Grand average of hydropathicity (GRAVY) 0.232

10 Solubility upon overexpression 0.982

Figure 3.  Graphical representation of the secondary structure of the subunit multi-epitopes vaccine construct 
predicted by the PSIPRED server.
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Molecular dynamics simulation. The selected complexes were further subjected to MD simulation to 
evaluate complex stability and residue fluctuation for the period of 100 ns. The temperature, density, and total 
energy remained stable for the simulation period. The root means square deviation (RMSD) of the complexes 
appear to converge by the end of simulation production as presented in Fig.  6. Over the simulation period, 
the average RMSD of MHC-I and MHC-II in complex with CCHFV chimeric vaccine was 8.70 ± 2.08 Å and 
8.55 ± 2.79 Å. The average RMSD of TLR-2, TLR-3, and TLR-4 in complex with CCHFV chimeric vaccine was 
5.65 ± 0.96 Å, 7.79 ± 1.83 Å and 6.57 ± 2.17 Å (Fig. 6).

The favourable binding free energy as calculated through the MM-GBSA approach reveals that the bind-
ing free energy of MHC-I and MHC-II in complex with CCHFV chimeric vaccine − 87.6 ± 11.6 kcal/mol and 
− 66.7 ± 11.6 kcal/mol. The TLR-2, TLR-3, and TLR-4 in complex with CCHFV chimeric vaccine have the binding 
free energy of − 82.1 ± 15.93 kcal/mol, − 43.7 ± 8.9 kcal/mol, and − 32.7 ± 15.1 kcal/mol.

Optimization and in‑silico cloning of vaccine construct. The Drosophila melanogaster-based expres-
sion system was chosen for codon optimization and expression of the vaccine construct because the expression 
system allows rapid expression and subsequent large-scale, cost-effective transformation and manufacturing 
of recombinant proteins. The optimization yielded a sequence that is 1701 nucleotides long with a GC-content 
of 72.4% and CAI of 0.98. The mean GC content of Drosophila melanogaster for the adapted vaccine construct 
sequence was 42.2 suggesting the host is suitable to express the vaccine candidate.

In silico immune simulation. The C-ImmuSim server used in simulating the immune profiles of the 
CCHFV chimeric vaccine revealed that the immune response to the chimeric vaccine was comparable with 
actual immune responses with higher tertiary and secondary responses. The increased activities of the second-
ary and tertiary immune responses were noticeable by high levels of IgG1 + IgG2 and IgM and reduced levels of 
IgG + IgM antibodies (Fig. 7A). The results further reveal the development of immune memory B cells follow-
ing immunization and increased antigen clearance upon subsequent exposures (Fig. 7B). Consequently, several 
isotypes of long-lasting B-cell were noticed. This suggests potential switching of the B-cell isotypes and memory 
formation (Fig. 7C). Similarly, a high response of T-cytotoxic cell populations with respective memory develop-
ment was observed (Fig. 7D). Following immunization, the continuous proliferation of dendritic cells (Fig. 7E) 
and elevated levels of IFN-γ and IL-2 with a low Simpson index is apparent (Fig. 7F).

Discussion
The difficulty in growing multiple organisms, cost of vaccine production, problems with vaccine attenua-
tion, and adverse effects of these vaccines have led to a shift in the development of subunit vaccines using 
 immunoinformatics91,92. This approach provides a quick, reliable, cost-effective, and efficient approach to disease 
vaccine  development93. The immune-competency of model animals to CCHFV and problems with extensibility 
and safety issues of available vaccines have delayed production and prevented widespread use of available vac-
cines, necessitating the development of a new vaccine that may be free of these  problems15,24. For the development 
of epitope-based peptide vaccine, the structural proteins are considered as the focus, as they are involved in the 
interaction between cell receptor and virus particle, its transcription and replication thus playing a significant 
role in the pathogenesis of the  disease94,95.

Figure 4.  3D structure of final subunit multi-epitopes vaccine construct (left: created using Pymol version 
2.3), and Ramachandran plot (right: obtained from SAVES v6.0 https:// saves. mbi. ucla. edu/) analysis shows that 
82.2% of the residues are in the most favoured regions 17.1% within the allowed regions and no residue in the 
disallowed regions.

https://saves.mbi.ucla.edu/
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Figure 5.  Hydrogen bond interaction map with the pymol of the CCHFV chimeric vaccine in green while the 
red colour (A) TLR-2, (B) TLR-3, (C) TRR-4MHC-II, (D) MHC-I, and (E) MHC-II.

Table 5.  Hydrogen bond interactions of the MEV with TLR2, TLR3, and TLR4. MEV multi-epitopes vaccine, 
Å bond distance in angstrom, TLR toll-like receptor.

S. no. TLR2 Å MEV TLR3 Å MEV TLR4 Å MEV

1 Arg449 2.69 Ser132 Tyr465 3.58 Leu128 Gln616 3.18 Thr139

2 His426 3.02 Tyr138 Arg488 3.54 Leu128 Gln507 3.55 Ala196

3 Lys347 2.02 Ser200 Arg488 3.31 Ser132 His458 2.40 Ile203

4 Lys347 2.82 Ser200 Ser387 3.04 Ala173 Lys435 3.07 Pro211

5 His318 3.14 Asp204 Thr415 2.86 Ala173 Asn339 3.30 Pro391

6 Lys347 3.29 Asp204 Tyr462 2.54 Tyr174 Lys341 3.74 Tyr395

7 Thr288 3.75 Pro211 Phe657 3.08 Ala206 Thr319 2.47 Tyr395

8 Thr60 3.40 Gly423 Val658 3.88 Thr304 Asn554 3.44 Tyr138

9 Thr65 3.68 Gly428 Asn662 2.30 Leu346

10 Ser185 2.77 Ile506 Ser653 3.49 Pro389

11 Phe425 3.82 Tyr135 His60 2.26 Arg285

12 Arg400 3.80 Tyr138 Asn61 3.30 Arg285

13 Asp109 2.52 Tyr395 Thr664 3.56 Arg393
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Table 6.  Hydrogen bond interactions of the MEV with MCH-I and MCH-II. MEV multi-epitopes vaccine, Å 
bond distance in angstrom, MCH major histocompatibility complex.

S. no. MCH-I Å MEV MCH-II Å MEV

1 Thr134 2.61 Asn360 Glu4 3.81 Ala173

2 Asn127 2.85 Asn360 Arg76 3.23 Asp56

3 Ser88 3.46 Tyr395 Arg76 3.47 Phe55

4 Thr134 3.58 Arg361 Tyr79 3.55 Ala36

5 Asp122 3.62 Arg361 His143 3.11 Glu50

6 Gln115 2.68 Phe365 Arg76 2.91 Val46

7 Met98 3.30 Lys366

8 Tyr84 3.75 Arg393

9 Asn86 3.23 Arg393

10 Thr138 3.72 Arg393

Figure 6.  RMSD plot for 100 ns simulation production of (A) 3D model CCHFV chimeric vaccine, (B) MHC-1 
in complex with the chimeric vaccine, (C) MHC-II in complex with the chimeric vaccine, (D) TLR-2 chimeric 
vaccine complex, (E) TLR-3 chimeric vaccine complex and (F) TLR-4 in complex with chimeric vaccine.
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Figure 7.  C-ImmSim reveals the immune profile of the CCHFV chimeric vaccine antigen. (A) 
Immunoglobulin production after immunization with sub-type indicated as coloured peaks, (B) Evolution of 
CD4 T-helper lymphocytes count per entity-state, i.e., active, resting, anergic, and duplicating. (C) Population 
of B lymphocytes after three injections with the total count, memory cells, and IgM, IgG1, and IgG2 isotypes, 
(D) CD8 T-cytotoxic lymphocytes count after immunization, (E) Dendritic cell population per state which 
presents antigenic peptides on both MHC class-I and class-II molecules, and (F) Concentration of cytokines and 
interleukins after injection with Simpson D.
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The physicochemical properties of the retrieved proteins were predicted before antigenic determination of 
their  sequences96. Using the threshold of 0.4, the viral components were classified into antigens and non-antigens 
(scores below the threshold) using the VaxiJen server. For accurate component selection, the protegenicity 
(protective antigen nature), the localization, and transmembrane helices of the protein sequences were further 
 determined29,97. This process ascertains the suitability of candidate vaccine selection for experimental validation 
in the vaccine development process by ensuring that the vaccines do not contain transmembrane helix regions (to 
ease their expression) and the proteins must not share homology with human proteins to escape the potentiality 
of causing autoimmune  response98–100. All the proteins (GPC, NP, and L) have high protegenicity scores and 
are all localised in the cytoplasm with only NP predicted to have a high adhesive probability among the three 
proteins with no transmembrane helix. The high adhesive probability predicted for NP would mean it has a high 
level of adhesion, which has been reported to play a vital role in enabling virus entry and adherence to the host 
 cell101. All the predicted proteins were not similar to human, mouse, or pig proteins.

To develop a good vaccine, it must be able to induce immunity through the antigen with a durable adaptive 
immunity and it should possess antigenic properties, which are important to elicit the immune response of the 
 host96.

Using several servers, epitopes for CTL (responsible for developing durable immunity capable of eliminat-
ing circulating virus and infected cells) and HTL (associated with the production of both humoral and cellular 
immune responses by provoking a CD4+ helper T cell response for the generation of protective CD8+ T cell 
memory and activation of B cells) were selected based on their antigenicity, allergenicity, immunogenicity, and 
toxicity for the multi-epitope  candidate102,103. Since IFN-γ secretion is an important mediator of protection 
against CCHFV, only HTL epitopes that release interferon-gamma (IFN-γ) were chosen for the multi-epitopes 
construct. To generate the vaccine construct, short peptides (AAY and GPGPG) shown to provoke minimal 
junctional immunogenicity between the epitopes and a high level of expression and improve the bioactivity of 
the vaccine were used as linkers between the B and T cells  epitopes104–106. Using an EAAAK linker, an adjuvant 
was added to the N terminal of the vaccine as an immunomodulator to develop specific immune responses to 
antigens, enhancing the stability and longevity of the vaccine against  infection107,108. In this study, the multi-
epitope vaccine construct showed antigenicity with a score of (0.593) as predicted by the VaxiJen server and 
non-allergenicity with a score of (− 1.03) as predicted by AlgPred. For effective vaccination, a vaccine molecule 
must provide broad-spectrum protection against different populations around the world. Thus, in designing an 
epitope-based subunit vaccine, it is important to estimate the fractions of the population in the target endemic 
zones based on HLA genotypic frequencies. From the results, the selected HTL and CTL epitopes had a wide-
spread coverage of the endemic population of CCHF. The HTL epitopes cover ~ 57% of the Czech Republic, 
Saudi Arabia, and Poland population, while the CTL epitopes cover ~ 54% of the Czech Republic and Poland 
population. The multiepitope vaccine construct has a molecular weight of (58.3 kDa), which is within the aver-
age molecular weight (40–70 kDa) for a multi-epitope  vaccine28. The solubility of the vaccine is an important 
criterion for its creation since the vaccine will be administered in a water milieu in the host body. Subunit vac-
cines with low solubility have been reported to be disadvantageous in the production of large amounts of virus 
 proteins109. Therefore, constructing vaccines with high solubility is a vital requirement for many biochemical 
and functional  analyses110. The vaccine construct was predicted to be soluble upon expression signifying easy 
access to the host. The theoretical pI value of 9.09 and the instability index of 32.1 shows that the vaccine is 
basic and will remain stable after  expression111. Based on the GRAVY score and aliphatic index, the result on the 
hydrophilicity and thermostability indicates that the vaccine construct is hydrophobic making it well-matched 
for use in endemic  areas112. The knowledge of the quality of the secondary and tertiary structure of the vaccine 
construct is of crucial importance in vaccine design (for efficient presentation of antigenic peptides on MHC for 
triggering strong immune reactions)105,113. In this study, the secondary structure analysis showed that the vaccine 
consisted of alpha helixes, beta-strands, and predominantly coils (44.4%). The tertiary structure was predicted 
and refined and then the model was assessed in the ProSA web server. The model Z-score was − 6.1, which falls 
within those commonly observed in similar size-native proteins and the ERRAT overall quality factor was 92.6% 
revealing that the refined 3D structure of the vaccine is  acceptable28,114,115. The Ramachandran plot of the refined 
3D structure of the vaccine showed that the majority (82.2%) of the residues were in the most-favoured region, 
with very few residues in the additional allowed regions and no residues in the disallowed regions, demonstrating 
the excellent quality and stability of the final refined  model115. The host innate immune responses in vertebrates 
(retinoic acid-inducible gene I RIG-I)17, and Toll-like receptors (TLRs)18 have been reported to play a substantial 
role in limiting CCHFV  pathogenesis22,23. Also, the role of TLR2 and TLR4 in the recognition of viral structural 
proteins leading to inflammatory cytokine production has been  reported96,116. To explore specific interactions 
and binding affinities of the final subunit multi-epitopes vaccine construct, against TLR2, TLR3, and TLR4 and 
major histocompatibility complexes MHC I and II, molecular docking were done. The result showed the highest 
binding affinity between the vaccine construct and TLR3 when compared with TLR2 and TLR4 with numbers 
of hydrogen bonds. Higher binding affinity was also observed between the vaccine construct and the MHC 
I complex when compared to MHC II suggesting that the vaccine may have the probability to produce both 
innate and adaptive immune  responses117. An MMGBSA analysis revealed that a very small amount of energy 
is required to bind stable complexes, and MD simulations exhibited very minor fluctuations. Accordingly, these 
results strongly suggest that the vaccine construct can efficiently bind to the immune receptors.

Expression of the recombinant protein in Drosophila melanogaster expression systems is important for valida-
tion of vaccine by screening for immunoreactivity through serological  analysis118. To ensure the complete expres-
sion of the designed vaccine protein, codon usage optimization was performed in Drosophila melanogaster119. 
The CAI was 0.98 and the GC content was 72.9% in Drosophila melanogaster. C-ImmSim simulates the major 
functional mammal system components bone marrow, thymus, and lymph  node85. Since a potent vaccine must 
stimulate an immune response similar to that induced by an antigen with the production of long-lasting adaptive 
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immunity, the response of the immune cells (HTL, CTL, B-cells, dendritic cells, immunoglobulins, and cytokines) 
was evaluated against the vaccine  construct120. The immune profiles of the CCHFV chimeric vaccine revealed 
that the immune response to the chimeric vaccine was comparable with actual immune responses with higher 
tertiary and secondary responses. Increased activities of the secondary and tertiary immune were noticeable 
with the production of memory B-cells and T-cells. An increase in levels of IFN-γ and IL-2 following the first 
injection maintained the peak levels after repeated exposures to the antigen. This indicates high levels of TH cells 
and thus efficient Ig production, associated with humoral  response121,122 with a low Simpson index suggesting 
a possible diverse immune response considering that the constructed chimeric peptide is composed of several 
B and T  epitopes123.

Conclusion
The purpose of this study was to develop a potential vaccine peptide coding for multiple helpers and cytotoxic 
T-cells that also contain epitopes for B cells. A chimeric vaccine containing these epitopes is likely to have a 
prophylactic effect, given that the CCHFV proteins contain these epitopes. Based on docking and simulation 
results, the chimeric vaccine protein had a high affinity and binding potential with immune receptors and 
remained stable over time. In immune stimulation, models of real-life immune responses were observed. By 
creating an effective immune memory against CCHFV infections, the chimeric vaccine raised in this study may 
aid infection control. The next step is to synthesize the peptide in a Drosophila melanogaster and proceed with 
the immunological tests needed to validate the results.

Data availability
All data generated or analysed during the study are included in the submitted manuscript. The sequences of the 
protein analysed can be retrieved from the GenBank and UniProt database using their ID.
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