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Dynamic protein conformations preferentially
drive energy transfer along the active chain
of the photosystem II reaction centre
Lu Zhang1, Daniel-Adriano Silva1,w, Houdao Zhang1, Alexander Yue2, YiJing Yan1,3 & Xuhui Huang1,2,4

One longstanding puzzle concerning photosystem II, a core component of photosynthesis, is

that only one of the two symmetric branches in its reaction centre is active in electron

transfer. To investigate the effect of the photosystem II environment on the preferential

selection of the energy transfer pathway (a prerequisite for electron transfer), we have

constructed an exciton model via extensive molecular dynamics simulations and quantum

mechanics/molecular mechanics calculations based on a recent X-ray structure. Our results

suggest that it is essential to take into account an ensemble of protein conformations to

accurately compute the site energies. We identify the cofactor CLA606 of active chain as the

most probable site for the energy excitation. We further pinpoint a number of charged protein

residues that collectively lower the CLA606 site energy. Our work provides insights into the

understanding of molecular mechanisms of the core machinery of the green-plant photo-

synthesis.
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P
hotosynthesis provides the foundation for life by converting
sunlight into biochemical energy. By catalysing the
oxidation of water to molecular oxygen, the photosystem

II (PSII) is a crucial component for photosynthesis1,2. The PSII is
a membrane-bound protein–cofactor complex that contains the
antenna complex and reaction centre (RC). Sunlight is first
captured by the antenna system and then the excitation energy is
trapped in the PSII RC, leading to charge separation and electron
transfer with the aid of cofactors, and finally resulting in the
production of molecular oxygen3–6.

A fascinating fact concerning the PSII is that cofactors are
arranged in two branches with a C2 symmetry, but half of them
(one complete branch) are not involved in the primary electron
transfer from water to plastoquinone7–9. Due to this, the
underlying C2 branches are termed: active and inactive chains,
according to their contributions to the primary electron transfer.
Starting from a pair of chlorophyll a (CLA) molecules, each
branch contains in order: one accessory CLA, one pheophytin
(PHO) and one plastoquinone-9 (PL9). A bicarbonate ion (BCT)
coordinated with one non-haem iron is located at the top of the
branches. Recently, it has been suggested that the existence of
duplicate cofactors in the inactive chain is not superfluous, but to
protect the RC from photodamage under high light intensity10,11.
This protection mechanism is achieved by a low quantum yield
electron loop with the help of nearby cytochrome b559 and
b-carotene (BCR)10,11.

Understanding how the excitation energy is trapped and
transferred in the PSII RC is an essential prerequisite to
understand the subsequent preferential electron transfer pathway.
Extensive experimental and theoretical studies have attempted to
identify the underlying functional states during these pro-
cesses7,12–29. Optical spectroscopy is a powerful tool to study
the electron and energy transfer processes. However, for PSII, the
optical bands of different cofactors are largely overlapped12–15.
To overcome this problem, researchers have employed low-
temperature optical difference spectroscopy and site-directed
mutagenesis of amino acids surrounding the cofactors30–32. For
example, a mutation of D1-Thr179 (the amino acid spatially close
to CLA606) by glutamic acid (Glu) causes a noticeable blue shift
(B1 nm) in the difference spectrum32. Such experiments have
shown that CLA606 has a significant contribution to the
absorption spectrum, and further suggested that it is the most
probable site for the triplet state and local excitation31,32.
Theoretical studies of the experimental spectra also support this
observation by showing that CLA606 has the lowest site
energy7,16–18,25 (that is, the energy necessary to be excited from
the ground state to its first excited state or Qy electronic
transition23). Therefore, when external energy flows into the RC,
CLA606 would serve as the energy trap, because it has the highest
probability to be the first cofactor to be driven to the excited state.
While spectroscopy has been effective in identifying the
functional states of the RC, it is incapable of explaining at the
molecular level why CLA606 is the energy trap instead of its
symmetric counterpart CLA607. It has been shown that
the protein environment can play an important role in
directing energy transfer and the subsequent electron transfer
process5,33–37. Therefore, theoretical calculations used to
understand the underlying molecular mechanism require an
explicit consideration of the PSII complex.

X-ray crystallography structures of PSII have provided
profound insights about the mechanisms of energy transfer in
PSII38–43. In particular, a recent high-resolution (1.9 Å) structure
displays some structural differences between the active and
inactive chains43. While CLA606 in the active chain and its
counterpart CLA607 in the inactive chain are both axially
coordinated with water molecules, the water ligand of CLA606 is

further hydrogen bonded to Thr179, but that of CLA607 has no
such hydrogen bond. However, it is not clear whether the
structural differences are sufficient to explain pathway selection
or not. In general, one would like to question whether the static
crystal structure alone—without considering the protein
ensemble under physiological conditions—would suffice to
discern between the active and inactive chains in terms of the
electron transfer processes. Previous theoretical studies44,45

involving molecular dynamics (MD) simulations (based on low-
resolution crystal structures of PSII) have investigated the
influence of protein dynamics on energy transfer within PSII.
However, none of them addressed the pathway selection for
either the energy or electron transfer processes.

In this study, we construct an exciton model based on quantum
mechanics/molecular mechanics (QM/MM) calculations36,37,46–50

to elucidate the PSII environmental effect on the preferential
selection of energy transfer pathway. In previous theoretical
studies, the site energies were determined by spectrum
fittings7,16–18,25, a key difference in this work is that these
quantities are calculated via atomic-level evaluations involving an
ensemble of protein conformations, which has required MD
simulations of a system of B580,000 atoms and extensive QM/
MM calculations. We find it is crucial to consider an ensemble of
PSII complex conformations to identify the preference of energy
excitation along the active chain. In contrast, the static crystal
structure alone cannot explain such preference. Furthermore, we
observe that CLA606 is the most probable site for the energy
excitation at both 300 and 77 K, which is consistent with previous
spectroscopy studies7,16–19,25,31,32. Finally, we have identified at
least seven highly conserved and charged protein residues that
collectively are responsible of promoting CLA606 as an energy trap
in the PSII RC.

Results
Validation of MD simulations. The PSII complex (see Fig. 1) in
our MD simulations is stable from the perspective of various
structural analyses. The root mean square deviations (r.m.s.d.) of
the protein carbon-a atoms relative to the crystal structure are
1.25 and 0.5 Å for 300 and 77 K, respectively (see Fig. 2a). Overall,
stable conformations are observed for all the cofactors in the PSII
complex, including CLA, PHO, PL9, BCR, BCT, haem-b (HEM)
and the oxygen-evolving complex (OEC) (see Fig. 2a). For indi-
vidual cofactors in the RC at 300 K, the r.m.s.d. is below 1.5 Å,
except for CLA610, CLA611 and CLA607, which have slightly
larger r.m.s.d. (2.0–3.0 Å) (see Fig. 2a). The higher flexibility of
these three cofactors may be due to their less-compact protein
environment, especially in the tail regions (see Fig. 1b for their
locations in the RC). At 77 K, all the cofactors in the RC are very
stable (with r.m.s.d.o1.0 Å). We perform five independent
simulations at both 300 and 77 K and each resulting r.m.s.d. curve
reach a plateau after 15 ns (Supplementary Fig. 1). To confirm
that the system has reached equilibrium, we extended two 300 K
simulations to 100 ns, which confirmed that the r.m.s.d. of pro-
tein and cofactors in these 100 ns simulations mostly remain a
plateau after 15 ns (Supplementary Fig. 1a,b and Supplementary
Methods).

Further validations of MD simulations against other properties
are based on the conformations from the last 5 ns of those
independent 20 ns simulations. The crystal structure of PSII at
1.9 Å resolution (Protein Data Bank (PDB) ID: 3ARC) has
identified all axial ligands of CLAs. Seven of them are water
molecules and others are amino acids (Supplementary Table 1).
In this work, the distance between the Mg atom of each CLA and
its coordinated ligand atom evaluated from our MD simulations
satisfactorily reproduces that of the crystal structure, with
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discrepancies being all o0.15 Å (see Fig. 2b). In the crystal
structure, there are four hydrogen bonds around CLA606 and
only three around CLA607 (see Fig. 2c), our MD simulations also
reproduce this property (see Fig. 2d). With the above validations
of MD simulations against the crystal structure, we calculated the
site energies of cofactors based on our MD conformations to
elucidate the molecular mechanism for the unidirectional energy
transfer processes.

The dynamic environment enables selection of the active chain.
The C2-symmetric arrangement of cofactors alone cannot explain
the pathway selectivity. Therefore, we hypothesized that the
dynamics of the PSII environment might play a determinant role
in this mechanism. We calculated the site energies of cofactors in
the PSII complex with respect to the results in vacuum, using
both the static crystal structure and an ensemble of MD con-
formations (Methods and Supplementary Methods). Figure 3a
reports the calculated site energies of cofactors from the MD
conformations of the PSII complex versus those in vacuum at
300 K. While the site energies for CLAs are all comparable in
vacuum, the addition of the PSII protein complex allows differ-
entiating them. The site energies of two PHOs, which are sub-
stantially lower in vacuum, become comparable with or even
higher than those of CLAs in the PSII complex. As shown in

Fig. 3b, the effect of PSII complex on the site energies of cofactors
in terms of their differences from the vacuum values is com-
parable at low temperature (77 K) and room temperature (300 K).
The most significant effect is observed on CLA606, whose site
energy has been greatly reduced by the PSII complex (Fig. 3a,b,
Supplementary Tables 2 and 3). The averaged site energy of
CLA606 over an ensemble of MD conformations is the lowest one
among all the cofactors in the RC. This result is consistent with
previous studies7,16–19,25, where the site energies were obtained
by fitting to experimental spectra. In sharp contrast, the PSII
complex has nearly zero effect on the site energy of the inactive
chain counterpart CLA607. The aforementioned distinct PSII
effects on the site energies of these two accessory CLAs
differentiate the two chains.

X-ray structure alone fails to explain the pathway preference.
Figure 3c highlights the fact that the crystal structure alone is
insufficient to explain the energy transfer pathway selectivity. In
particular, two PSII monomers (M1 and M2) in the crystal
structure exhibit inconsistent relative site energies of cofactor
pairs. For example, ECLA6114ECLA610 in M1, while ECLA611oE-
CLA610 in M2. The discrepancies between the two monomers are
eliminated when an ensemble of conformations are considered
(see Fig. 3d). Thus it is essential to include an ensemble, rather
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Figure 1 | The PSII complex and electron transfer chains in its RC. (a) Lateral view of the PSII embedded in the POPC membrane. Our simulation box

(254.6 Å� 159.1 Å� 157.7 Å) contains over 578,000 atoms. The two monomers of PSII are shown in yellow and pink. The colour codes for other

components are: CLA (green), PHO (blue), PL9 (dark pink), BCR (orange), HEM (red), BCT (grey), non-haem iron (red sphere), OEC (purple spheres) and

Cl� (yellow spheres). (b) Cofactors in the electron transfer chains of the RC are coloured and labelled as in a.
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Figure 2 | MD simulations preserve important protein–cofactor

interactions. (a) r.m.s.d. with respect to the crystal structure (PDB ID:

3ARC) for various components of the system are calculated based on MD

simulations at 300 and 77 K. The r.m.s.d. of the protein and cofactors

(located in the electron transfer chains) are computed based on Ca and

heavy atoms, respectively. (b) The deviation from the crystal structure of

the distance between the Mg in CLA and its coordinated atom. (c)

Hydrogen bonds that CLA606 and CLA607 can form with the protein

residues in the crystal structure. (d) The fraction of time that an individual

hydrogen bond as shown in c is formed in the MD simulations.
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Figure 3 | PSII complex reduces site energy of the active chain cofactor

CLA606. (a) Site energies of the eight cofactors calculated in vacuum and

in PSII are compared at 300 K. (b) The site energy shift due to the PSII

complex (DE¼ EPSII� Evacuum) are displayed for the static crystal structures

(light grey), 300 K MD simulations (dark grey) and 77 K MD simulations

(white stripes). (c) Site energy differences between pairs of cofactors

located in the active (D1) and inactive (D2) branches are compared for two

monomers (M1 and M2) in the crystal structure. (d) The same as in c,

except that the results for 300 K MD simulations are shown.
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than a single static snapshot, to identify the site energy difference
between active and inactive chains. Further comparisons between
two chains also show that the site energies of all three CLAs in the
active chains are lower than their counterparts in the inactive
chain. Among them, the largest difference is between accessory
CLA606 and CLA607. We have thus concluded that an ensemble
of PSII complex conformations energetically favour the excitation
of the cofactors, particularly CLA606 in the active chain over its
counterpart in the inactive chain. This further results in a pre-
ferential pathway selection for energy excitation of the active chain.

The active chain cofactor CLA606 is the energy trap. In addi-
tion to the excitation of individual cofactor, we construct an
exciton model to consider coupling between different cofactors

during excitation. Our exciton model shows that the most
probable site (30%) for excitation is CLA606 in the active chain at
300 K, indicating that this cofactor serves as an energy trap (see
Fig. 4). This is in agreement with our previous observation that
CLA606 has the lowest site energy among all the RC cofactors. As
the temperature decreases from 300 to 77 K, the probability for
the energy excitation of CLA606 increases from 30 to 70% (Fig. 4
and Supplementary Fig. 2). This observation is also consistent
with previous experimental spectroscopy studies7,16–19,25,31,32,
which suggested that the excitation probability of CLA606 is 30
and 80% at 300 and 5 K, respectively19. Further investigation
shows that the decrease in the excitation probability of CLA606
with the increase in the temperature is due to the larger
contributions from the high-energy exciton states (see Methods
for details). We also find that the effective site energies (and their
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fluctuations) and coupling strengths at 300 K (Fig. 4b) differ from
their counterparts at 77 K (Supplementary Fig. 2b). This indicates
that the effect of protein environment on the excitation of
cofactors is temperature dependent and may contribute to the
origin of inhomogeneous broadening of the spectrum.

Protein residues collectively lower CLA606’s site energy. As
discussed above, we found that the PSII complex is essential for
selecting the preferential energy transfer pathway by means of
reducing the site energy of CLA606. In this section, we further
examine the PSII complex to identify which components have the
largest contributions to lower the site energy of CLA606. We
studied individually the effects of waters, cofactors and protein
components. While the former two have little effect on the site
energies, we find that the protein environment reduces the site
energy of CLA606 by 0.036 and 0.0 eV at 300 and 77 K respec-
tively, but has almost no effect on CLA607 (see Fig. 5 and
Table 1). Remarkably, we found that the charged amino acids
contribute most to lower the excitation energy of CLA606 (see
Table 1). We performed single mutant calculations and pinpoint
seven critical charged amino acids with each contributing over
0.0035 eV to reducing the site energy of CLA606 (see Fig. 6a,b).
The sole abolition of these amino acids can raise the site energy of
CLA606 to almost the same level as its counterpart in the inactive
chain CLA607 (see Fig. 6b). Other charged amino acids have
negligible effect. In summary, the seven charged amino acids
depicted in Fig. 6 work collectively to lower the excitation energy
of CLA606. Interestingly, these charged residues are highly con-
served among different species (see Fig. 6c) and some of them
(Glu329, Glu189, Asp170) have been previously identified to have
a role in differentiating the cofactor redox potentials of the two
chains51. Previous site-directed mutagenesis experiments revealed
that the mutation of Thr179 to the charged glutamic acid (Glu)
leads to a blue shift of B1 nm in the absorption difference
spectrum due to the alteration in the excitation energy of CLA606
(refs 31,32). Our calculations also show that this mutation can
raise the average site energy of CLA606 by B0.005 eV. Even
though the absolute site energies have relatively large s.d.
(B0.02 eV), the shift of the average site energy here may still
be meaningful (see Supplementary Methods for the details of
mutant calculations).

Discussion
To investigate the effect of the PSII environment on the pathway
selection of energy transfer in RC, we have constructed an exciton
model (Fig. 4b and Supplementary Fig. 2b) on the basis of
MD simulations in explicit solvent and extensive QM/MM

calculations. From the detailed analysis of the site energy
calculations based on the whole PSII complex, we have found
that the protein environment determines the difference in
probability of energy excitation between the active and inactive
chains. In addition, the static protein environment captured by
the X-ray crystallography is insufficient to explain the preference
of energy excitation along the active chain. It is essential to
consider the PSII protein’s structural ensemble to compute
accurately the excitation probabilities of its cofactors. We have
also observed that CLA606 is the site of energy trap in the PSII
complex and may further initiate the charge separation at this
site, as has been observed by previous experimental studies7,16,17.
Finally, we have identified a small number of charged protein
residues in the vicinity of CLA606 collectively lowering its
excitation energy.

Interestingly, we noticed that the site energies are sensitive to
the system complexity. Our simulations and calculations are
performed for the whole PSII complex (based on the most
detailed crystal structure available), while previously reported
experimental spectra were acquired based on minimal scaffold
PSII (denoted also as D1-D2-cyt559)12–15,20, for which a crystal
structure has not yet been reported. Therefore, it is reasonable
that some site energy values from our calculations deviate from
previous theoretical analysis based on available experimental
spectra11–13,23,24,30 (see the ‘Site energy calculations’ section in
Supplementary Methods). On the basis of these observations, we
conclude that CLA606 always has the lowest excitation energy
with the presence or absence of the core antenna, while the
transition energies of other cofactors are more system-size
dependent.

Methods
Model preparation. The crystal structure (PDB ID: 3ARC) at 1.9 Å resolution40

was used to build up the system for MD simulations. First, we removed the
exogenous molecules of diglyceride, alkyl chains, detergents and glycerol. Then, the
‘what if’ suite52 was used to add the missing lateral chains. The protonation states
of His, Asp, Glu, Arg and Lys were automatically determined by Gromacs 4.5 (ref. 53).
For those His residues in coordination with HEM or CLA, we have manually set their
protonation states to maintain the coordination. The PSII complex was inserted into
pre-equilibrated lipid bilayers composed of a single-component 1-palmitoyl-2-oleoyl-
sn-glycero-3-phosphocholine (POPC) to mimic the natural thylakoid membrane
(Supplementary Methods). The system was then neutralized by adding 92 sodium ions
and solvated in a water box containing 139,935 TIP3P water molecules54. Our
simulation box (264.3 Å� 165.2 Å� 145.0 Å) contains 578,609 atoms in total
(see Fig. 1a).

All-atom AMBER03 force field55 was chosen for the protein and ions. For the
five cofactors (CLA, PHO, BCR, HEM and PL9), force field parameters were
previously developed by us56. General Amber force field57,58 was adopted for the
lipids and bicarbonate, but with a re-fitting of the partial charges following a
similar scheme used for the cofactors56. The force field parameters for POPC were
taken from the previous work by Kasson et al.59 As suggested by a previous
study44, we assigned the atomic charges of the OEC complex as follows: Mn1–Mn4,
þ 3; O1–O5, � 2; and Ca, þ 2. To maintain the coordination between the OEC
complex and the protein, we have added harmonic restraints with a force constant
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Table 1 | The effect of protein residues on site energies
of CLA606 and CLA607.

Temperature Cofactors Site energies* in different environments

Protein Charged
residues

Neutral
residues

300 K CLA606 �0.036 �0.0252 �0.0093
CLA607 �0.0092 �0.0046 �0.0047

77 K CLA606 �0.0406 �0.024 �0.0154
CLA607 �0.0109 �0.0062 �0.0033

*DE¼ EPSII� Evacuum

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5170

6 NATURE COMMUNICATIONS | 5:4170 | DOI: 10.1038/ncomms5170 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


of 2261.03 kJ mol� 1 Å� 2 between metal atoms of the OEC and their coordinated
protein residues.

MD simulations. We first performed a 10,000-step energy minimization with the
steepest descent algorithm60 by freezing the PSII complex. The whole system was
further energy minimized in another 5,000 steps. Next, the system was simulated
with position restrained on all the heavy atoms of the PSII complex with a force
constant of 10 kJ mol� 1 Å� 2 under NVT ensemble (T¼ 300 K), followed by
another 10 ns simulation under NPT ensemble (T¼ 300 K and P¼ 1 bar). The final
configuration from the position-restrained simulation was used to initiate five
independent 20 ns production of NPT (T¼ 300 K and P¼ 1 bar) simulations with
temperature annealing from 50 to 300 K in the first 1 ns and different initial
velocities (see Supplementary Methods for the simulating parameters). To study
the properties at low temperatures, similar procedures and parameters were used to
perform another round of MD simulations at 77 K. Following a similar procedure,
we also simulated the Thr179Glu mutant (Supplementary Methods). All the MD
simulations were performed using Gromacs 4.5 (ref. 53).

Calculation of site energies and coupling strength. The Zerner’s Intermediate
Neglect of Differential Orbital with parameters for Spectroscopic properties
(ZINDO/S)61,62 method (implemented in the ORCA code63) was adopted to
calculate the energy gap between the ground state and the first excited state (Qy

state) of the cofactor. The last 5 ns of MD simulations was used for the analysis
(with a total of 1,250 conformations). For each conformation, we have performed
site energy calculation in vacuum, PSII environment and various components of
the PSII environment separately (for example, protein, cofactors, waters, charged
residues and neutral residues). To account for the environmental effects on the site
energy calculations, we have adopted a QM/MM method by treating the cofactors
quantum mechanically while the environment as point charges. In particular, we
have included atoms within 22 Å of the cofactor and treated them as the point
charges (Supplementary Methods). In this study, we only considered the excitation
to the first excited state (the Qy state) when computing site energies. However, we
also note that higher excited states may also play a role depending on the amount
of excitation energy transferred to RC from the antenna system. We note that
ZINDO/S is a semi-empirical method and the higher-level QM method may be
more accurate but also more computationally expensive. To validate the site
energies obtained from the ZINDO/S calculations, we also selected representative
MD conformations and used higher-level time-dependent density functional
theory (LC-wPBE/6-31G(d)) for the site energy calculations. The results from time-
dependent density functional theory calculations show reasonable agreement with

those obtained from ZINDO/S (Supplementary Fig. 3 and Supplementary
Methods).

To investigate whether the 20 ns simulations have provided a reasonable
conformational ensemble for the site energy calculations, we have extended two of
the MD simulations at 300 K for 100 ns (Supplementary Fig. 1a,b) and used the
conformations from the last 5 ns for the calculations. These calculations show
similar results to the 20 ns simulations (Supplementary Fig. 4), indicating that the
conformations we selected in our site energy calculations within 20 ns represent a
reasonable protein structural ensemble (see ‘Site energy calculations’ section in
Supplementary Methods for more details). In addition, the appropriated residue
protonation states are considered in our site energy calculations (Supplementary
Fig. 5,6 and Supplementary Table 4; see ‘Protonation states of charged residues’
section in Supplementary Methods for more details).

We have applied the transition charges from electrostatic potentials (TrEsp)
method22,64 to determine the coupling strength between pairs of cofactors, in
which the transition density of one cofactor was described by the atomic transition
charges that were localized at the respective cofactor, and the coupling strength
Vnm between the two cofactors n and m was given by

Vnm ¼
f

4pe0

X

I; J

qT
I �qT

J

RI
m �RJ

n

�� �� ð1Þ

where RI
m indicates the coordinates of the Ith atom of cofactor m with the

transition charge qT
I , while RJ

n indicates the coordinates of the Jth atom of the other
cofactor n with the transition charge qT

J . f is a distance-dependent factor to account
for the solvent effect on the electronic coupling65, with
f¼ 2.68� exp(� 0.27� d)þ 0.54 for two molecules separated by distance d
(Supplementary Fig. 7 and Supplementary Table 5,6; see ‘Coupling strength
calculations’ section in Supplementary Methods for more details).

Exciton model and equilibrium populations. The system was described by an
effective Hamiltonian, with the diagonal elements describing the site energies of the
cofactors and the off-diagonal terms denoting the coupling strength between the
cofactors calculated by the TrEsp method22,64. By diagonalizing the Hamiltonian,
the energies of the exciton states were given by the eigenvalues of the Hamiltonian
and the components of the corresponding normalized eigenvectors denoted the
contributions of each cofactor to the respective exciton state. The probability of
excitation on the cofactor m was calculated as:

Pm ¼
X

M

f ðMÞ cðMÞm

�� ��2 ð2Þ
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Figure 6 | Several conserved residues collectively reduce the site energy of CLA606. (a) Charged residues (red: positive-charged; blue: negative-

charged) can reduce the site energy of CLA606 over 0.0035 eV individually. The tail of CLA606 is omitted in the figure for clarity. (b) Site energies of

CLA606 on seven single mutations are shown. The collective mutations of all these seven residues dramatically increase CLA606’s site energy to almost

the same value as its counterpart cofactor (CLA607) in the inactive chain. The wild-type site energies for both CLA606 and CLA607 are also displayed for

reference. (c) These seven residues are highly conserved among different species. The sequence alignment was performed with the ClustalW2

program68,69.
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where f(M) is the Boltzmann factor for the exciton state M and cðMÞm is the
contribution of the cofactor m to the exciton state M. When the temperature
increases, f(M) becomes larger, and exciton states with higher energies will have
substantially more contributions to the excitation. Since these exciton states
contain a more uniform contribution from various cofactors, it will result in a more
flat distribution of excitation probabilities at higher temperature.

Sequence alignment. We have performed the similarity search of the D1 subunit
sequence using the Basic Local Alignment Search Tool (BLAST) program66,67

followed by the multiple sequence alignment by the ClustalW2 program68,69.
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